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Ilamed and Salingaros construct the real and complex algebras with three anticommuting
elements which can arise in physics. It is shown here that the ““algebra of color” can be similarly
constructed with six anticommuting elements. As a consequence of this construction, these

algebras are all simple, quadratic algebras.
PACS numbers: 02.10.Tq

1. INTRODUCTION

Ilamed and Salingaros' have determined the structure
of all possible algebras with three anticommuting elements
over the real and complex fields R and C that can arise in
physical descriptions. In Sec. 2 we continue the study of alge-
bras with anticommuting elements by looking at all algebras
with at least three anticommuting elements and determine
some properties of those algebras. In Sec. 3 we show that the
“algebra of color” fits into this larger class of algebras that
generalizes and contains those algebras constructed by
Ilamed and Salingaros.

2. THE CONSTRUCTION

Consider an algebra 4 over Ror Cwithabasis 1, ¢, ¢,,
..., &, where 1 is the scalar unit. These elements are defined to
anticommute. Define a scalar square for each element,

i=12..,n, (1)

where the g;’s are each equalto + 1 or — 1.

Ilamed and Salingaros,' considering only the case
n = 3, construct all algebras with three anticommuting ele-
ments which can arise in physics. They are (i) the quater-
nions, {ii) the dihedral Clifford algebras N, which is related
to the real 2-spinors, and (iii) the algebra of Pauli matrices S,
which is related to the complex 2-spinors.

Theorem 1: Each algebra 4 constructed above is qua-
dratic, that is, if xed, then {1,x,x*} is a linearly dependent
set.

ee =a;,

Proof: Let
x=ayl +a,e, (2)

with 1<y<n; summation over repeated Greek indices is un-
derstood.

x*=ail +2a4a,e,)+aia,l, 3)
X =2aiaol + a,e,) + (@ia, —a)l, (4)
x* =2apx + (ala, — a})l. (5)

We can rewrite (5) as
x* — 2t (x)x + q(x)1 =0, (6)

where? (x) = ayandg(x) = a2a, — a} arescalars. Thequan-
tities ¢ (x) and g(x) are called the trace and norm of x, respec-
tively. The trace is a linear functional on 4.2 The norm g(x)
defines a symmetric bilinear form g{x,y) on 4 via

qlx.y) = qlx + y) — qlx) — q(y). 7
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Any quadratic algebra 4 is power associative, i.c., the subal-
gebra generated by an element xe4 is associative; all qua-
dratic algebras are Jordan admissible. The classical treat-
ment of quadratic algebras is given by Braun and Koecher.?

Let x be any element of an algebra 4. The right multipli-
cation by x, R, is defined by

R,:a—ax forall aed. (8)
Similarly, the left multiplication L, is defined by
L. :a—xa forall aed. 9)

Each of R, and L, is a linear operator on 4 for all xe4. Let
M {4) denote the (associative) algebra consisting of all finite
sums of products of right and left multiplications of 4; M (4 )
is often called the associative multiplication algebra of A.

A subset of B of A4 is called an ideal of 4 if it is an
invariant subspace under M (4 ). An algebra A is called sim-
ple in case 0 and 4 itself are the only deals of 4. Thus A isa
simple algebra if and only if M (4 ) #0 is an irreducible set of
linear operators. Knowing that an algebra is simple often
helps to determine other aspects of its structure. For exam-
ple, if 4 is a simple, finite-dimensional associative algebra,
then there is a division ring D and a positive integer n such
that 4 is isomorphic to the ring of n X n matrices over D.*

Theorem 2: Each algebra 4, n>2, constructed above, is
simple.

Proof: Suppose A4 is not simple and xe4 is contained in a
proper ideal of 4. Then

x=a,l +a,e,. {10}
Forsome k = 1, 2, ..., n, a, #0. Then
ex+xe =200, 1+ 200, =2 (11)

is an element of the ideal. Hence a,#0. Pick some ¢,/ #k.
Then

e12+ze1 =4akake, (12)

is in the ideal. Hence ¢; ¢, is in the ideal. But then 1 is the
ideal.

A simple, finite-dimensional alternative algebra is ei-
ther associative or an octonion algebra.® Since an octonion
algebra is eight-dimensional over its center, all four-dimen-
sional alternative algebras constructed in this manner must
be associative. Hence the algebras of Ilamed and Salingaros
must be associative.
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3. THE ALGEBRA OF COLOR

Domokos and Kovesi-Domokos® have constructed an
algebra of dynamical variables which describe the color pro-
perties of quarks and leptons. We will review this “algebra of
color,” give its multiplication table, and, finally, show that
one can choose a basis for the algebra of color such that the
algebra is a generalization of the construction of Ilamed and
Salingaros.

As is usual, it is assumed that quarks are triplets (3),
antiquarks are antitriplets (3), and leptons are singlets under
the color group SU(3),.” The multiplication rules should be
such that mesons and baryons, being observables, are both
singlets under SU(3), . Multiplication must then obey the
triality rule, which can be symbolically written as

B)xB)~(1), B)xB3)~B). (13)

In addition, Domokos and Kovesi-Domokos introduced an
exact superselection rule between hadrons and leptons.

Define the fundamental dynamical variable 3 by

V=ul +u,q* (14)
with 1<a<3; summation over repeated Greek (color) indices
understood. The coefficients / and ¢“ are to represent lep-
tonic and quark variables, respectively. These are anticom-
muting Fermi variables with space-time and flavor labels
suppressed.® All the color properties of the algebra must be
realized in the basis elements u, and ,,.

1. Quarks and antiquarks (leptons and antileptons) are
distinct. Both leptons and antileptons transform as ~{1) un-
der SU(3). . Quarks (antiquarks) transform as ~ (3) [~ (3)].
Hence we have a vector space with basis elements u, span-
ning (3) and %, spanning 3 of SU(3), . Write the conjugate of
Y as

Y =il +U,qa> (15)
where both u, and #, are singlets under SU(3), .

2. We assume that there are exactly two superselection
sectors, i.e., hadrons and leptons, and that every observable
{2 may be written as a direct sum

N =LOL + HOH, (16)
such that

L*=L, H?=H, (17)

L+=L H*=H, (18)

LH=HL =0, (19)

where the projections L and H are singlets under SU(3)..
Since we want to identify / with a leptonic variable, u, may be
identified with the projection L, provided that #, = u; this
is permissible since both u#, and #%,, are color singlets. Hence
we can write

E=L+H, (20)
where E is the unit element of the color algebra. We have the
obvious

L = uy= 1, (21)

Lu, =u,L =L, =%,L=0. (22)
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3. The triality rule requires that
Uy g =U,ug =6,5H, (23)

where 8, is the Kronecker delta symbol. Likewise, baryons
(antibaryons) are observables, and keeping (23) in mind, we
define

Uyl = €40, 5 UgUg = €op, U, (24)

where €,4, is the totally antisymmetric unit tensor.
4. Any observable and a quark (antiquark) must carry

the same color as the quark (antiquark) does. Hence
Hu,=u,H=u, (25)
and
Hy,=u,H=1u,. (26)
In summary we give multiplication Table I .
Theorem 3: The algebra in Table I has a basis

{H,e,,e,,e5,e,4.es5.e¢} with the e;’s anticommuting and e’
= + 1 foreach /.

Proof: Let

e, = (1/vV2)u, +u,), (27)

i3 = (1/V2u, —u,) (28)
a =1, 2, 3. Direct computation verifies that

e2=H a=123, (29)

2= —H, a=456, (30)

e,ep = —ege, if a#p. (31)

All of the four-dimensional algebras and the algebra of
Table I constructed in this manner are flexible; that is,
{xy}x = x( yx) for all x and y in the algebra. However, not all
algebras constructed in this manner are flexible; Braun and
Koecher provide the example. Take as a basis {1, e,, ,, €;]
and multiplication

e =el=e=1, (32)
elez = e3 = — ezel, (33)
e85 = e,e; = e;e, = ese; = 0. (34)

For a further discussion of the algebra of color see Do-
mokos and Kévesi-Domokos® and Wene.'®

4. CONCLUSION

This paper, along with Ref. 1, shows that each of the
quanterions, the dihedral Clifford algebra /V,, the algebra of
Pauli matrices S, and the algebra of color can be constructed
as an algebra over R or C with a basis 1, e, ..., ¢, where the
e;’s anticommute and e? = q;, i = 1, 2,..., n {no summation
intended) and each q; is equal to 4 1.

Salingaros'! extends the construction of algebras with
three anticommuting elements and a unit given in Ref. 1 to

TABLEL
H ug ug
H H ug ug
U, U, €501, 8. H
U, U, S0 H [
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the case where the underlying field is the ring £2 (that is, the
Clifford algebra generated over R by the elements {1, w}
with o? = + 1).
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Representations of the groups Sp(n,A) and Sp(n) in a U(n) basis
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The explicit expressions for the infinitesimal operators and the (finite) matrix elements with
respect to a U{n) basis are obtained for the representations of the most degenerate series of Sp(#,R )
and for the irreducible unitary representations of Sp{n) with the highest weights (#4,0,...,0).

PACS numbers: 02.20.Qs

I. INTRODUCTION

The groups Sp(n, R ) and Sp(n) have found wide applica-
tions in physics.'~® The infinitesimal operators and the finite
matrix elements of the group representations are of great
importance for physical applications. We need different
bases for different problems. In this article we consider the
representations of Sp(n, R ) and Sp(n) in a U{n) basis. Here n
denotes a rank of the groups Sp(rn, R ) and Sp(n). In some
papers these groups are denoted by Sp(2n, R ) and Sp(2#),
respectively.

The formulas for the infinitesimal operators derived
here correspond to any reductions
Sp(n, R)DU{n)DG' DG "D~ and
Sp(n)DU(n)DG’'DG " D The formulas contain the
Clebsch—Gordan coefficients of a tensor product of the re-
presentations of U(n) with the highest weights
(m, 0,...,0, m,) and (2, O,...,0) for the reduction
U{n)DG'DG " D---. These Clebsch-Gordan coeflicients are
well known”® for the Gel’fand-Zetlin basis.

The matrix elements of the representations of Sp(», R )
and Sp(n) are found in the basis corresponding to the
reduction

U(n)DdU(n — 1)D--DU(1).

In order to find them in other bases we have to use the matrix
elements of the representations of U(n) with the highest

weights (m,, 0,...,0, m,) for this other basis. The matrix ele-
ments of some representations of U(z) in a U(n — p)® U( p)
basis are obtained in Ref. 9, and in a SO(n) basis in Ref. 10.

To find the infinitesimal operators of the representa-
tions of Sp(n, R ) in a U(n) basis we use Lemma 5.2 of Ref. 11.
The infinitesimal operators are used to calculate the inter-
twining operators for the representations. In turn, they are
used to find the infinitesimal operators of the representations
of Sp(n). The method of calculation of the infinitesimal oper-
ators and the matrix elements of the unitary irreducible re-
presentations of a compact Lie group with help of infinite
dimensional representations of a corresponding noncom-
pact Lie group are described in Refs. 12-14.

1. THE MOST DEGENERATE SERIES
REPRESENTATIONS OF THE GROUP Sp(n, A)

The group Sp{z, R )consists of all matricesof GL(2n, R }
which leave invariant the form

X ANXy oy +XAX, o, X, AX,,.
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The Lie algebra sp(n, R ) of Sp{n, R ) consists of all matrices

G -xi)
3 X 1T '
where X, X,, X; are real n X n matrices such that X, and X,
are symmetric. Here T denotes a transposition.
A maximal compact subgroup of Sp(n,R ) is U(n). This

subgroup is imbedded into Sp(n,R ) in the following manner.
If A + iBcU(n), A and B are real, then

A+w~643ﬁkwmxy (1

If sp(n, R ) = u(n) 4 p is a Cartan decomposition of
sp(n, R ) then p consists of the matrices'>

G _2) g
2 1
where iZ,eu(n) and is a pure imaginary n X n matrix and Z, is
a symmetric real n X n matrix.

Sometimes it is convenient to consider the algebra

sp’(n, R Jwhichisisomorphictosp{n, R }. Itisobtained by the
transformation ¢: g-»0go ™~ !, gesp(n, R ), where

E, iE
— 2—l/2(E" ")
7 n - IEn

and E, is a unit n X n matrix. Under ¢ the matrices (1) trans-
form into the matrices

A —iB 0 )
( 0 A+ iB @)
and the matrices (2) into

0 Z, +iZ
(Z j 1 ﬁ‘ “
| —iZ, 0

An Iwasawa decomposition for Sp{n, R jcanbetakenin
the form Sp(n, R ) = ANK, where K = U(n),4 = expaand a

consists of the matrices
diag(w,,...,@,, — @5y — @,), @,;€R. (5)

The notation diag (...) is used for diagonal matrices.
Let us consider the subgroup P = AN-U(n — 1) of
Sp(n, R ), where U(n — 1) is imbedded into Sp(n, R ) as

Uln — 1)—diag(Uln — 1), 1)

using the imbedding (1). The subgroup P differs from the
maximal parabolic subgroup of Sp(n, R ) by the discrete sub-
group Z, consisting of two elements. The subgroup P can
also be represented as P = A N,. Sp(n — 1, R ), where
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Spin — 1, R ) is obtained from Spi{n, R ) by a deletion of the
nth and 2nth rows and columns. The subgroup 4, is defined
as exp a,, where a, Cspln, R ) consists of the matrices

diag(0,..,0, 4, 0,..., — a), a€R. {6)
It is clear that the matrices of 4, have the form
diag(1,...,1, 4, 1,..,1,£7"), O#teR. (7)

The subgroup N, C N is generated by root vectors corre-
sponding to positive roots of the pair'® (sp(n, R ), a,).
For h,n,meA ,N,.Sp(n — 1, R )=P the correspondence

hn,m—sexp(A (In A,)), (8)

where A is a linear form on a,, defines a one dimensional
linear representation of P. It is clear that A is given by one
complex number u. If 4, is of the form (7) then

exp(A (In hy)) =t~
The representation (8) of Pinduces the representation of
Sp(n, R ). We denote it by 7, . It acts on the Hilbert space

L2(K), K = U(n), which consists of all functions from L %K)
satisfying the condition

fimk)=f(k), meUn—1). )
The operators 7, (g), geSp(n, R ) are given by
7,(8) f(k) = exp(d (In h))) flky), (10)

where 4, and k, are defined in the following manner. X, is
determined by the Iwasawa decomposition kg = A 'nk,,
h'ed, neN, k,eK; h, is defined by the decomposition

h' = h,h,, h,€A,, h,€A, [here 4, = expa, is a subgroup of 4
such that a, consists of the matrices (5) with , = 0].

The representations 7,, are reducible. Every 7, is de-
composed into two representations of Sp(n, R ), which are
induced by representations of the maximal parabolic sub-
group. This decomposition will be given in the following
section.

Il INFINITESIMAL OPERATORS OF THE

REPRESENTATIONS 7,
Let B (.,.) be a Cartan~Killing form on sp{n, R )and 8 a
Cartan involution. Then {(x, y) = — cB (x, 6y), ¢>0and

fixed, is a scalar product on sp(n, R ). The adjoint representa-
tion of Sp(n, R )insp(n, R ) will be denoted by Ad. In order to
evaluate the infinitesimal operators of the representations
7, of Sp(n, R ) we use Lemma 5.2 of Ref. 11. For our case it
can be formulated as follows.

Lemma. The infinitesimal operators dr,,(Y), Yep,. (p,
is the complexification of p), of the representations 7, of
Sp(n, R ) act upon the infinitely differentiable functions of
Li(K)as

dm,(Y)flk)
= ((Ad k)Y, H)A(H)f(k)— (Ad k)Y, p)f(k)
+3Q, (Ad k)Y, )] fik), (1)

where H is a normalized element of a,, / is an element of a,
such that a(# ) = 1 [a is a simple restricted root'® of the pair
(sp(n, R), a,)] Qis identical to the operator @, of the formula
{5)in Ref. 17, and p is half the sum of the positive restricted
roots of the pair (sp(n, R ), a,) represented as an element of a,.
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We need an orthonormal basis of L 3(K ). According to
the Peter—-Weyl theorem the matrix elements of the irreduci-
ble unitary representations of U(n) with the highest weights
(m,, 0,...,0, m,), m, >0, m,<0, which are left invariant with
respect to U(n — 1), can be taken as a basis of L 3(K ). We
denote these representations of U(n) by
[m,, 0,...,0, m,)J=[m,,m,]=D"""_ In the space of the re-
presentation [m,,m,] we choose two orthonormal bases: the
Gel'fand-Zetlin basis, i.e., the basis corresponding to the
reduction U(n} D U(n — 1)D-.DU(1), and an arbitrary orth-
onormal basis. The elements of this latter basis will be denot-
ed by |5 ). The Gel'fand-Zetlin basis element which corre-
sponds to the Gel'fand-Zetlin pattern

) (12)

----------

where the first row is a highest weight of the representation
of U{n), will be denoted by |2 ). It is clear that |2 ) is invar-
iant with respect to U(n — 1). The functions

{dim[my,m,]}/2(2 |D ™™k )|.Z) (13)

for all m,, m,, and 5, constitute an orthonormal basis for
L2(K). The basis elements (13) will be denoted by
|my, my, 2.

We shall find the infinitesimal operators d7,(Y) in the
basis |m, m,, 2 ). The derivation is similar to the one given
in Ref. 17 for the representations of the group U( p, q).
Therefore, we omit here the details.

The scalar product {.,.) on p can be given as

(X, Y)={TrXy" (14)
Therefore, the matrices 2 and H of the lemma are

h=H=e,, —e,,,,. (15)
Here ¢; is a matrix with matrix elements (¢;), = 6,6,. A

direct evaluation shows that p = nh, where 4 is defined by
(15). This evaluation can be done with a help of the Araki
diagram (see pp. 30~32 in Ref. 16). Now we can write

((Ad k)Y, H)A (H)—{(Ad k)Y, p)
= ~n{(AdKk)Y, k). (16)

Since we consider the degenerate series of representa-
tions the chain (2) of subgroups of Ref. 17 (see also Chap. 5 in
Ref. 11) reduces to

Uln) = K=K, DK, = Uln — 1.

Moreover, between K and K, there is the subgroup K ! [see
the chain (3} in Ref. 17], and

K} = diag(U(n — 1), U(1)).

This information is utilized to find eigenvalues of the opera-
tor Q. The operator Q acts upon the states |m,, m,, ') as

Q|my, my 3) = glm)|m,, my, T'), (17)
where g(m)=q(m,, m,) is a number.
From (16) and (17) we have
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dm,(Y)m, my 2) = (u—n+1Q — lg(m)) Thus, we shall obtain the operators dr,, (Y, ) and dr, (Y_).
X{(Ad k)Y, h)Y|m,, my, T). (18) The other noncompact operators can be obtained by com-
mutation of dm, (Y, ) and d, (Y_) with compact infinites-

Now we consider the expression imal operators. We can also find them by utilizing the
(Ad k)Y, h }|m;, my, 3 ). Thespacep, isacarrierspaceofthe  Clebsch-Gordan coefficients for U{n) (see Ref. 17).
representation of u(n) with respect to the action ad b, beu(n). The matrices Y, and Y_ are elements of the carrier
This representation is a direct sum of two irreducible repre- spaces of the representations of U(n). They correspond to the
sentations of u(n) with the highest weights (2, 0,...,0) and Gel’fand-Zetlin patterns:
(0,...,0, — 2). In order to prove it we use the algebrasp’(n, R )
for which U(n) and p are realized by the matrices (3) and (4), 2 0 « 0 00 .. =2
respectively. The matrices 0 - 0 0O . O

Y, . Y _—

0 0 0
are transformed under the representation (2, 0,...,0), and the

matrices These patterns will be denoted by (Y ), (Y_), respectively.
The expressions

o o)
) (oh 0 0 ) (Adk)Y, , h)=(Adk)Y,Y,),

under the representation (0,...,0, — 2). We shall find the in- _

finitesimal operators of the representations #,, for the matri- (AdK)Y_ h) = (AdK)Y_., Y,

cesey, , ande, ,, . If we consider the realization (2) for p then are matrix elements of the representations of U(n) with the

these matrices correspond to . highest weights (2, 0,...,0) and (0,...,0, — 2}, respectively.
€2n,n>Cnn — €2n,2n T €4 2n + €20 J=Y 4, The basis elements |m,, m,, ¥ ) are the functions (13).
€, 2n —C,, — eZn, 2n i(en, 2n + e2n, n )E Y—‘ Therefore,

((Ad k )Y+, h >|m1, mz»z)

dlm mg, m 12 ’ ’ ’ ’ ’ ’
= E (dimllz:m'1 mf]] ) (my, my, B Y, )|mi, mg, 2){m}, m;, % |my, my, Z(Y )} mi, m;, %), (19)
19 2

(AdKk)Y_,h)m,m, %)

mi, my

_ (M)'”(m,,mz,n;(Y_nm;,m;,m(m;,m;,z4m,,m2,z;(Y_)>|m;,m;,z>, (20)
miomi\ dim{ m{, m;]
where (.-|--+) are Clebsch-Gordan coefficients of the tensor products

[ my,0,...0, my] @ [2,0,...,0],

[ m,,0,..,0,m] ®[0,..,0, —2]

of the representations of U(n). Decomposing these tensor products we find that in the relation (19)

(mi, my)=(m, + 2, m2)! (m,, m, +2), (m, + 1 my + 1)
and in (20)
(m;, my)=(m, —2,my), (m,my—2), my—1,m, —1).
This information is used for evaluation of eigenvalues of the operator @ — g{m) from (18). We evaluate them utilizing the

considerations given in Sec. 4 in Ref. 17. Substituting the relations (19) and (20) into (18) and taking into account the formulas
for eigenvalues of Q — g(m) we obtain

d' , 1/2
dmmlml,mz,ﬁ=cu+m1—m2)( dim( my, m,] ) (my, g, DY )|y + 2, my, @)
diml m, +2, my]

XAmy +2,my, X |my, my, Z(Y N |my+2,my, T) + @ —~my+m;—2n+2)

dim[ m,, m,] )"2
X my, My 25(Y ) |m,, my +2,02)
(Gompad ) o ey O i
><<m19 m2 + 212 |m19 m27 2;(Y+))|mh m2 + 2y2)

dim[ m,, m,] )1/2 (Y Nm
- ) » 5 + 1! m + 1y 'Q
+(u ")( dim [m, + L, m, + 1] (my, my, (Y, )|m, 2 )

X{my+1,my+ 1,2 |\my, my, Z{Y ) |my+ 1, my+1,2), (21)
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dim[ m,, m,]

dr, (Y_)m,myuZ) = —m +my—2n+ 2)(

dim[ m, — 2, m,]

172
) (myy ma QY _)\my — 2, ma, 2)

X <ml - 2’ m,, z 'ml’ my, 2,(Y—)>,m] - 2) m,, 2)

dlm[ my, m2]

+(ﬂ+m1—mz)(

dim[ m,, m, — 2]

172
) (my, may QY )|y, my —2,0)

X <m1y m2 - 292 Imb m27z;(Y~)>,m1’ mz - 2’2>

1 172
o= sl el N, 0¥ i, — 1,m, — 1, 2)
dim{m; -1, m, — 1]
X{my—1L,my— 1,3 |m,my, Z(Y_)|m —1,m—1,%) (22)

In this formula Clebsch—Gordan coefficients with {2 are
known.”® They correspond to Gel’fand—Zetlin bases.
Clebsch-Gordan coefficients with ¥ are known if

|m,, my, Z') are the Gel’fand—Zetlin basis elements.

The infinitesimal operators dr,, (Y, ), dm,(Y_) (and,
therefore, other noncompact infinitesimal operators) change
the number m, + m, by 1 2. Thus, the representations 7,
of Sp(n, R ) are decomposed into a direct sum of two repre-
sentations 7, and 7, . For 7, the numbers m, + m, are
even, for 7" they are odd. It can be shown that the represen-
tations 7" and 7, of Sp(n, R ) are induced by one dimen-
sional representations of the maximal parabolic subgroup
related with the subgroup P.

The representations 7 and 7", for which z — n are
pure imaginary, are unitary. They constitute the principal
most degenerate unitary series of Sp(n, R ).

IV. STRUCTURE OF THE REPRESENTATIONS 7*

The multiplicity of the irreducible representations of
U(n) in 7 and 7, does not exceed 1. Thus we can deter-
mine the set of irreducible representations in the set of repre-
sentations 7", 7, , 1 a complex number. We can also in-
vestigate the structure (the composition series) of the
reducible representations 7,7, 7, . The proofs are the same
as in the case of the groups U(n, 1) and SOy(n, 1) in Ref. 11.
Therefore, we list the theorems without giving proofs.

Theorem 1: The representation 7, is completely irre-
ducible if and only if u %0, —2, — 4, —6,... and u#2n,
2n +2,2n + 4,... . The representation 7, is completely ir-
reducible if and only if u# — 1, — 3, — 5,... and
LFEIM+1L2n4+3,2n+5,....

Theorem 2: Ifu =p; p=0, — 2, — 4, —6,..., then
m,_ , contains two completely irreducible representations of
Sp(n, R ), namely, the finite dimensional representation
D _ , with the highest weight ( — p, 0,...,0) and the infinite
dimensional representation, denoted by D¢_, _ ,. These re-
presentations 7,/_ , are indecomposable and the finite di-
mensional representations are realized in an invariant sub-
space. Ifu =p; p=2n,2n + 2, 2n + 4,..., then T, s
indecomposable and contains two completely irreducible re-
presentations of Sp(n, R ), namely, the finite dimensional re-
presentation D, _,, and the representation D¢ _,, ,. The
latter one is realized in an invariant subspace.

The representations 7,", m,_,, p=0, —2, —4,
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— 6,... contain the same completely irreducible representa-
tions of Sp(n, R ).

Theorem 3:Ifp = — 1, — 3, — 5,..., then the represen-
tation 7,,_ , and the representation 7, _ , contain two com-
pletely irreducible representations of Sp(», R ), namely, the
finite dimensional representation D _, with the highest
weight { — p, 0,...,0) and the infinite dimensional representa-
tion, denoted by D¢, , ,. The representations m, and
T3n — » are indecomposable. For 7~ the representation D _
and for 7, _, the representation D¢, , are realized in
invariant subspaces.

Using the infinitesimal operators (21) and (22), we can
define which irreducible representations of U{n} are included
inthe representations D _ , and D 4 »+20fSp(n, R). Wesaw
that the representations 7, and 7, of Sp(n, R ) under re-
striction upon U(n) are decomposed onto the irreducible re-
presentations of U(n) with the highest weights
(m,, 0,...,0, m,) for which m, + m, are even and odd, respec-
tively. The finite dimensional irreducible representation D,,
of Sp(n, R ) with highest weight (M = — p, 0,...,0) under re-
striction upon U{rn) are decomposed onto those and only
those irreducible representations of U(n) which have the
highest weights {m,, 0,...,0, m,) for which m, — m,<M and
m, + m, have the same parity (evenness) as M does. Now we
can define irreducible representations of U(r) which are con-
tained in the representations D¢, , of Sp(n, R ).

4

V. INFINITESIMAL OPERATORS OF THE UNITARY
REPRESENTATIONS OF Sp(n) IN A U(n) BASIS

Let us consider the finite dimensional subrepresenta-
tions of the representations 7,* of Sp(, R ) (see Theorems 2
and 3). The Lie algebra of Sp(n, R ) has the Cartan decompo-
sition sp(n, R ) = u(n) + p. The corresponding compact Lie
algebra sp(n) has the decomposition

sp(n) = u(n) + ip. (23)
Therefore, if we multiply infinitesimal operators Yep for fin-
ite dimensional representations of Sp(n, R ) by / then we ob-
tain them for finite dimensional representations of Sp(n). Let

Jo=iY,, J_=iY_,
where Y, and Y _ are taken from (21) and (22). The infinites-
imal operators J_ and J_ for the finite dimensional repre-

sentationsD,,, M = — p, of Theorems 2 and 3, given by the
formulas (21) and {22), do not satisfy the unitarity condition

Anatoli U. Klimyk 227



J* = —J_. This condition can be satisfied for the new
basis. This basis can be found with the help of the intertwin-
ing operators /1, for the representations 7, and 7 _, , ,, of
Sp(n, R ):

Mr,=nm_,, 1, (24)
{see Chap. 5 in Ref. 11). In the basis |m,, m,, ' ) the opera-
tors 11, are diagonal and their matrix elements a,,, ,, do not
depend“ on Z. Let us consider the relation (24) for drr (Y y)

and dr, (Y_). Then taking matrix elements of both sxdes one
obtains the relations for a,, ,,,

am.+2.m,(ﬂ’+ml _m2)=am,m2(_,u’ +m1
am,,m,+2(ﬂ —m, +m2—-2m +2)

— m, + 2n),

=y, — e —my+my +2),
Qo t,m1l =8mm,-
Therefore,

J+|ml1m2’2>,= [(—M+m —m)M +m,

k—1

m2+2n+2]
my, + %

—H+m =
j=0 p+m —

am. +2k,m, — am,m,
(25)

k

=ammH —/‘—m1+m2+2j ,
Tz —mimy—2n+ 2

a

my, my + 2k

(26)

am, +kom,+ k= ( - l)kam.mz' (27)

Now we can fix some initial value of a,,, ,, and find all matrix
elementsa,, , of I7,. The operators J, , J_ satisfy the uni-
tarity condition for the basis

_1/2|m1, my X) (28)
(see Sec. 5in Ref. 11). Taking into account the relations (25)-
(28) we obtain the formulas for the infinitesimal operators of

the unitary irreducible representations of Sp(n) with highest
weights (M, 0,...,0):

|my,my, 2 ) =

—my;+ 2")]”2K::Tz. my M+ 2,my, )

+(—M—m+m—2n+2M—m, +m,+ 21K o |m,my+2,3)

— M4+ K L, my+ L, my+ 1,3, (29)
J_|m,myZY = —[M+m —my+2n=2(—M+m—m,—=2)]'"?K7"™,  |m,—2,m,, 2

- [(M+ml—m2+2n)(——M+m,—mz)]”zK:l:;_ZIm],mz—-2,2)'

—iM+nKom . my—1,my—1,5)". (30)

Here K . denote the products of Clebsch—-Gordan coeffi-
cients (multiplied by dimensionality multiplier) of Eqs. (21)
and (22). Other infinitesimal operators can be obtained by
commutation of the operators J, and J_ with infinitesimal
operators corresponding to the subgroup U(n).

VI.MATRIX ELEMENTS OF THE REPRESENTATIONS 7,
IN A U(n) BASIS

Now we shall find the matrix elements of the represen-
tations 77, in a U(n) basis. The Gel'fand—Zetlin basis will be
taken as a U(n) basis. We shall use the formula (10) for the
representations 7, and the formula

Soml@fy) = j £k )%, (g) folk )k (1)

for the scalar product in L 3(K), K = Uln).
Any element geSp(n, R ) can be represented as

g=khk', k' keU(n), hed. (32)

The element heA is represented as the product of the matri-
ces (7), taken for the subgroups Sp(j, R },j = 1, 2,...,n. Since
the matrix elements of the representations of U{n) in the
Gel’fand-Zetlin basis are known, then we have to find the
matrix elements of the operators ,, (h,), corresponding to
the elements h,€4, given by Eq. (7).

According to Eq. (9) elements of L 3(X ) can be consid-
ered as functions on the complex sphere
S§"~!'=U(n — 1)\ U(n). Let us introduce a parametrization
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on S" . For this aim we consider the decomposition of the
elements k of U(n} in the form [see Eq. (7.39) in Ref. 11]
k=h',(6,)a,(@. )k, h'eUr—1),
a,(p,) = diag(l,...,1,e %),
B,(6,) = diag(1,...,1, R (6,)),
i= T8, 60— (@) el

r=1

0<p; <2m, 0L6,<7/2.
Here R (€) denotes a 2 X 2 matrix with the matrix elements
a,, = ay, =cos 0,a,;, = — a,; = — sin 6. Thus elements of

L 2{K ) can be considered as functions of

6, @us 00 _ 15 @y _ 15502 P2, @, or as functions of elements
of U(n) of the form
Hﬁn—r n—r n—r¢n—r’]al¢l (33)

This parametrization of S ~ ! corresponds to the reduction

Un)DUn — 1)D--DU(1).

Now we find the action of 7, (h,) on the functions
f{B,s @rsesB2 @2y @y). The formula (10) has to be used.
Therefore, we need the explicit form of the matrices neN.
Since /,€4,, then the Iwasawa decomposition
kg = h'nk,, g = h,, contains elements » of the subgroup N,
of N. Let us construct this subgroup.

The linear forms on a [see Eq. (5)],
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to, o, i#, £2, i=1,2..1,

are restricted roots'® of the pair (sp(#, R ), a). The roots

w; + ©;, i>j, 20, can be taken as positive roots. All roots
have the multiplicity 1 (see pp. 30-32 in Ref. 16 and Table 3
in Ref. 11). Let us construct root vectors corresponding to
the positive roots o, + @, _, 20, _, 2w, . A direct verifi-
cation shows that they coincide with the matrices

E, o =€+l By  =€_12_ 1)
Ea},‘—w";_, =Crn—1 €121 EZm,,=en,2n‘

The following one-parameter subgroups of Sp(z, R ) corre-
spond to them:

Nw,.+m,,,,| =e+5(e; 2, + €2 1)
Nw,,—m,,,, =e+t(en,n—l —'en+l,2n—1)’
szl’n_| =e+pen—],2n—l’

Ny, =e+qe, 20,

where e is a unit matrix and s, 4, p, ¢ are real numbers. A
product of this subgroups coincides with the subgroup ¥,.
Its elements have the form

r 1 1 =

q N

—t
L 1 0 1 J
where other matrix elements are equal to O.
If k' is of the form (33) and h,e4, then

k ,hl =Bn(0n )an(¢n)hl nﬁlﬁn - r(en — r)an — r(¢n - r)]al(¢l)'

r=1

For the product B, (6, )a, (@, )k, we have

Comparing the matrix elements for both sides of this relation
we obtain

cos @' = cos @(cos’p + t *sin’p) /2, (34)
cos 8' = cos 8 [cos’8 + t2(cos’p + ¢ *sin’p)~'sin?4 ] ~1/2,
(35)

sin 8’ = ¢ (cos’p + ¢ *sin’p)~"/*sin B cos™'Gcos 8',  (36)
t' = t{cos’p + t*sin’p) '/
X [cos’@ + t%(cos’p + tsin’p) " 'sin’@ )~V (37)

We have omitted the index n at ¢ and 6 in Eqs. (34)—{(37). It
follows that

ﬂ.,u(hl)f(en’ Pns enA 19 P 1!"'7¢1)
=tlyf(0:u ¢7;’8n—lr¢7n~1"“’¢>l)r (38)

wheret’, @,, @ |, are defined by (34)~(37). We shall use this
formula.

Elements of the Gel’'fand—Zetlin basis of the representa-
tion of U(n) with highest weight {m,, 0,...,0, m,) are denoted
by the patterns

rnl 0 ase O mZ

----------

(39)

Let a, denote the pattern a with

m; =m£ = see =ml("_”=0,
All the matrix elements (multiplied by a dimensionality
multiplier)

(dim[ m,, m,))'2D 2k )=|m,, my, @) (40)

of all the representations of U(n) with highest weights
(m, 0,...,0, m,) are the orthonormal basis of L 3(K ). For the
matrix elements (40) we have

DZB.0)a. @ )=Dg .. (6, @)

B, (6,10, (@, ) =dn 8,0 )a,(@}), neN,, =ePlmm iy  06), (41)
d = diag(l,...,1,¢t",¢"), t",t'eR. and there are two expressions for d (6 ):
]
da',"(ﬁ’;,,.i,(G) = (cos e)m:+m;—m.—mz 2 N(m,, my, m, mj, k)(sin 6)2k—m§—mi’ (42)
k = mj
dyim  (0)=(cos 6)" ™" Ny, my, my, mj, k)sin @)+~ 2, (43)
k=m,

The explicit expressions for N can be taken from Eq. (46) of Ref. 13 and for N’ from Eq. (47) of Ref. 13 (see also Ref. 18).
The matrix elements of the operators 7, (#,) {and therefore, of mF (hy)] are defined by the formula

(my, my, a|m, ()|, iy, @) =d ¥ (t)=

(myma)(m, i mim3)

X cos 6 [D ™, g

(n—1) (dim[ m,, m,]-dim[ mm,, h,])"/? J-zfr 2

dopd0 sin*" — 39
dim[m], m} ] 4

6 ¢ )]'t ‘“D gf'(’",;}mi) @, (44)

0 0

0, (mimj)

wheret’, 6, @ " have to be taken from Eqs. (34){37). The expressions (42) and (43) can be used for D functions in (44). If Eq. (42)

is taken then we have that
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m m
R , ot i a2k
df‘mmz)(;ﬁ.,ﬁ,)(m;m;)(t) =0 z 2 N(my, my, mi, my, k)N (i, iy, mi, my, k')eE =™ mit2

k=m] k'=m

x|, [ dg do i =ity psintp -t R os 4. sin ) < e
X(soin; Ak + k' —my—ms+n—1)— l(cos 0)2(m;+m§)fm,—mz—rﬁ.—rﬁz+1
X [c0s?8 + 1 *(cos’p + t *sin’@ )~ 'sin?@ || ~# M+ = 2K02 (45)
Here we have denoted the expression preceding the integral of Eq. (44) by Q. There is the multiplier

—m, + mi+ m;

(cos @ + it *sing) ™™

on the right hand side of Eq. (45). It appears because of the decomposition exp ip ' = cos ¢’ + i sin ¢’ and Eq. (34). The number
— m, — m, + m{ + mj can be negative. Then this multiplier is not convenient to work with. We have to apply Eq. (34) to the
decomposition exp( — i@ ') = cos ¢’ — i sin @". As a result we obtain a somewhat different expression in Eq. (45). We do not
write it down here. The reader can easily obtain it.
If the expression (43) is taken for D function (41) then we have that

m; m} ' ' |
QY 3 Nlmy,mymi,ms, k)N, ti mi, my, fojp ™ mir i
k=m, k'=m,

2w /2
XJ d¢ do ei"’('"‘ Ty —mi— mé)(c052¢7 + t“sin2¢))"' —mi—mi{—p+ m, + my)/2
0 ]

M —
(o, s, gy 2 ) =

X [c0s?6 + t2(cos’p + t*sinp) " 'sin2@ ]+~ ™~ M+ 2KV 2005 g 4 it Xsin @) T T TR E M
X(sin0)2(k+k'+mi+m£+n~l)— l(cos e)m.+mz+ﬁt,+rﬁr2(mi+'né}+ T (46)

If in Eq. (44) the expression (42) is taken for D (6, @) and the expression (43) for D (6, ¢') then we have

m mj
o, [y — 2k
C—— el 2 S, N(my, my,mi, my, k)N (s, vy, mi, my, k't * ™™

k=mj k' =r,

2T r/2
Xj d(pdgeiw(m.+mz~miAm£)(cosz¢+t4sin2‘p)k'_m;_m£+¢_”+,ﬁ‘+,h2v2
o Jo

X [c08%6 + t Hcos?p + t*sinp)~'sin?@ 1<+ —# A= 2005 @ 4 it 2sin @) T T A
X (sin @ A +E— K =1 =T(cog )+ —m—m+1 (47)

If the expression (43) is taken for D (8, ) and the expression (42) for D (8', ¢') then

m; i
dle rimimy () =Q SN N'(my, mo, mi, my, KN (i, titg, mi, my, ks = m =t 2k
k

=m, k'=mj

2T /2

XJ d@df ¢®'™ * ™~ ™= mioag2p £ sind) Tk kT A+ M 200 g o 2sin ) T T e
(4] 0

X [c0s?8 + t2(cos®p + ¢ *sin’p) " 'sin?@ ] ~ K H{maH M A 2gin QP k+ k- = Lpgg )it me =t ] (48)

The remark which was made for Eq. (45) is valid for Eqgs. (46)—(48).
Wedo not calculate here the integrals of Eqs. (45)—{48). They can be calculated (at least for partial values of ) with the help
of the formulas 3.681(1) and 3.682 of Ref. 19. Let us show it for the integral of Eq. (48). It can be represented as

27 /2
I=1t —2k'+1—u+m,+m,v2j d(pdﬁei‘p(m'+m"mi_m5){cos¢7+itzsin<p)_'ﬁ'_';'2+mi+m£
0 (4]
X (sin @ )2 —k+ k= 1= g @ )+ me = A — s+ Uy —2eos2p 4 £ 45in@)cos?f + sin?@) T K a2, (49)

If m, + m, — m,; — ri1, + 1>0, and for all ¢,¢ satisfies the condition
t ~(cos’p + t%sin’p) — 1 < 1,

i.e, 1 <t? <2, then the integral over 6 can be calculated using the formulas of Ref. 19, mentioned above. Now we have to
expand the hypergeometric function into the hypergeometric series, then to invert the order of summation and integration
over @ and to integrate summands.

VII. THE MATRIX ELEMENTS OF THE UNITARY method discribed in Ref. 14. This method presupposes utili-
REPRESENTATIONS OF Sp(n) IN A U(7) BASIS zation of the integrals (45)—(48). The matrix elements will

The matrix elements of the unitary representations of correspond to the reduction
Sp(n) with highest weights (M, 0,...,0) can be found by the Sp(n)DU(#)DUK — 1)D---DU(1).
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According to this method we find the matrix elements of the finite dimensional irreducible representations of Sp(#, R )
with highest weights (M, 0,...,0), which are subrepresentations of the representations 7 _ ,, of Sp(n, R ). We saw that these finite
dimensional representations of Sp(n,R ) are decomposed onto irreducible representations of U(n) with highest weights
(m,, 0,...,0, m,) for which m, — m,<M and m, — m, has the same parity as M does.

For the matrix elements D f‘,fhmz)(,ﬁl ymimy (£ ) Of the finite dimensional representations of Sp(n, R ) with highest weights
(M, 0,...,0) we have

D ity = A (£ ) (50)
If

m, +my, — i, — 1,30, m| +m} — i, — >0 (51)

then the formula (48) can be used for calculation of the matrix elements (50). The integral in (48) can be represented in the form
(49). The powers — k' + ( — u + M1, + ri1,)/2 in (49) are a non-negative integer for the matrix elements (50). Therefore,

[t ~*(cos’p + ¢ *sin’p)cos’@ + sin’9] ~* '+
(% P

—k’+ta — k'
= 2+ i ( kit a)(z )t 42— 2p(sin @ )% —*'* 2~ Plcos 8 )*(sin @)*(cos @)*¥ ~ 9,

p=0 ¢g=0 p

3 S (S re 2rain? 5—r
(cos @ + it *sin @) = g’o(")l t¥sin’@ cos* ~ @,
where the notations

M+m +my)/2=a, mi+m)—m,—m,=s (52)
are introduced. Therefore, for the integral in (49) we have

—k'+a s _ —k'4a p\(s\.
I'= t2r+4q Zp( )( )()r
p;o qgﬂr;() P q "l

2

X d¢) el"P (m, +m, —mj — mi)(sin ¢)2q + ’(COS ¢)2p —29+s5—r
0

T/2
Xf d6(sin 0)2(n—k+a—p— 1) — I(COS 0)m,+m2—rh,——n'|1+2p+ t (53)
0
This integral can be calculated with the help of the formulas 3.621(2) and 3.892(4) of Ref. 19:

/2
f sin“ =10 cos”~ '0 do= 1B (1/2, v/2), Reu0, Rev>0, (54)
0

f”GZiﬂ¢Sin2“¢ cos® @ dp= mexplim{(B— v, F(—2v,f—p—v;1+B+u—v; — 1) )
o ¥ 2u+ 1Bl —B+p+v,1+B8+u—v)

If the conditions (51) are not satisfied we have to use other integral formulas for the matrix elements d #(t). If the relation (45) is
used then at 4 = — M for the integral in (45) we have that

a—k' < a—k' 2 ) , ,
1="3 5 3 v )(p)(s)"' dep &7 7T M sin g+ fcos g 24 <7

p=0 g=0,=0 p q/\r/Jo

7/2
% do(sin9)21k-m;—m5+a—p+n—l)—l(cos0)2(m{+m§+p)—m,—m2—rﬁ,—rﬁ1+lt —y+m{+m§—2k" (56)
0

where the notations (52) are introduced. This formula can be used for evaluation of the matrix elements (50) by Eqs. (54) and
(55), if the conditions

(55)

my+my; —m; —my»0, mi +m) —rm, — >0
are satisfied.
At the conditions

my+ My —my—my»0, —mj —mj; +m, + my»0
the formula (47) is used for evaluation of the matrix elements (50). For the integral in (47) we have
a+ k’ 5 _ et s R k' s
1= t“q 20+ 2r — p— mj ’"z+2k(a+ )(p)() —_ 5y
p;o qgo rgo p q/\r (=9

27
XJ(; d¢ el¢’(’"| +mz-—"l;—mi)(sin ¢)2q+r(cos ¢)2[p—q)+s—r
/2
XL df (sin @k +e—prr—l—lcog @)+ e —mi—m+2p+1 (57)
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where the notations
M—my—my)/2=a, m,+my—m; —m)=s
are introduced. Now we have to use Eqs. (54) and (55).
At the conditions
my, +my,—m, —m,»0, m;+m,—m; —m;>0
the formula (46) is used. For the integral in (46) we have
a+ k’

=%

p=0g=0r=0
71/2

2 t‘q—2p+2r—,u—mi—'n5+2k'<a + k’)(p)(s)( —
P q/ \I.

(58)

21
l-)rJ. d¢? eitp(ml +my;—mi— "'”(sin ¢’)2q + ’(COS ¢)2(p —q+s—r
0

X de(sin0)2(m;+m5+k+a—p—+—n—l)—1(cose)m,+m,+rﬁ,+rﬁz—2(m;+m5)+2p+l’ (59)

0

where the notations (58) are introduced. Now we have to use
Egs. (54) and (55).

The integrals {53), (56), (57), and (59) define all matrix
elements (50). Let us note that in these integrals integration
over @ leads to a hypergeometric series which is a finite sum
[see Eq. (55)].

We have obtained the matrix elements (50) of the finite
dimensional irreducible representations of Sp(n, R ). Analyt-
ic continuation of # to €%, 0<@ < 2, leads to the matrix ele-
ments for finite dimensional representations of the compact
group Sp(n) with highest weights (M, 0,...,0). They corre-
spond to the following elements of Sp(n):

diag(l,...,1, €%, 1,...,1,e %), (60)

The representation matrices, which are obtained are, howev-
er, not unitary. In order to make them unitary, we have to
change the basis |m,, m,, a) to the basis |m,, m,, a)’ with
the help of Eqgs. (25}—(28). As a result we have the matrix
elements of the unitary representations of Sp(n) with highest
weights (M, 0,...,0) in the U(n) basis:

DM

(mym) (i, 1) (mim3) (

ei¢7) = (am.m, /an"l,rﬁz)l/z

S S— g
where D " is defined by Eq. (50).
These matrix elements define matrix elements of an op-

erator, corresponding to any matrix of Sp(n}. In reality, any
matrix of Sp(#) can be represented as a product of elements of
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the subgroup U{n) and elements (60), corresponding to the
groups Splk ), k =1, 2,...,n.
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Reduction of inner - product representations of unitary groups
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A direct method for the reduction of inner products of irreducible representations (irreps) of
unitary groups has been proposed using the duality between the permutation and unitary groups.
A canonical tensor basis set has been used to obtain a closed expression for the Clebsch—-Gordan
coefficients of U(n). This expression involves the subduction coefficients arising in the outer-
product reduction of Sy ® Sy, —Sy, .. n, of the permutation groups, the symmetrization
coefficients of U(n), and matrix elements of the standard representation of S,,. The expression
holds good for an inner-product reduction of irreps of U(n), and is independent of n. The method

has been illustrated with examples.
PACS numbers: 02.20.Qs

I. INTRODUCTION

The reduction of Kronecker products of group repre-
sentations is a problem of considerable importance in many
physical applications. For finite dimensional irreducible re-
presentations (irreps) of unitary groups, this problem has
been extensively studied by a number of workers.! The
Clebsch—-Gordan coefficients (CGC) occurring in this reduc-
tion find many applications in both particle? and nuclear®*
physics problems. The standard methods for determining
the CGC consist of obtaining Isoscalar Factors (ISF) for a
given group—subgroup chain and the CGC for the subgroups
to generate the CGC for the group.>® These results on sub-
group CGC and ISF combined with Racah’s factorization
lemma’ lead to a direct determination of the CGC for the
group. If a canonical subgroup chain U(#)DU(n — 1)
D--DU(1) is used for the unitary groups, the ISF follow
from matrix elements of the generators of U(n) [cf. Eq. (2.62),
Ref. 1, for these matrix elements]. This was basically the
method used for obtaining the ISF for SU(4)/SU(3)® and
SU(3)/SU(2)° chains. Though programs are available for ob-
taining these matrix elements,'® a drawback of these meth-
ods is that computational complexity increases rapidly with
n so far as ISF determination is concerned.

In view of the above difficulty, an alternative would be
to consider a decomposition of the N th rank tensor basis of
U(n) into tensors of ranks N — 1,1 and diagonalize the per-
mutation operator,

N

PN = 2; (),
over a decoupled inner product basis. Such an approach was
successfully used recently for the CGC in the subgroup
chain SU(6)/SU(3) ® SU(2).!! Though the procedure is high-
ly recursive, the computational effort increases more with
the rank of the tensors than with the dimensionality of the
fundamental representation space. In a more recent note,
Chen'? demonstrated that the ISF resulting in the reduction
of inner-product representations of the permutation group
adapted to the chain Sy DSy, ® Sy, are the same as those for
the chain SU{nm) D Su(n) @ Su(m). This permits a direct de-
termination of ISF using permutation-group-based techni-
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ques independent of n and m. There are, however, some limi-
tations in this approach which are worth noting. Firstly, the
complexity of the “eigenequations’ to be solved [cf. Eqgs. (20)
and (22), Ref. 12] is considerable except when N, =N — 1
and N, = 1. In this case the procedure becomes highly recur-
sive as in So and Strottman’s approach.!’ Secondly, the in-
ner—outer dualism'*'* between permutation and unitary
groups leads to complete identity between the CGC and sub-
duction coefficients of S and the subduction and CG coeffi-
cients of U(n), respectively [cf. Eqgs. (28) and (29) and the
discussions preceding them in Ref. 12], only for special
Gel'fand'’ states of U(n) which have all weights equal to
unity. This, in turn, implies that either generator or some
other algebra has to be used for obtaining the CGC for the
other basis states in either a canonical or noncanonical sub-
group adapted structure of U{n). This aspect of the dualism
has been the subject of recent studies by some of us.'%'7 A
nonrecursive procedure'® for determining the CGC of Sy
was successfully combined with symmetrization methods!®
for generating the canonical basis for U(n) to obtain the sub-
duction coefficients occurring in the subgroup adaptation
U(rm)DU(n) @ Um)."”

In line with the recent studies of unitary groups,'®!” we
have now attempted to use the outer—inner dualism between
the product representations of S, and U(n) to obtain an ex-
plicit realization of the CGC for the canonical basis spanning
the irreps of U(n) in terms of easily determined subduction
coefficients'*?! of S,y and the symmetrization coefficients of
U(n).'s We demonstrate that the compact list of subduction
coefficients for S can easily replace the ISF in determining
the CGC of U(n). The present scheme is outlined in Sec. 2
and a number of illustrative examples are considered in Sec.
3. A brief discussion is presented in Sec. 4.

2. CLEBSCH-GORDAN COEFFICIENTS FOR THE
UNITARY GROUP

Let {u;|i = 1,...,n} define an ordered orthonormal set
of basis functions spanning the fundamental representation
space V,, of the unitary group U(n). Using these basis func-
tions we can define sets of ordered tensor monomials of
ranks N,N,... spanning the tensor spaces ¥, V', V, @ ¥",...,
respectively. Since the ranks of these tensors are distinct,
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each of the sets is stable under the transformations induced
by the generators {E; |ij = 1,2,...,n} of U(n), which act as
shift operators in each of the tensor spaces. The reduction of
a given space ¥, ® "V yields a set of subspaces corresponding
to irreps of U(n),

(m> = <m1n m2n "'mnn (1)
such that

Mln >”12)1 >"'>mnn >0 Z m;, =N

i=1
The above irrep is characterized by a Young diagram (YD)
with m,,, boxes in the first row, m,, in the second row, etc.
Corresponding to each irrep {m) we can generate /'3 sets of
symmetry adapted tensors, each set spanned by f3 basis
functions. The /7 sets correspond to different coupling
schemes used in generating the basis functions and are not
related by any transformations induced by the generators E;;
of U(n). Using the index r to distinguish between the various
coupling schemes and a Weyl tableau index ( p) to distin-
guish among the orthonormal basis states spanning a given
set, we can represent the tensor basis states as'®

[¢m)r( p); (N Np=N,,)) ,
where (N, N,--N, ) represents a primitive monomial belong-
ing to ¥, ® ¥, and the index ( p) characterizes an allowed
distribution of N, entries 1, N, entries 2, etc., in the Young
diagram [m].

The above tensor basis can be readily generated using

nonstandard elements e)f,, of the algebra of S, defined
16,17
as'®

ein = Z agy er (2)
se( p)
where the summation on the right is over all standard Young
tableaux s corresponding to a given Weyl tableau ( p) (in the
sense used by Patterson and Harter??) and e™ are standard
Wigner operators of S defined as?®

en = (”,) Pezs [P]7P (3)

with [P ]7 being the Young representation matrix element.
The symmetrization coefficients ayf, are determined using
the right invariance of e}, under the elementary transposi-
tions belonging to the subgroup

Sy, ® Sy, ® 88y CSy.'*"" Using the operators defined in
Eq. (2), the normalized tensor basis of U(n) can be obtained as

[mrt ol W)
( il Nl) & [(NyN, )

i=1

= (I™) e el N @

where the last step follows as in Eq. (6) of Ref. 17.

Consider now the inner-product mapping U(n) X U(n)
—U(n). If {m') and {m") are two irreps of U(n) defined over
the tensors of ranks N "and N ”, respectively, the reduction of
their inner-product representation is given by the Clebsch—
Gordan series

(myX(m") = $b . (m), (5)
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where b, is the multiplicity of (m) in the reduction
(m’) X {m") and is determined using Littlewood’s rules.’
Equations (4) and (5) now yield

Km ) (pKNT -« - NoDm")r"(p"{(N 7N 7))
1/2
~ (11 ¥+ i V) e a)
Xery ®ep, (Nj N NN, (6)

where ® represents the outer multiplication for the Wigner
operators of Sy, ® Sy CSy-, »-. Using Eq. (3) for the
Wigner operators, we have

m o rm” \1/2
e:'ns" ®e$;" — (fN fN )
N'IN"!
X [P ”

S OY [P

PESy. PYeSy,-

m. P'P". (7)
Since P'P " is also an element of Sy, we have?

BN
=3 3 (Fy) perzer ®)

m rs=1

PIPII

Using the result from Eq. (8) on the right-hand side of Eq. (7)
we obtain

o o fz fx )1/2 ( x)x/z
e, ®en,. = (N"N - D w1
X Z z [P ]Hs

P .P" rs=1

~ [P'P"17 e . (9)
In order to evaluate the matrix elements [P'P "], it is con-
venient to use the nonstandard basis of S, adapted to the
irreps of Sy ® S,.. The transformation between the stan-
dard Young basis and the nonstandard ones is given in terms

of a unitary matrix called ‘““subduction coefficient”

matrix'%2023
m k' k"
imin) = xglgs( ] e ey
X |[k"]t ")V, (10)
where
S(m k! ku Tk")
ro ot ot

is a subduction coefficient. The index 7, - distinguishes mul-
tiply occurring irreps [k “] in the reduction of the skew re-
presentation [m] — [k '] over thelast N ” entries.** Using the
result of Eq. (10) on the right of Eq. (9) and using the ortho-
gonality of the matrix representations of Sy, viz.,

S (P17 [P =(im) 81t Bua B (i1)
P Iz

we obtain the result

Ny (72
e/s Xer's (/ ) NI

m m

xzzs( .

-rs=1

”

)

Tonr )e;'s‘ . (12)

Using the above result on the right of Eq. (6), we have

Tm
”

m m m
Xs(s s’ s”
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[ )P (PN N D [{m"Yr"( p" (N 7N 1))

n n — 172 , . .
- ( Mva o) e el
i=1 j=1
N ( m)l/z

f,v.)’”; 3
wsfn o)

xen|(V; ---N,.)(N;'---N:» . (13)
Before proceeding further with Eq. (13} we note that the
monomial on the right is not in proper form as required by
the ordering in (N, NN, )eV, ® . Let P be the permuta-
tion which reorders the monomial. Therefore, using the de-
finition of €77, we get the result
[{m" )P (DN [N Y [{m" )P (p (N TN 7))

NN " 172

FEfR TN TN

i=1 j=1

R fz 1/2 (m ml mll
X ; sz. r,s’tzz . (T) S r r' r"

C e e
(@2 ) 47(n)
m m m”
XS ”
s

-
¢

o )P I eV (14)
Using Eq. (4), we can re-express the above result in terms of
the tensor basis of U(n) as
[{m Y (P RN LN D [(m” )" (p"); (N TN 7))
NIN ™ 172 o - B
= (4% % ]

f~f~ HN"HN"'

i=1 i=1

<232, (5) () annien:

m Ty-ns=1
’ " ! ”

m m m m m m
><S< T,".)XS( , "

' ” Tm* )
r r r § s s
X |(m)r pi(Ny--N,)) . (15)
However, since the transformations induced by E;; on the

tensor basis is independent of the coupling scheme index 7,
we can choose the tensor basis as

[(m)7 - P 1" (PN N, )
S\ 7',,,-)

_ fx S (m m ’ m "

X |[{m)r{ p){Ny-N,)) . (16)
It is also worth noting that the summation over theindex fon
the right of Eq. (15) can be factored into summation over all #
defining a given { p) and summation over all possible distinct
Weyl tableaux ( p) occurring for each irrep (m}). Using this
result and Eq. (6) on the right of Eq. (15) we finally obtain the
result

[{m' ) (PN [N ) [{m")r*(p"ji(N 7N 7))
m m m
=222 (p P T"")

m 7,. (p)
X [{m)T e 1’7" ( Ph(Ny-N,)) (17)

where the required CGC of U(n) is given by

¢ "
r

”
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I NNIN"fT

r _ k=1
m j n n

[I N[ NONUR f3

i=1 =1

m m m"
)[P]:.';S< ’ "
) s S s
(18)

(m ml mll
p p p

1 :'(lp)
XY 2N\
s=1 te{ p) ( al

p) s(p

The right-hand side of Eq. (18) is determinable in a straight-
forward manner using simple algorithms for symmetriza-
tion coefficients'® and subduction coefficients for S% devel-
oped recently. In all cases the matching permutation is a
product of simple cycles, and as has recently been shown,*
each such cyclic permutation can be handled relatively easi-
ly. Thus the determination of CGC using Eq. (18) is not as
formidable as might appear at first sight. In the next section
we illustrate the use of Eq. (18] in determining the reduction
of the product basis of the irreps of U(n). Some of the advan-
tages of the present method will be illustrated using special
cases.

3. SOME ILLUSTRATIVE EXAMPLES

We first consider a simple case of Eq. (18) for which the
first N’ particles occupy the first n’ single particle orbitals
and thelast N” = N — N’ occupy the last »” = n — n’ orbi-
tals. Here we note that the monomial
(NiN )N N .)is already in properly ordered
form, so that the reordering permutation reduces to the iden-
tity. Further, the reducible tensor space of primitive tensor
monomials is now a subspace (V, @")eo(V, , ®" ) of
(¥, ® ") and product representations arise from the restric-
tion U(n)sis to that of the group have recently been suggested
using the semimaximal weight concept and the lowering op-
erators of the subgroup U(n’) ® U(n").?>*” We now examine
what Eq. (18) reduces to in this case. Letting P = e in that
equation, we readily obtain the result

(m m m"
p P p

) (N'!N"!fx )1/2
T | =V
NIFR R
X(a?(lp’) a?:("p”))_1 2 a;np)

s<( p)
XS(m ’n/' "ln" Tm") .
M s S
(19)

As an illustration of the use of the above equation consider
the restriction (5,2,0*) 1(2,1,0) ® (3,1,0) of U(6) to

U(3) ® U(3). Let ¥ be spanned by the three orthornormal
basis states u),u,,u; and V'; be spanned by u,,us,u,. The
Weyl tableau for maximal weight states of the two groups
U(3) are ;' and 3*, respectively. The semimaximal weight
states of U(6) for the given irrep are }1*** and 1,*°. Using the
Yamanouchi notation for the standard Young tableaux of
the irrep [5,2] of S, the set of the Young tableaux corre-
sponding to the above two Weyl tableaux (in the sense de-
fined in Sec. 2) are listed below:

es—(1121112),

Nikam, Dinesha, and Sarma 235



WH=(1121121),(1121211),(1122111)..
The basis transformation for the restriction
[5,2]i[2,1] ® [3,1] of 5, to S, ® S, can be readily worked out
using the techniques developed in an earlier paper®® and is
(112)X(1112) = 4[ — 3v/15(1121112) 4 (1121121)
+ v2(1121211)
+ v/6(1122111)] . (20)
Consider first the states ;' X $* defining the product state of
U(3) X U(3). We observe that each of the Weyl states corre-

sponds uniquely to one standard Young tableau so that the
required symmetrization coefficients are unity,

{2,1,0) __ {3,1,0) —
Guigy =1 G = 1. 1)
Similar is the case with 1}*** so that
(5,2,0*) —_
ringgesy = 1. (22)

To the Weyl tableau };**° correspond three standard Young
tableaux, as indicated earlier, over which symmetrization is
required. This symmetrization requires essentially that we
determine the subduction coefficients for the restriction
[4,2]1[2,1] ® [3]. This determination leads to the symmetri-
zation coefficients

(5,2,0*) -
a(nznzl)(;}“’) =1,

TABLE I. Subduction coefficients for the reduction
[2.1)x[2,1] = [4,2] + [4,1°] + [3%] + 2[3,2,1] + [3,1°) + [3°] + [2%,17]
(the Young bases are represented by lattice permutation symbols).

[21]1x[21]
(112)(112) (112)(121)

{42) (112112) -8 0
(112121) i -v372
(112211) 1/v12 +1

(413) (112113) —2/V5 0
(112131) V3I/V40 —V5/V'8
(112311) —1/v'8 —V3/V8

(3% (112122) -1 —V3/2
(112212) ~ V3 }

[321], (112123) —V/'5/v24 0
(112132) 0 —V5/V24
(112213) —V15/v24 0
(112231) 1/v'24 —-2/v8
(112312) 0 1/v8
(112321) V3/vV24 2/v24

[321], (112123) 1/v/96 —3/v32
(112132) —3/v/32 —5/v/96
(112213} 1/v/32 V3Ii/V32
(112231) V'5/v/96 V'5/v'32
(112312) —VI5/v3R2 V'5/v/32
(112321} V'5/v/32 —V/'5/v/96

{317 (112134) V3I/VE —1/v8
(112314) V'5/vV'8 V3/V40
(112341) 0 2/v'5

29 (112233) 4 V3
(112323) W3 -1

[2217]  (112234) ) —-/v12
(112324) W3 3
(112342) 0 w8
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(5,2,0%) —

amzlznx;}“’) = 5‘/2 ’ (23)
(5,2,0) —

sy = Wwe.

Using the results of Eqgs. (20) and (21) in Eq. (19) and noting
that {21 = 13V = 3 and f1*? = 14, we readily obtain

((5,2,0“) (2,1,0) (3,1,0)) 1

11444 11 444 = -

25 2 s 4
Similarly using Eqs. (22) and (20} in Eq. (19), we get
((5,2,04 ) (2,1,0) (3,1,0))

11445 11 444
24 2 5
_ 1 [ 1 1 + V2 V2
V1513 12 3 12

V6 V6 1

3o ] T ais
Thus the reduction of the product representation yields the
result

2 X5 = (=)™ + (G las ™) oo

A similar result,

2 1 3 1
2 1 x| 3 1
2 3
5 2 0 0 0
5 2 0 0 0
IRt 5 1 0 0
T s 2 1 0
2 1
2
5 2 0 0 0
5 2 0 0 0
1 4 2 0 0
+ (T) 2 1 0
2 1
2 ,(25)

follows from the restriction (5,2,0*) 1{2,1,0) ® (3,1,0) of
U(6) to U(3) ® U(3) on applying the weight raising generator
E 5 to an arbitrary linear combination of the Gel’fand basis
on the right of the above equation and equating the result to
zero. This relates one coefficient to the other and the final
unknown can be determined by normalizing the result. The
results of Eqgs. (24) and (25) differ only by an overall multipli-
cative factor 15. This can be accounted for using the fact that
CGC of Eq. (24) have to be normalized over the entire set of
basis functions defining the outer-product series, instead of
two functions as in Eq. (25).

At first sight it might appear that Eq. (25) follows more
easily than the corresponding result of Eq. (24). While it is
true of this particular semimaximal state it is not in general
so. To illustrate this fact consider the product state |}2)

X |4%¢) of U(3) ® U(4) C U(7) under the same restriction as
above. Here we find that we would have to apply a number of
lowering generators E;; (>j/ = 1,2,3and 4,5,6,7) to Eq. (25)
and their matrix elements in order to obtain the states of
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(5,2,0°) induced from the product state under considera-
tion. On the other hand, in the present scheme, once the
subduction coefficients have been determined, the only other
quantities required are the symmetrization coefficients in or-
der to obtain the linear combination. In the present example,
all orbitals are singly occupied so that no symmetrization is
required and the result follows readily as

() 9 + s 297
12467
+(12‘\//215) 35 6>
12567
+(12‘1//615) 34 > 26)

where it is to be noted that the above are Weyl and not
Young tableaux.

The above examples are only special cases and we now
illustrate the application of the present method to the irreps
(2,1,0" 2% (2,1,0" ~ 2) of U(n). For this purpose consider
the reduction of outer products of the irreps [2,1] ® [2,1] of
S; ® S, yielding the irreps of S, viz.,

[2,11%[2,1] = [4,2) + [4,17] + [3%] + 2[3,2,1]

+ 3,1 + [2] + [217].
The subduction coefficients for the above restriction, result-
ing from procedures outlined in an earlier note,?° are listed in
Table I. A certain amount of arbitrariness is unavoidable in
the choice of these coefficients for the doubly occurringirrep
[3,2,1]. Using these subduction coefficients we now deter-
mine some of the CGC for the reduction of the product re-
presentations (2,1.0” ~ %) X (2,1,0" =) of U(n) for n>3.
Consider, for example, the product|;') X |}2) which gives six
Weyl states:
1112 1113 1112 111 111 1
23 22 2 223 22 22,

3 3 3
The last two states belong to the irrep (3,2,1,0" ~*) occur-
ring twice in the reduction, distinguished by suffixes (1) and
(2). The monomial in the product state is u, u, u, #, u, u,,
needing a permutation P = (3,4) to bring it into standard six
rank tensor form u, u, u, u, u, u;. We now illustrate in de-
tail the method for determining the CGC for
[11) X |32)—|33'2). From Eq. (18) we obtain

((4,2,0"4) (2,1,0"~2) (2,1,0"—2>)
1112 11 12
23 2 3
312111313191 \12
- (2!1!1!1!1!6!2!2!)
9
(420" _(2,1,00"% (21,07 %
X:: 1 15(1112) aﬂ;;u’ agz Gl) ;:2 (52'
X315 S (52 B 7)) . (27)

The possible standard Young tableaux ¢ leading to the Weyl
tableaux ;3'? are (111122) and (111212). Under P = (3,4)
these can only be linked to s = (112112) having a nonzero
subduction coefficient (cf. Table I). The required subduction
coefficient is — | v/8. Thus the right-hand side of Eq. (27)
involvesonlys = 112112and # == 1111212. The symmetriza-

: ; 420" \1/2 : :
tion coefficient a a2y g = (3)'/* . Using these results in Eq.
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(27) we get

((4,2,0"‘2> (2,1,00~2%) (2,1,0"”2))
1112 11 12
23 2 3
W3 '\/5/\/8 \/8{_\/8)
210 1x1 3\ 3
__1
3
Similar calculations of other CGC leads to the reduction
'11) % 12>
2 } 112
1
1 ‘1112>+ 1 1113)_1 s
T yv3 123 2v/15 122 V3|,
11 111 111
L \ >__‘/2 2 ) 4 .
2v/3 1223 3 310
3 [w 3 [

The procedure for calculating the CGC is thus evident. We
first determine the possible {7 |7€{ p)} and determine the set
{s] to which these can be linked through reordering permu-
tation P. From the table of subduction coefficients we then
find the subset of this set which yields nonzero coefficients.
Knowing the required symmetrization coefficients and the
matrix elements [P ] of S, we can determine the CGC
using Eq. (18). As a final example, we consider the product
state 32X 3! of U(n). Here the reordering permutation is

P = (3,4){4,5)(2,3)(3,4). Using the same procedure as before
we get

‘12>X 11>
2 3
1112
_ 1 1112>_ 1 5 1 ’1113)
V6 123 V6 3 V30 122
111 111
1 ‘111> 2
—_— + =122 - |22
v6 1223 3 3v'5 3
(n

2)
The correctness of these results can be checked using tables
of CGC for SU(3).2

4. DISCUSSION

The procedure outlined in Sec. 2 and illustrated exten-
sively using examples in Sec. 3 is a relatively straightforward
method for determining the CGC for canonical basis states
spanning the irreps of U(n). To the best of our knowledge Eq.
(18] is the first quantitative statement of the dualism between
the product representations in Sy, , ,—Sy, ® Sy, and
U(n) ® U(n}—U(n). A recent statement of this dualism by
Chen is at best formal [ cf. Eq. (29), Ref. 12] since, as shown
by Eq. (18), the CGCinvolves a number of factors in addition
to the subduction coefficients of S, . The correctness of Eq.
(18) has been verified by determining a large number of CGC
listed by Lichtenberg.?

In this context it is worth noting that Eq. (28) of Ref. 12
is also formal and the exact relationship between the CGC of
S and the subduction coefficients of U(nm)1U(n) @ U(m)
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also involve a number of additional factors [cf. Eq. (26}, Ref.
17].

For canonical basis states of the irreps of U(n), it might
appear that the ISF determination for the U(n)/U(n — 1)
chain would be simpler than using Eq. (18). Even if this is
true for low n, the procedure for going from the ISF to the
CGC of U(n) would require a complete knowledge of all the
CGC for U(n — 1). This is likely to become a tedious recur-
sive procedure for sufficiently large n. Alternatively Eq. (18)
involves factors which are easily determinable except for the
matrix representation of a single matching permutation for
each CGC. Though this is a stumbling block the fact that
useful techniques exist for determining the representations
of both transpositions®® and cylic permutations®® makes this
task feasible. Finally, once the subduction coefficients have
been determined and listed, the CGC follow readily for any
n.
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We study in more detail the mathematical properties of the integral transform relating the matrix
elements between coherent states of a quantum operator to the corresponding classical function.
Explicit families of Hilbert spaces are constructed between which the integral transform is an

isomorphism.

PACS numbers: 02.30.Qy

1. INTRODUCTION

In a preceding paper,' two of us studied an integral
transform giving a direct correspondence between a classical
function on the one hand and matrix elements of the corre-
sponding quantum operator between coherent states on the
other hand:

(@°072*)= [ dofoab o). (1)

Here E is the phase space (i.e., a 2n-dimensional real vector
space, where n is the number of degrees of freedom), and the
{2 “ are the usual coherent states, labeled by phase space
points (they can be considered as states centered round the
phase space point a labelling them, and they minimize the
uncertainty inequalities?).

Formula {1.1) was obtained in Ref. 1 from the corre-
spondence formula

Qf=2" Ldv o)W (o)l (1.2)

where the W (v) are the Weyl operators (see Ref. 1) and /7 is
the parity operator. [This formula is not the original Weyl
formula?; it gives a more direct correspondence f~Q fthan
the usual expression, since no Fourier analysis step is need-
ed. It was shown in Ref. 4 that (1.2) is equivalent to the Weyl
quantization formula.]

The integral kernel {a,b |v] in (1.1) is then defined as

{a,b v} =272 W (2u)T 2°). (1.3)

This function was computed explicitly in Ref. 1, where we
also gave some properties of both the function and the inte-
gral transform defined by it, together with some examples. A
deeper mathematical study of the integral transform was,
however, not intended in Ref. 1; we propose to fill this gap at
least partially with the present article.

Ultimately our aim is to use the results of the math-

“Research fellow at the Interuniversitair Instituut voor Kernwetenschap-
pen, Belgium.

®On leave of absence from Dienst voor Theoretische Natuurkunde, Vrije
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ematical study of the integral transform (1.1) to derive prop-
erties of the Weyl quantization procedure. One can indeed
use the well-known “resolution of the identity” property of
the coherent states,?

fdama) @9 =1 (1.4)

to see that, at least formally, any operator A is characterized
by its coherent state matrix elements

A =J daf db |29(02°|(2° 42°). (1.5)

A detailed knowledge of the properties of the integral trans-

form with kernel {4,b |v} might therefore be useful for

(1) giving a sense to the Weyl quantization formula for
rather large classes of functions (essentially, once a pre-
cise sense is given to the integral transform on a certain
class of functions, one can try to define the correspond-
ing operators from their matrix elements between co-
herent states),

(2) deriving properties of the quantum operator Q f
directly from properties of the corresponding
function f'{and vice versa).
As we shall show, the inverse of the integral transform

(1.1) is given again by using the same kernel

f(v)=LLdadef(a,b){b,a|v}. (L6)

(Actually, this integral does not converge absolutely in most
cases, and some limiting procedure has to be introduted.)
Therefore we shall also be able to use the results of our study
of the integral transforms associated with the kernel func-
tion {a,b |v} to obtain information on the “‘dequantization
procedure” [i.e. the inverse map of the “quantization proce-
dure” as defined by (1.2)]. Note that this dequantization pro-
cedure is actually the same map as the one associating to
each density matrix the corresponding Wigner function’ ex-
tended, however, to a much larger class of operators. These
applications shall be further developed in a following paper
(a first application was given in Ref. 6); in the present article
we restrict ourselves to a study of the integral transforms
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(UWW$)=J;vaHmbwL (17)

(f¢7)(v)=LLdadb¢(a,b){b,a|v}. (1.8)

We shall see that though fmay be locally quite singular (one
can even consider some classes of nontempered distribu-
tions), its image If will always be very gentle locally, with
analyticity properties in both its arguments. It therefore
makes sense to study not only the function If(a,b ), but also
the coefficients If,, , of the Taylor series for If(a,b ). It turns
out that one can construct a family of functions giving di-
rectly the link between f(v) and If,, .,

mm=Lwﬂmmw. (1.9

Actually these 4,, , are just the functions occurring in the
bilinear expansion of {a,b |v} in Ref. 1: formally (1.9) can be
seen as the result of commuting in (1.7) the integral and the
series expansion for {a,b |v}. However, (1.9) holds true for
many functions for which such an interchanging of summa-
tion and integral would be a priori pure heresy. The func-
tions 4,, , have lots of beautiful properties, most of which are
a consequence of the fact that they form a complete orthon-
ormal set of eigenfunctions for the ‘“harmonic oscillator”
x*+p*—31A, —14,0onL*E),ie., on phase space, where
we consider an explicit decomposition of the phase space
into x space p space: E=R*"=R" 4+ R" = x space + p space
(see also Sec. 2); in the context of Weyl quantization the 4,, ,
can be seen as the classical functions corresponding to the
dyadics |n) (m|, where |n) are the harmonic oscillator eigen-
states (see Refs. 1, 7, and 8). Note that the 4, , are not the
usual set of Hermite functions (though they can of course be
written as linear combinations of Hermite functions); they
are related to the Laguerre polynomials.”®

One can then derive all kinds of results relating the
growthof If (a,b ) or If,, , to the behavior of £, and analogous-
ly for /¢ and ¢. The derivation of such results amounts to the
construction of suitable Banach or Hilbert spaces between
which the integral transforms 1.1 become continuous linear
maps or even isomorphisms.

Our main tool for the study of 1.1 will be the link be-
tween the integral transform I and the Bargmann integral
transform as defined in Ref. 9 (see Sec. 6 in Ref. 1). Using this
link we shall be able to translate bounds obtained in Ref. 9 to
our present context, and to obtain other bounds (for other
families of spaces) by similar techniques. As in Ref. 9, we can
give a complete characterization of the images of J(E),
'(E ) under I; by a suitable generalization we shall even go
beyond the tempered distributions. (Related results, butin a
completely different context, and concerning quantization
restricted to functions with certain holomorphicity proper-
ties, can be found in Ref. 10.)

The paper is organized as follows. In Sec. 2 we give a
survey of our notations and some properties of the kernel
{a,b |v}, in Sec. 3 we reintroduce the #,,, and state some
related results, in Sec. 4 we show how bounds on If can be
obtained starting from bounds on f, and vice versa: in Sec.
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4A we review the Banach space approach found in
Bargmann®; in Sec. 4B we go over to Hilbert spaces, which
are better suited to our purpose, and in Sec. 4C we generalize
the construction of Sec. 4B, which enables us to treat certain
Hilbert spaces of distributions “of type S’ which are larger
than #(E). In Sec. 5 we shortly discuss the integral trans-
form I when restricted to functions on phase space which can
be split up into a product of a function depending only on x
with a function depending only on p. Essentially the same
types of statements can be formulated, and a short survey of
results is given. In Sec. 6 we give some concluding remarks.

2. NOTATIONS AND BASIC PROPERTIES OF /a,b/v/

In Ref. 1 we worked with an intrinsic coordinate-free
notation system using a symplectic structure on the phase
space (basically this is the bilinear structure underlying the
Poisson brackets), and a complex structure yielding a Eu-
clidean form on the phase space, compatible with the sym-
plectic structure. By choosing a suitable basis, this could be
seen to lead to a decomposition of the phase space into a
direct sum of two canonically conjugate subspaces. This de-
composition is not unique: for a given symplectic structure,
several compatible complex structures can be constructed;
different complex structures correspond then to different de-
compositions of phase space. This freedom in the choice of
the splitting up of the phase space is particularly useful
whenever (linear) canonical transformations are discussed'’
or used (as, e.g., in the presence of a constant magnetic field).
Here we shall not need to use simultaneously different de-
composition possibilities for the phase space, and we shall
therefore fix the decomposition once and for all. We shall use
this decomposition from the very start to introduce our nota-
tions in a way that is less intrinsic but probably more familiar
to most readers. It goes without saying that the results we
shall obtain are independent of this approach, and that they
could as well be obtained in the more intrinsic setting of Ref.
1 (see Ref. 8).

The phase space E is a 2n-dimensional real vector space,
which we shall consider as a direct sum of two n-dimensional
subspaces

E = x space & p space,
(2.1)

ESv=(xp)

The x and p need not be the conventional position and mo-
mentum variables: any set of canonically conjugate coordi-
nates which are linear combinations of position and momen-
tum are equally good candidates for these x and p. On E we
have a symplectic structure

oY) = o{(x,p),(x",p')) = §p-x" — xp’) (2.2)
and a Euclidean structure
sto,v’) = s((x,p)(x',p')) = dxx" + pp’) (2.3)

[this is the Euclidean structure corresponding with the o-
compatible complex structure J ((x,p)) = (p, — x)—see Ref.
1]. For further convenience we introduce a Gaussian in the
phase space variables,

lv) = exp[ — } sw.v)] = exp[ — 4x* + p?)], (2-4)
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and a family of analytic functions

n (p+ix; \m
hmi) = (;) s (2,5)
(v) ,-1;11 72
where we have used the multi-index notation
[m) = (m,y, ... m,).

Note: Whenever we use the term “analyticity” when
speaking of a function for phase space, this means that
f(v) =f{(x,p)is analyticin the variable p + ix;iffisanalyticin
the variable p — ix, we say that fis antianalytic on phase
space. For a definition of these concepts without using an a
priori decomposition of the phase space, see Ref. 1.

We shall often need the set of functions which can be
written as a product of the Gaussian o, (2.4), with an analytic
function on E. We call these functions “modified holomor-
phic,” and denote their set by Z(F) or Z:

Z (E) = (¢$:E—C;¢p = f-w, with fanalyticon E }. (2.6)

Note that the pointwise product of two modified holomor-
phic functions is not modified holomorphic, having a factor
o too many.

The square integrable modified holomorphic functions
form a closed subspace of L %(E ) (see Refs. 1 and 9); we shall
denote this Hilbert space by .Z;:

£ E) = £¢ez(E);f ol (o)) < o). @7)

The measure on E used here is just the usual translationally
invariant measure on E, with normalization fixed by the
requirement

f dv o*(v) = f dv exp[ — s(v,)] =1,
ie., (2.8)
_ b a
dv= 2T d"xd" p.

For any function ¢ = f'w in Z one can, of course, decompose
the analytic function f'into its Taylor series, which gives

$ )= [E] g i1 B ™ RI0(), (2:9)

where the convergence is uniform on compact sets. One can
prove (see Ref. 9) that for g€ Z one has

¢Gfo<:>z|a¢,[m]|2[m!] < o0,
[m]

e L 5lbd) = f dv $(0) o)

= im) g im) [, {2.10)
[m)
where
[m!] = H (m,!).
i=1
Equation (2.10) implies that the set of functions u/,, ;,
1
Ui (V) = h "™()w(v), 2.11
(m1] v iml] (v)e(v) (2.11)

constitutes an orthonormal base in .% , and that the series
(2.9) converges not only uniformly on compact sets, but also
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in L ? as long as g% ,. We shall often rewrite (2.9) and (2.10)
in the following way.
Vée Z: we write a “modified Taylor expansion”

¢ )= [Z] Bim 1 (m (V) (2.12)
with uniform convergence on compact sets,
Vo e oY) = [Z Bim1 Yim1s (2.13)
m)
in particular
dv up, V)@ V) = (U 8) = bim)- (2.14)

The same construction can be made in the space E X E.
Most functions on E X E in this study will have the property
that they are modified holomorphic in one variable and modi-
fied antiholomorphic in the other one. We denote the set of
Sfunctions having this property by Z (E,) (or shorter Z,):

Z (E,) = {¢:E X E—~C;¢ (v,v') = fv0" w(v)eo(v’), with

f(v,v') analytic in ( p + ix,p’ — ix')}. (2.15)
Again we can restrict ourselves to the square integrable func-
tions in Z (E,):

LoE)=Z(E,)nL*E XE); (2.16)

again this is a closed subspace of L 2(E X E ), with orthonor-
mal basis

Uim,m,y ] (Ly0y) = Ui, 1(vy) u[m,](vz)- (2.17)
The analogs of (2.12) and (2.13) are now
Vee Z(E)SE)= 3 SimmBimm &) (218)

[m,],Em,]

with uniform convergence on compact sets,

VYL AEN S = 3 Simm,) Yimuma (2.19)

{m],[m,]

in particular

Bimimar = [ 46 U] 6),

where we have used the notation & = {v,,1,) (in general, the
Greek letters £,6 will denote elements of E X E ).

Both the spaces . ((E } and .£ ((E,) have “reproducing
vectors” (this is a common feature for Hilbert spaces of ana-
lytic functions'?):

Vac E, V{=(a,a,)c E XE,

e L E), ateL  E,),
such that

VgeZ |E )(wp) = ¢ (a),

(2.20)

(2.21)
Vé¢eL |E ) (wbd) = ¢ ().
These w®,w* are given explicitly by

0°(v) = €% p(v — a)

= [z] U 1(@) Uppm (V) (2.22)
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W (€)= 0"{byb) = 0"b)) (b
= E Ui (6) Uiy ](§)

&I
The series in (2.22) and {2.23) converge uniformly on com-
pact sets, but alsoin L *(E ) (separately in g and v), respective-
ly, L YE X E )(separatelyin ¢ and £ ). Note that the reproduc-
ing properties (2.21), (2.14), and (2.20) can be proved for
much more general classes of ¢ than only .%, (see below).
The integral kernel {a,bjv}

For any three points a,b,v,€ E we define the function
{a,b |v} as follows (see Ref. 1):

{a,b |U] = 2" ei[a(a,b)+20(b,u) + 20(v,a)] a)(21) —a— b)

(2.23)

=27 exP[i(iPaxb —4ppyxs + poX,
—PuXp +pvxa _Paxu)

x, + X, \? e +Pb Y
- (-2 - - 252
=2"exp[(p, — ix,} (Pa +iXs) — § (Py — ix,)
X(Pa + ix,)+ (Py —ix,) (p, +ix,)]
X (@b o (2v). (2.24)

From the last expression in (2.24} it is obvious that {a,b [v} is
modified holomorphic in a, modified antiholomorphic in b,
ie.,

Ve E:f--v}e Z,. (2.25)

Moreover, one can easily check (see Refs. 1 and 8) that
{a,b |v} has the following properties:

[{a,b |v}|<2",

J.dv[a,b v} {e,d v} = 0%c)0? (b). (2.26)

This function {a,b |v} will be used to define two integral
transforms

) €)= f dv ()£ (v}, (2.27a)

(Hp)v)=| dt$(&) (£v}. (2.27b)

It is our purpose here to investigate some of the properties of
these integral transforms and their extensions.

3. BILINEAR EXPANSION OF /a,b/v/—THE FUNCTIONS
P

A. Bilinear expansion of {a,b/v/}

As elements of Z (E,), the functions {-]v} can be devel-
oped in a series with respect to the ., | [see (2.13)]:

{ablv} = {{|v} = [k;” Uies 116 W 1) (3.1)

The hy;, | are defined, up to a factor \/ [k!] [I!], as deriva-
tives of the function {{ |v} (@,()) " 'iné=0:
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Byes (v) + 27 JTEIT[IT] 20K+ 10022

[dlkl d\n

BT i {a,b v}ola) " w(b)" . (32)

a=b=0

Because of the explicit form (2.24) of {{ |v} it is obvious that
every Ay, , is a polynomial in v multiplied by the Gaussian
{2v) = exp[ — (x,% + p,?)]. This automatically implies
thatallthe 4, , | are elements of *’(E ), the Schwartz space of
C = function which decrease faster than any negative power
of (x,p).

B. Orthonormality of the /1, ,,
On the other hand, we have {see (2.26)]

dv {a,b|v} {cd|v} =w%cl?(b).

Multiplying both sides with w(a) ™' w(b )", and computing
derivatives with respect to p,,p,, we obtain (it is obvious
from the explicit form of {2,b |v] that these derivatives can be
commuted with the integral in the left hand side)

dv hies 1) {ed v} = uy lc) uy (d). (3.3)

Repeating the same operations in the variables ¢ and d, we
obtain

dv hy (V) Ay v) = Sieriky Sunur (3.4)
implying that the A, , , form an orthonormal set in L %(E).

C. Completeness of the /1,

From (3.3) we see that the coefficients with respect to
the orthonormalset 4, , , of the orthogonal projection of any
{£ |} (€ fixed) onto the closed linear span of the A, , ; are
exactly the u;; ({ ); comparing this with (3.1) we conclude
that for any ¢ the function {{ |-} is an element of the closed
span of the A, ; }; (3.1) can now be considered to be the com-
position in L ? of {{ |-} with respect to the orthonormal set
h k.. - From this it is now easy to see that the closed span of
the hy,,  is all of L %(E). Indeed, let ¢ be orthogonal to all

Ris )

VIkLI]: (¢?h[k,l )) =0.
Then

Va,b: (Y, fab|-})=0

=Ve: jdv ) €7 w(2v) = 0

=v)w(2v)=0 ae. ¢ =0
[w is bounded, and the Fourier transform is unitary on
L ¥E)]. Hence the A, , , constitute an orthornormal base for
LYE).

Note: The properties in Secs. 3B and 3C were already
stated in Ref. 1, in more generality (valid also for the coeffi-
cient functions of other bilinear expansions of {a,b |v}), with-
out proof. It is possible to prove them (see Ref. 8) using Go-
dement’s theorem on irreducible square integrable
representations of unimodular locally compact groups. In
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the special case of the 4, , |, however, one can also prove
them with very simple arguments, as shown here.

D. Unitarity of the integral transform /

It is now easy to show that the integral transform /, as
defined by (2.27), defines a unitary operator from L *(E ) onto
ZLolEy).

Proposition 3.1: The integral transform I:

16) = | vl v} £t (3.5)

with {{ |v} = {a,b |v]} as defined by (2.24), defines a unitary
operator from L %(E ) to .% ((E,); in particular

Thi = uy, (3.6)

Proof: We start by defining a linear operator on the span
of the &, , , by putting

Uh[k,l 1 = u“’k IE

Sincethe Ay, ), 4, constitute orthonormal basesin L (E ),
2 o(E,), respectively, this U can be extended to a unitary
operator from L (E ) onto .£ o(E,). In particular,

U({b,al-})=U( Y U ba)h, 1)

(K101
- Ikz]l:l]
where we have used (2.23). Take now any ¢ in L (E ). Then
Uge.? |\E,), and its value at any point is given by the repro-
ducing property (2.21),

(Up)¢) = (@, Up) = (U*ep)
=({S|}.p)

= | v (Sle)
[for £ = (a,b), we denote (b,a) by £ ).

— b
Uy lab)uye, = "),

Hence (U¢ )(§') = (I¢ )& ), which proves the proposition.ll

Remarks:

1. A different proof of the unitarity of I between L *(E)
and .Z (E,) was given in Sec. 4E in Ref. 1 (the argument
given there is not completely rigorous, but it can easily be
transformed into a rigorous one).

2. The integral in {3.5) converges absolutely for any
fe L(E),since {{ |-}isinL E )foreachfixed. Thesituation
is different if one tries to apply I to .% o(E>): since {-|v} is not
square integrable on E X E, the integral transform {2.27b)
cannot be defined on all of .¥ ((E,). One has, however,

di (&1} up &) = hpyu (&) (3-7)

where the integral converges absolutely because u,,, | is ab-
solutely integrable. So

Ihyyy = by (3.8)

which leads one to believe that £is the inverse of I. Indeed, if
one tries to circumvent the problem of possible divergence of
the integral by taking limiting procedures, one finds (as in
Ref. 9a), e.g.,
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VpeL |Ey): I "'p=L"— gi_{rli(l’k?’)
=L?—liml (wla)p), (3.9)
a—0

where

1, |5I<R

1) = {7 IRE there e = o+ 1o

and |a|? = s(a,a)].

The same is true for any other reasonable limiting procedure.

E. Other properties of the /7,
One can show (see Refs. 1 and 8) that
[ )<, (3.10)
Explicit calculation of the A, , | yields (see Refs. 7 or 6)
2 ) min{[k LI/ ]}
h[k,l ](x,p)=2"e"‘ —P E [(_2)—ISI k[ + 1102

[s]=0

J LN

[ = s)] [(k — 5]

(p+ z‘x)“-“(p—ix)“"”].

(3.11)

One can check (by direct calculation) that these 4, , | are the

eigenfunctions of a dilated harmonic-oscillator-type opera-

tor on phase space E:

(—4ds +4,) + x>+ ey = (k| + |1 + mhy, .
(3.12)

Asaconsequence of this, the 4, , ; are linear combinations of
products of Hermite functions:

Ay xp) = > @iy irs iHirs p) (3.13)
[rlls)
[rl + s = |k | + 1]
with
H[r,s](x’p) = Z”H[rz(m)H[s](‘/zp)» (3.14)
2 Ia[k,ll,[r,x]lz =1 (3.15)

[r].[s)
and where H|, | is the [7]th order Hermite function.

There exists also a relationship between the 4, , , and
the Laguerre polynomials (see Ref. 7). Forn = 1, k =/ one
has for instance

hcxp) = 2(— 1) e ="+ L, (2x* 4 2p?), (3.16)

where L, is the Laguerre polynomial of order k.
One can also prove the following recurrence relation for
the h[k,l ]Z

(k{41 A, =4 1k] 2 ki(pj — x50

+ \/,—1—1 2 L{p; +ix)hp_ s
J

~ ST S a1 5y i
7

(3.17)
where [§; ] is the multi-index (5;),, = &,

jm*
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4. THE INTEGRAL TRANSFORM / AS A CONTINUOUS
MAP BETWEEN SUITABLE FAMILIES OF BANACH
SPACES AND HILBERT SPACES

As was already mentioned in the Introduction, there
exists a link between our integral transform 7 and the Barg-
mann integral transform as defined in Ref. 9. Since we shall
use this link to derive some of our results, we shall first show
here what exactly is the connection between the two integral
transforms. For zeC", geR", the Bargmann integral kernel
A (z,9) is given by®

A(zg)=7""*expl — 42 + ¢°) + V2 zq]. (4.1)

Identifying z with (1/v2) (x — ip) (which makes of the multi-
plication by z—on a suitable Hilbert space of analytic func-
tions—a representation of the harmonic oscillator creation
operator: see Ref. 9a), we can rewrite (4.1) as

2 .
A (x’p;q).e — 1/4{x? + pY) =7 n/4 e11/2)xp e~ Pio— (1/2)ix — q)z.

(4.2)
Comparing this with (2.24) we see that
X, + Xy Dp —Dq
a,b|v} =2"1""? 4 (——-, ; ZxU)
(@b v} el
Da +pb Xy — Xp
A( , ) U)
vz v o F
e—tl/4)tx§+x%+p§+pi) (4.3)
or
[a’b !U} = 2" ’}l/ZA (cab;‘/zxu) A (dab ’ﬁpv )a’(cab )'w(dab )’
with
1
Cap = W{xa +‘xb’pb _pa)! (44)

1
dy = 'E(Pa + PoXa — Xp)-

Actually, (4.3) implies that we can consider the integral
transform 7 as a 2n-dimensional Bargmann transform. The
explicit Gaussian factors w(c,,), »(d,,)just compensate for
the difference in definition between our Hilbert space
% o(E,) and the Bargmann Hilbert space [we absorb the
Gaussian in the functions in .Z ((E,), whereas in Ref. 9 it is
always displayed as a weight function in the definition of the
inner product]. The constant factors 2”72 account for the
difference in normalization in the measure, and for the dila-
tioninx,,p, . Moreover, one can easily check that analyticity
in ¢, ,d,, is equivalent to analyticity in @, antianalyticity in
b. So, from a mathematical point of view, I can be assimilat-
ed with a 2n-dimensional Bargmann transform. Physically
however, the two integral transforms have a different mean-
ing: I gives a correspondence between classical and quantum
aspects, while the Bargmann transform gives the unitary
transformation between two different but equivalent realiza-
tions (for a short discussion, see Sec. 6 in Ref. 1).

The remarks above will enable us to translate various
results obtained by Bargmann in Ref. 9b to the present set-
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ting. An example of this is the following (we keep the same
notations as in Ref. 9, even though the functions considered
here are in fact modified holomorphic instead of
holomorphic):

Define

Voe Z(E)|p|, = Sl;pl(l + 1§ 1PP e,
€= [pe Z(E,), VpeR;|p|, <},
€' = {pe Z(Ey);

The spaces €, €' can be equipped with very natural locally
convex topologies by means of the norms ||, and one has
then the following result.

I defines an isomorphism between .¥(E } and €, with

JpeR such that |@|, < .

Y fePEMIE) = f dof£ o} 1ol

by duality, / defines also an isomorphism between *'(E ) and
&, with

VTeS(ENITIE)= TS|}

The results in Ref.9b also concern two families of Banach
spaces interpolating between .# and %', € and &', respec-
tively, and between which the integral transform 7 or its in-
verse are continuous. We give a survey of these results, trans-
lated to our present setting, in Sec. 4A.

The chains of Banach spaces presented in Sec. 4A dis-
play, however, several inconveniences. As already men-
tioned in Ref. 9b the & spaces are not separable, and the
little space € is not dense in any €#. Moreover, in relation to
the present setting, it turns out that though one can always
choose suitably matched spaces in the two ladders to make
either 7 or its inverse continuous, it is impossible to choose
them in such a way that I is an isomorphism. None of these
problems arises when one uses a suitable interpolating chain
of Hilbert spaces instead of Banach spaces (see Sec. 4B). The
resulting bounds on I are much more precise between these
Hilbert spaces, and therefore more useful for applications to
quantization than the results of Sec. 4A.

Generalizing the construction of the Hilbert spaces in
Sec. 4B, one can obtain even larger families containing
spaces smaller than % (or €) or larger than .#'(€’), on which
the integral transform / can still be defined and has continu-
ity properties. The results in Secs. 4B and 4C can be consid-
ered as extensions of the bounds in Ref. 9b (Sec. 4B uses some
estimates made in Ref. 9b). Other results on the Bargmann
transform can, of course, easily be translated to the present
context and be useful in a Weyl quantization setting (see, e.g.,
Ref. 1, where a characterization of the images under the
Bargmann transform of the Gel’fand-Shilov spaces Sand .S *
are given; in a sense this can be considered as complementary
to our results in Sec. 4C).

A. The Banach spaces .** & and related results on the
integral transform /

For any C * function f on E, we define (this norm is the
same as in Ref. 9b, up to a dilation:
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7R =1£(<5 ) Emman)

|f|i — max sup |2—(I"I.I + |m,|)/2
{m,],imy] %P
|my} + jm,]<k
(1 4 2% 4 2p?)k —Imi = 1mall/2 (g Iml glml £) (x p)].

(4.5)
The Banach space .¥ “ is then defined as
L= {(fE-Cfis CY|flf<»]. (4.6)
On the other hand, we define, ¥peR, the following subspaces
€* of Z (E,):
& = (e Z(Eklp |, =supl(l + £ IY @l6)] < o}
(4.7)
The following theorem was proved in Ref. 9b.

Theorem 4.1:
1. Vfe.*, the function

16) = [ alg 1o} o
is well defined and an element of Z (E,). Moreover,
IfeG*
and
Hf i <bic| f s (4.8)
with
1, k<2
e *k* k>3
2. V@, with i > 2n, the function
Tpw) =5 dv(§ o}e £)
is well defined on E. Moreover,
VkeN,
with
k<p — 2n:lpes*

3e

bk — 7 2"/2(16n)" /2[ (49)

and

g [5<b i, @k, (4.10)

with

o k p—k
bk’”=2 *k@)k/zr(—z——km-}—l)f(—?——m)

xr("—;-l—‘)‘lLdv e (L + |o]?)". (4.11)

3fe U SralIf=f,

k>2n + 1

(4.12)

pe U E=llp = .

u>2n
Note: This theorem was used in Ref. 6 to derive some
restrictions in the class of distributions corresponding to
bounded operators.
It is obvious from the definition (4.6) of the .#* spaces
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that #(E) = n ¥, and that the locally convex topology
keN

on & defined by the ||||3 -norms coincides with the usual
Schwartz topology. Defining, on the other hand,

€ = {@e Z(E)Vp:lp |, <o}, (4.13)
and equipping this space with the locally convex topology
induced by the norms ||||5 , we have immediately the follow-
ing corollary to Theorem 4.1.

Corollary 4.2: The integral transform 7, restricted to .7,
defines an isomorphism from .% onto €, with inverse I (re-
stricted to €).

In Ref. 9b it was shown that €, the dual of &, can be
identified with U, €” in the following way:

VLieG: g, ()= L{o*)=>g,ev G,
PR
(4.14)
Ve U @P:Lq,w):fd; ST 1oL, €,
peR

with

qu, = ¢)’ LgL = L
The topology on €’ corresponds with the natural topology
on U, €” induced by the norms ||,. In what follows, we
shall always identify €’ with U,z € and implicitly use (4.14).

Since I is an isomorphism between . and G, it is ob-
vious that by duality 7 also defines an isomorphism between
S and €':

VTe?" :we define (IT )@ )= T(Ip), YeeC. (4.15)

By means of the identification €' = U, €”, we define the
function IT'({ ) as

IT()= IT(*) = T(lo*)=T({{|}).
One can easily check that for fe %, this new definition of If
coincides with the old If defined as an integral transform.
We have now immediately _

Theorem 4.3: VTe ., the function IT (§) = T{{£ |-})
is a well-defined function on £ X E, with /7€@’. This map
I.¥' @' is an isomorphism extending the isomorphism in
Corollary 4.2.

Remarks: 1. The inverse map of I:.#'—E’, with I de-
fined as in (4.15), can again be constructed by combining 7
and a limiting procedure. For instance,

VoeG'l ~'p =+ = lim I{@r) (4.16)

2. One can enter in some detail into a discussion of I as
an isomorphism between .’ and &', and compute explicit
bounds on |IT'|, for Tin (#*)', using the bounds in
Theorem 4.1 (see Refs. 9b or 8).

So finally I defines an isomorphism between .# and €
and between .’ and §'. Moreover, we have two sets of inter-
polating spaces: the #*(.#*)’ between .# and .%” and the G®
between € and &', and we have at hand continuity state-
ments and bounds for I between elements of these two inter-
polating chains, giving more detailed information on the ac-
tion of 1. Except for the two ends of the chain we have,
however, no bicontinuity of I, considered as a map from
S*[ or (£*)] to a suitably chosen &. This problem will
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not occur with the chains of Hilbert spaces in the next sub-
section.

B. The Hilbert spaces .¥ », W*, and related results
concerning /

The Hilbert spaces & #, W* we define below constitute
again two chains interpolating € with €', . with .’ respec-
tively. Actually the ## spaces were already introduced in
Ref. 9b as a tool for studying €'; they are weighted L * spaces
of modified holomorphic functions. Their inverse images
under the Bargmann integral transform were not displayed
in Ref. 9b; we call these spaces WP spaces; essentially they
are the Hilbert spaces associated to the N-representation of
SE), '(E) with respect to the harmonic oscillator-type
operator x* + p* — 1A, — 14, (see, e.g., Ref. 14).

The 7 * spaces
The ## spaces are defined as ( pcR)

77 =|pezEHlp I} = [ e+ PPIP I <0,

(4.17)
with associated inner product:

(@), = f de(L+ 16 PP o) ¥E).

The %7 spaces are Hilbert spaces [.¥ © = .£((E,)]; one can
check (see Appendix A or Ref. 9b) that the u, , | are ortho-
gonal elements of the 7 :

(#pht pYikae1)p =811k 5[11[1'17'(P§|k | +171)
with

(4.18)

(4.19)

psm)=T(m +2n)“1J- dx x™ 2 le = X1 + xp.
0

Moreover, for any ¢ * with series expansion (2.18) one
has

¢ “; = [k%” |¢[k,1 ]IZT(P;IH +|1|) (4.20)
and
bu =fd§ Uir €) B(C). @.21)

Equations {4.19) and (4.20) imply that the
m(p;lk | +111)""?uy, | constitute an orthonormal base of
F e

The following estimates for 7{ p;m) were computed in
Ref. 9b:

¢, <t{p;m)(m + 2n) ~F<cy, (4.22)
with

p —1
o=(1+£)

n

. p>0,

G= (e L)

n
o (1 3 L)—2n+pe - (4.23)
P

2n p<0.
¢, =e*
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The Wr-spaces
We put ¥ fe.7(E ),YpeR:
(L) = (Sl +p° — 34, — 344, +n)7f).  (4.24)

Note: Actually, the operator x> + p* — 14, — 14, has
spectrum Nn[n, o], which implies we could drop the extra
term 7 in (4.24): the resulting topology on W would be exact-
ly the same. We nevertheless introduce the extra term n in
order to obtain the sharpest possible estimates on the inte-
gral transform I: to obtain these estimates, we shall use
(4.22), where this extra n is already present.

We define then W as the closure of #'(E ) with respect
to the norm ||||7; equipped with this norm, #* is a Hilbert
space.

The renormalized Hermite functions
(7| + |s| + 2n)~#72H,,  [see (3.14)] constitute an orthonor-
mal base in W7; one has

VTeS'(E):TeWrs > |TH, )(|rl + Is| +2nf <
o (4.25)

and

TeW*=|(|T |, = MZM |T(H s )27 + |s] + 2nY

(see, e.g., Sec. V.5 in Ref. 13).

Because of (3.13) and (3.15), we can rewrite (4.25) in
terms of the A, , |:

VTe.s'(E)define Ty, = T( huuy) = Tlhus)-
. (4.26)

Then

VIeWr(|IT: = 3 [T lXk|+ 1] +2np. (4.27)
Tk1021
The integral transform | as a map from WrF onto 5°
From the definitions of W*,% ° one can check that

n wWe=S(E) v Wr=S"E),
peR peR

nFr= u F*r=¢.
peR peR

The extended definition (4.15) of the integral transform I can
therefore be applied to all W#; for any Te W, the resulting
IT will be in & and have series expansion

ITC)= 3 UT)pniimni6)

{miin]
with

(T Y =fd§ o ) IT(E)  Luse (4:21)]

= IT (U, [use(4.14)]
= T(h{nm; [use(4.15)and Proposition 3.1]
= T[m,n 1" (428)

Using the definitions of the norms ||| ,and ||{|;, and the esti-
mates (4.22) we see now that

TeWPSITeF?

and

(4.29)
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T P<MT |7 <cgUIT 5
Hence the following theorem.

Theorem 4.4: The map I: IT({ )= T({{|}) defines an
isomorphism from W* onto .7, and this peR. Estimates on
the norms of this isomorphism and its inverse are given by

I o5 <52 M Ml o <5~ 1% (4.31)

where C and C are defined by (4.23).

Remarks: As we announced before, the restriction of /
to a " is a bijection onto .# #, which means we have no
qualitative loss of information when mapping to and fro {this
was not the case for the #%,E7). Due to the fact that the
product of the estimates on the norms in (4.31) is larger than
1, we have, however, still a “quantitative” loss of informa-
tion, which gets worse for large |p|.

Up to now, we have considered the spaces .¥*G* and
later %7, W?, in order to obtain some fine structure in the
study of I as an isomorphism from .%’ to &'; it turns out that
the Hilbert spaces 7 #, W* are better suited to this end than
the Banach spaces .#%,&”. Our ultimate aim is to use these
results to derive properties of the Weyl quantization proce-
dure, using the fact, mentioned in the Introduction, that the
integral transform 7 constitutes the link between a classical
function and the coherent state matrix elements of its quan-
tal counterpart. Theorems 4.1 and 4.4 can then be used to
translate restrictions on a tempered distribution to growth
restrictions on the coherent state matrix elements of the cor-
responding operator. A first application of Theorem 4.1 was
given in Ref. 6, where it was also noted that stronger results
could be obtained by means of Theorem 4.4. Other applica-
tions shall be given in Ref. 15.

(4.30)

C. The Hilbert spaces .#¥ S, W

We shall here generalize the structures of both 7, W?
to obtain Hilbert spaces larger than ¥, and which can still
be handled by I.

The Hilbert spaces ¢

F P was constructed as a weighted L ? space of Z (E,)
functions, with the special weight (1 + | |?)#. To generalize
this construction, we consider now more general weights.

Let G be a function from R* to R*. We define

FO= (e Z(EN|6 I3 =fd§ BENPGE )< ) (4.32)

and we equip this space with the norm || ||;. Since one has to
be careful with Hilbert spaces of analytic functions, we shall
first investigate the conditions to impose on G to ensure that
& ¢ is an infinitely dimensional Hilbert space (see also Ref.
16).

Proposition 4.5:

1. If VreR " :ess infG (x) > O,ess supG (x) < o0,  (4.33)
x<r xr

then . € is complete.

2. Define

1 oo
/1"'7!=——-——j dx x™+t = le—*G (x). 4.34
I'im+2n) Jo ) ( )
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A necessary and sufficient condition for . © to be infi-
nitely dimensional is

VmA S < . (4.35)
If this condition is satisfied, then
VIkL [ up, 165"0

and

Vo= s €F %ol =

[k10{] [&T17]

|Btha 11°A iy 11
(4.36)

The following three conditions involve not only G, but also
1/G:

3.If

Vm:A 'ln/G< o, then V¢€‘76:¢(k,l 1= ag U 16)8(8)
(4.37)

[i.e., (2.20) holds for all ¢ in F ).

4. If

lim A ¥%mA ¢ )~ =0, (4.38)
then

VoeFCp(5)= | d& o (&)p(£) (4.39)

[i.e., the reconstruction property (2.21) still holds for % €].
5.If
3K ;,,K % >0 such that Vm:K ;<A %A VKK Y,
(4.40)
then % '/ can be identified with the dual, (¥ ¢Y, of ¥ ¢, by
means of the map

FVO(FY,

YL, withL,(@) = fd; WEVP () (4.41)
= ¥ Dby (4.42)
[&111]
Proof:
1. Using

BE) =) Moie)[ N
€' —¢gi<r
and (4.33) one can check that
VR:3K; such that V§, |5 [KR:{é (§)|<Kgr l¢ || -
(4.43)

Hence, convergence with respect to || ||; automatically
entails uniform convergence on compact sets. Therefore,
any Cauchy sequence in % © has a limit in .% ©, and % Cis
complete.

2. Proposition Alin Appendix A proves that V¢eZ (E,):
Jaeewreict= 3 buPafin e
14l
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where these expressions can be finite or infinite. If 4 € < «
for all m, then (4.44) shows that all the u, , €% ° (4.36) is
proved in Appendix A. If 1 ¢ = o, then Ym'>m:A % = «
[use (4.33)]. Hence, Vg7 ©: ¢, ,, =0if |k| + |/ |>m and
% is finite-dimensional.
(# ¢ Cspan {ug, 1k | + 1] <m}).

3. IfVYmA %« o, then

VKL o—vchz( ;L),

(k)Y up, & EXE e

{4.37) is then a consequence of Proposition A2 in Appendix
A.

4. Equation (4.38) implies
Vé’:wgeé‘_'/GC (54‘6 )r

2, wer 161
use 2 lup SN =e )
[K101} m!

k| + 1] =m

apply Proposition A2.

5. See Proposition 4.3 in Ref. 16.

Note that once (4.40) is satisfied, (4.39) holds
automatically;

(4.40)=(F O) =.F /6.
Because of (4.43), 36%c.¥ /¢ such that

VgeF | FL)18L) =9 (€).

In particular

as ‘55@')“[1:,1 1(§) = U1 ](§ )3‘55 = w?. |

Examples:

1. Take G (x) = (1 + x)*. This weight satisfies all the
conditions in Proposition 4.5; the corresponding & € spaces
are of course exactly the 7 # of Sec. 4B.

2. Another possibility is G (x) = e¢#*, with |8 | < 1. This
choice for G satisfies (4.33), (4.35}, and (4.38); one has
AS =(1—=pB)" ™ 2", from which one clearly sees that the
duality condition (4.40) is not satisfied.

3. G (x) = e®"*. This corresponds to a simple exponen-
tial weight for & ©:

umm=ﬁ¢w@Wﬂm-

This choice also satisfies all the conditions in Proposition 4.5
(see below).

4. A rather general class of interesting weight functions
is given by taking G = F77,
with

Fiix=)1+ x)Pe™peR,reR\ {0},4€(0,1). (4.45)

For all the values of the parameters indicated above, F 7"
satisfies (4.33), (4.35), and (4.38).

A detailed analysis of the asymptotic behavior of A ©%’
yields (see Appendix B)

qu(l —l,l _
n n+1

), n=12,..,
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AL~ constX mPexp [rm® + A m* 1 4 ...

+4, ,m" "]+ 0(m?), (4.46)
with
a = max(q — Lig + nlg — 1)).
For ¢g<} this specializes to
AP < constXmPe™ [1 + O (m*)], (4.47)

which implies the duality condition (4.40) is satisfied for g<§;
for g> 4 it is not.
The Hilbert spaces W°.

The % ¢ spaces were constructed on the same principle
as the .# # spaces, with more general weight functions. We
shall likewise generalize the construction of the W# spaces.
Let ¢ (m) be any sequence of strictly positive real numbers.
We define

7167 = 5 -Hia)P ] + 15 + )

= 5 (Sl )P (k| + 11|+ n).

(K711

The set of all functions fin % for which || £, is finite we call
43 W* is then the completion of ., with respect to || ||,,.

We can, of course, as in (4.24), consider W ¢ as the natu-
ral domain of ¢ (x* + p* — 14, — 14,)"%, and put || f||5

=l x> +p* — 44, —34,) .

Examples:

1. Taking 4,(/) = (! + ny’, one has ¥, = .7 (it is only
for ¢ increasing faster than polynomials that *, may be-

(4.48)

come a proper subset of .%’), and W= we.

2. The H (a, A ), H (@, A ) spaces, introduced in Ref. 17,
are a special case of a W -structure. For the detailed defini-
tion we refer to Ref. 17; a survey is given in Appendix C {our
definitions are slightly adjusted to deal with the dilation in
x*4p?— 14, — 14, with respect to a normal harmonic os-
cillator). Essentially the H (a, A ) form a scale of spaces of test
functions “of type S ** and their duals H (&, 4 ) a scale of Hil-
bert spaces of distributions or generalized functions of type
S.'® They are defined (see Appendix C) as W* spaces with:

for H(a, A):

blk+n) =7, e d)= 3 —2mk)

, 4.49
m=0 A *am) @5

for H(a, A ):

¢k +n)=7ila, 4),
where the a(m;k ) are numbers satisfying

y—m Lk + 204 m) 'k +n+m) (4.50)
I'(k+2n) 'k +n)

[for the exact definition of a(m;k }, see Appendix C]. For all
{a, A)witha <1, A arbitrary,ora = 1,4 >v2,H (a, 4 }isan
infinitely dimensional Hilbert space, with orthonormal basis
Yik)+ il Ay, H@, A ) is its dual: for any fe H (@, 4 ),
the action of TeH (@, A ) on fis simply the natural extension
of the action of elements of ' on H (@, A ):

T(f)= Z T(h[k.l ])(h[k,l 1’f)~

(k1071

<a(m;k )<

(4.51)
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In Ref. 17 it was shown that ¥{a, A }satisfying the restriction
above, 3C(a, A ) such that Ve H(a, A ):

|£xo|<Clas A f o T 50,

X exp[ - m j;(x}/“ +p}"’] . (4.52)
In the extreme case @ = }, A>V2 this becomes
n ) X+ p2
epl<CbANNian 0o exp| - 222,
(4.53)

i.e., f has a Gaussian-like behavior at infinity.
Another property proved in Ref. 17 is the following.

Vae(},1),Vfe H(a, A):

fis the restriction to the reals of an entire analytic function of
order p<(1 —a)™".

The integral transform | as a map from W*to & ©
and vice versa

Looking back at the arguments leading to the formula-
tion of Theorem 4.4, we see that the estimates (4.22) played a
crucial role in the proof of the bijectivity of 7 between W*
and Z *. In the case of a general W¢-% € pair, we shall use
again such estimates.

Theorem 4.5: Let # €, W* be two Hilbert spaces as
defined above [with G satisfying (4.33), (4.35)]:

(DIf 3 K,>0suchthat VmeNK,g(m +n)>A S, (4.54)

then I can be considered as a bounded linear map from
W*to F ©, with

VTe WIT()= 2'{ T(huwy) 4y &) (4.55)
(k101
where the series converges uniformly on compact sets.
Moreover,
VTe W*|IT |, < K{?|T||,. (4.56)

2)If3 K, > Osuch that Yme N:K,é (m +n) < 1 §,(4.57)
then 7 can be extended to a bounded linear map from % © to
W* with

V¢= 2 ¢[k,]u[k',]€ycj¢
£3103]
=W?— lim Y (4.58)
M k][
k| + |2 <m

¢[k.’ lh[l.k I

One has

1@, <K3 '@ lo-
(3)If 3 X,,K, > Osuch that
Vm:Kd(m+n <AS < Kyb(m + n), 4.59)
then I as defined by 4.55) is an isomorphism from W * onto
6, with inverse 7 [as defined by (4.58)]

Proof: II are already defined on the finite linear combi-
nations of the A, ; 1,4, , respectively. The bounds (4.54),
(4.57) ensure that I,I can be extended as indicated. Formula
(4.55) is a consequence of the fact that || || convergence
implies uniform and absolute convergence on compact
sets. n
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Note: Of course, one can always define % © first, and
then take ¢ (m + n) = A &; for this particular W* space, the
theorem becomes trivial. A W* space defined in this way
would, however, be rather useless because of its too intrinsic
definition: we are more interested in the situation where % ¢
and W* are defined separately, but where nevertheless a link
can be established via I or 1. This was the case for the #* and
the W” spaces: the WP spaces made sense as ladder spaces in
the N-representation of .#’(E ), and the #* spaces were po-
lynomially weighted L * spaces of modified holomorphic
functions. Results such as Theorem 4.4 (or Theorem 4.5 with
explicit % ¢ —W? pairs) can then be used to characterize the
behavior of the coherent state matrix elements of an operator
by means of the properties of the corresponding classical
function (or distribution) or vice versa.

An example of corresponding W*—.% © pairs different
from the W7~ # pairs in Sec. 4B is given in the following
subsection.

The action of the integral transform / on Hilbert spaces of
distributions of type S

We shall study in this subsection the action of 7 on the
HilbertspacesH (a, 4 ), H (@, A )defined above. Inordertobe
able to apply Theorem 4.5, we have to find suitable weight
functions ;G, 4 G, such that

KA <y a, 4) < KA,

K325 < Vala, 4) < K{A 7o
for some K | K 5,K{,K} > 0.

Using the bounds (4.50) we can easily construct the
;Ga4 functions. Indeed we have
i 2= Fm+2n+1)
o A¥r*al) I'(m+2n)

& 1
< Igo AXr¥al)

{4.60)

<¥nla 4)

I'm+n+1)
Lm+n

Since it is clear from (4.34) that for
A x x!
Ggplx) = T —
.8(X) jZ’oI”(B,)B”
the corresponding 4 & are given by
1 8o i 1 I'im+42n+))
" /SoBUr?%2j) I'(m+2n)
we immediately have
Agem Y, A) < A e, (4.61)
To find candidates for the functions ,G, ,, we have to do a
little more work. We shall study the asymptotic behavior of
the A %22, then invert (4.61) and try to find suitable ,.F;,, -

&p_ p as defined above is typically an entire function of
finite order. Computing its order and type we find'®

o mlinn 1
PEB)= I e~ 28
1
j— hm FZ 2n —1/26n=23—l/5'
NBB)= pE) o [T BB
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So 65_ p is an entire function of growth < (1/28, 2B ~ /).
Since the positive real axis is the direction of fastest growth
for G 5, this implies that

V7 < fBB), V7' > fBB), IK'K" >0
such that

Vx e R*:K'F 7(x) < Gy plx) < K"F28 "7 (x)
[we define F*"(x) = F&"(x) = exp(rx?)]
and hence

KAE™ " Qalm <K AE™,

Using now the estimates (4.46), inverting (4.61), these
inequalities imply that

Ya > LV7, > rla,4) =24 72 VY7, < 7(a,V24)

=2(V24)" Y% 3K, K, > 0

such that

K, A5

Qa) 'y
m .

<A la, A)<KAF (4.62)
Since this inequality has exactly the right form of (4.60), we
are now in a position to apply Theorem 4.5; we get the fol-
lowing results.

Theorem 4.6: For any ¢ € (0,1),7 € R, we define
F%(x)=e™(x eR,); for any (3,B) with § > Jor B =1,
B > V2, we define

A~ o x'l
Ggplx) = _
aal¥) ,;o r*Bn)B*

Take any [a, 4) witha > Jora=1,4 > V2. Then

(1) The integral transform I defines a continuous linear map
from the Hilbert space H (a, A ) of functions of type S to the

weighted L ? space of holomorphic functions # Gava, we
have

VfeHla, A): If(E) = f dv (£ v} (0

and

R, = f dE I (E)CunallE D) < I F s (463)

(2) The integral transform I defines a continuous linear map
from .7 % to

Hio, A}V € 78 o) = [ dg (Eo}g )
and

106 120 < f ALl G LIEP =015, .  (464)

For the next two results, we restrict ourselves to the case
a> 4.

(3) V7, > 1@, A) = 2A~"/?, the integral transform I ex-
tends to a continuous linear map from the Hilbert space
H (a, 4)of distributions of type S to the weighted L ?space of
holomorphic functions FF* "~ ™

VTe H((’I’,A_)'JT(Q‘) = [k%” T Ay Y ()= T({EH)

(4.65)

and
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3K such that ||[IT {|200-. -, = Jdg [IT (£)|%e— 61"

<K|T|%s

(4) V7, <rla,v24) = 2(v2A)~ V% I extends to a con-
tinuous linear map from Z 7> """ to H (a,4 :

dg (E16(5)

VoeF ™ " "Ip = H(@ ) — lim
R~ I¢1<R
(4.66)

and
3K’ > 0such that K '||I¢ ||2 5

< [dE18€1e 7 = 6 P .

For a =1, 4> V2 we have
(5)V¥y>(42/2 —1)7, the integral transform 7 extends
to a continuous linear map from H (1, 4 ) to the weighted L *

G
space & = ~*, where

G,(x)=¢e* (a<])

Wehave VIe H(}, A)IT (&)= T({{]-}) and

Tl = [ dgirieype e

<U+y) "V K YT IT 5
with

i m! m
K, .2 m§=:o T oami™ (z +2)™ (4.67)
Proof: (1)-{4) were essentially proven above. Since
Via,A):{¢|-}e H (a, A), we can always write IT (£ ) as
T({£ |-}). For (5) we use the estimate

Yo 5 A +p)" "7 'K, 4,(y7") (see Appendix C). Since
Age=(1—a) ") (4.67) follows. B

Remarks: As we already mentioned previously, our
motivation for this detailed study of the integral transforms
L1 is their relation with the Weyl quantization procedure
[see (1.1) and (1.6)]. Possible applications of Theorem 4.6 in
this quantization context are, e.g., the following.

I. In Ref. 17 it was shown that for a > 1, the functions in
H (a, A )are the restrictions to the real line of entire functions
oforder(l — a)~'.Onthese H (a, A ) onecan therefore define
the complex 6 functions 8, , ;, +—{v + iw) as continuous lin-
ear forms, i.e., as elements of H (a,4 ) (see Ref. 17). By means
of the integral transform /, and applying Theorem 4.6, one
can therefore quantize these § functions with complex argu-
ment. The same can be done for the real exponentials e * %7,
the quantal operators corresponding to both these functions
are actually complex translation operators, and can there-
fore be useful in the study of certain resonance problems.
Complex dilations also can be obtained as quantizations of
Hai, A )-objects (at least for the dilation parameter in some
strip of the complex plane).

2. Using the I results, the statements in Theorem 4.6
enable one to dequantize certain families of operators with
coherent state matrix elements with fast growth (up to Gaus-
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sian-like growth) in the coherent state labels, and to derive
properties of the corresponding classical functions.

5. THE INTEGRAL TRANSFORM / ACTING ON
FUNCTIONS FACTORIZING INTO A PRODUCT OF A
FUNCTION DEPENDING ON x WITH A FUNCTION
DEPENDING ON p

Whereas for ““dequantization procedures” it may be
useful to know how to treat an operator in which the x and p
parts cannot be disentangled, for quantization purposes one
is mostly interested in functions depending only on x or on p
or linear combinations of such functions. We shall therefore
indicate here how the additional information that a given
function is factorizable, f(x,p) = fi{x)-£3( p) or, depending
only onx oronp, f(x,p) = fi(x), f(x,p) = fo p), canbe used to
sharpen the results derived in the preceding section. To
achieve this, we shall use the decomposition (4.3) of the inte-
gral kernel {a,b |v}:

{a,b v} = Kplcax,)Kp(dapipo ) (5.1)
where
Kslew) = Kglleyead y)
— 2724 (e e ple” VI (5
(yeR",ceR*" = R" ® R"), with 4 given by (4.1), and where

1
Cap = Vz—(xa +xb’Pb _pa)’

1
dab = E(pa +pb9xa — Xp ) . (5'3)

One immediately sees from (5.1) that the integral transform
I, when applied to a factorizable function

fix,p) = fi( x) £o( p), splits into two pieces:
If(a,b) = Iy filca M p foldas ), (5.4)
with Vg function on R”, Vd = (d,, d,)eR*":

(5 g)d,, dy) = (2m) =" J; d’yKg(d; y)gly).  (5.5)

It is not difficult to check that the integral transform 7, with
kernel K, has exactly the same properties as the integral
transform /, except that all the dimensions have to be halved.
Since the exact value of the dimension 7 plays no role what-
ever in the results derived up until now, we see that all the
results for 7 hold also for I, provided we replace each # by
n/2.

We give below a list of bounds on 7 ( f}-/3) which can be
obtained in this way. For all the cases where the images
I 11, I £, cannot be defined directly (i.e., f;, ,€ L © + L?),
we define I as a continuous extension of the integral trans-
form with kernel K, (just as we did for 7).

In the case where f, = 1, i.e., where the function f de-
pends only on x (the case f; = 1 is completely similar), one of
the factors in (5.4) can be calculated explicitly:

I(£i1) (ap) = 15 fi)lCas)
(xa _‘xb)2
ol e
i(pa +pb)'(xa _‘xb)]
n .

+ (5.6)
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We also give some bounds for this special case.
Examples:
1. Define .#* = { g: R">C; g is C* and

2)(k — |m|)/2

| gli = max sup|2~"*(1 + 2| y|
|m|<k

Vimlg(y)l< oo} .
Take f,.7%, f,€.7%. Then

| T(fif)ab)|<by by, | filk, | folk,
X(l + |xq +xb|2 + |p. _bez)_k'n

2
X, —x 24 p, +p, [P\~ 472
X(1+ | 5| lp Pb|) ,

2

with

- 3e 1 if k<2,

b =_2n/48 k/2[

k= 2B e i ks,

2. Define W” as the closure of F(R*) with respect to
Il I3, with (]| g ||j,)i= (g(H +n/2fgland H=y" — 14,.
Take fieW?, f,eW?:. Then

f f dadb |I(f,f,)a, b))
X (l LR —p,,|2)p.

2
X, — %, >+ |pa + 2o *V
X(1+|a s+ P Pbl)
2
<& & (LA LAl
with
p+n
. e""(1+ ﬁ) ., p>0

o= n
e ?, p<0.

3. Takeflef~k' Then
I(f-1)@, b)|<bye ™"/
X, +x, |2+ [pa — 2|7\ 472
X |f1|i(1+ o + % ! lp p,,l) |
4, Take T1€Y'(R"), Wlth Vgef(R)n: lTl( g)| <KTl | gl.;’(.
Then V‘u, >k + n:
(T, 1)@, b)|<2,b, , Ky e /4=

2 _ 2\ur2
x(1+ |xa +xbl :lpa pbl) ,

with
=p

¢ “2expl —Hp— 1)1,

®

1

~

7
= 7~ "(§r2r (k% + 1)r (" =

Xf dye~ (1 + ).
-
5. Take f,cW*; let g be any function in L *(R"). Then
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up in all results, thereby weakening some of them (e.g., the
result of the trace-class properties of Q f,0 f;: see Ref. 15).

2 (pa +pb) 2
4
V2

ffda db |I(f,1)a

Ixa +X |2+ lpa —P |2 ., s
x(14 Bt b b Bl o gizisy).  APPENDIXA
. . ) i We prove some results on ¥ © spaces.
By taking other combinations for £, f; one can easily derive Proposition A.1: Let Gbe a function R*—R™, such that

other bounds of this kind.
Vom: 46 — Fedxx™t—1le=*G (x)

6. CONCLUDING REMARKS m I'(m + 2n)
Using intensively the analyticity properties of the func- is finite. Then
tion {a, b |v} we have derived several families of bounds on

the action of 7 and [. These results will be used in Ref. 15 to Vé = 2 bk 1 14k 11€Z2
derive properties of the Weyl quantization procedure. Ex- tetn

amples of such results are fd§|¢(§)|2G(|§|2)<w© 2 |¢[k,1112/1ﬁq+|1| <.
31!

VieW>*¢< Qf is trace-class e e
- _._.[ see also Ref. 5, If one of these expressions is finite, they are equal.
VAe# (7). Q ~'AeW
~ Proof: From
Vi, LEW™ < Q f1Q f, trace-class,
£, f€ L{RY=Q £,0 /, Hilbert-Schmidt, db up &), 1) = By O
VTeW*: QT is a quadratic form, relatively form- one sees that (see Ref. 9b)
bounded with respect to a power of the harmonic oscillator
Hamiltonian QH. f d up &), 11(6)
VfeWr.geW ~*: the twisted product fog is defined, =t 2
and eW —%. = Stk By -

B (k| + 1| +2n)
The bounds derived here can also be used to show that all the

operations in, e.g., Ref. 11 were well defined.

Because of the link of our integral transform I with the 2
Bargmann integral transform in Rgf. 9 any result on the J;; (<R 4 GUET) k& e, 16
Bargmann integral transform (such as, e.g., in Ref. 1) can be =8 B Asllk | + [T;R),
translated to give properties of , and hence of the Weyl
quantization procedure. Note also that analogous bounds
can be obtained if one starts not with the coherent state fam- Ag(m;R) = J' dye=y" =G (y) /, A0
ily {42 ¢}, but with any other overcomplete family depending m+ 2n)
analytically on its label, and having the reproducing proper- Then
ty (1.4); an example of such a family would be given by*°
{2%,,},where2{,, = Wi(aJu,, [W (a) are the Weyl opera- J- d¢ |9 (€ )1PG (1§ %)
tors; to obtain the usual coherent states one takes [m] = [0]].

Hence

with

This would give rise to another integral kernel {a, b [v},,, = gim dc | (&)*G (¢ 1P
=2"({2%,, .11 (V)2 ¢,, ) but essentially the same theorems T SII<k
could be derived (with some adjustments). Finally, it is im- — lim IR S, Y
portant to note that the integral transform I has the follow- R [k;l] e TP EITH T
ing invariance property with respect to the symplectic Four- SR
ier transform (see also Ref. 1). XAg(lk| + | ;R)
Define 2
=l!1m z |bix,11|°Acllk | + TR )
(Fe o) =2l [ o ooy, e
= Bk, 1 1°A Ty 4 -
then U;“:” e 112 [k |+ 1
F({a,b|-))v)={a, — b v} Proposition A.2: Let Z 4 1, 1 Dk, 1 %1k, 1 ; e an element of
and hence Z(E,).

LIffdf |up, (618 ()] < o, then
dé uy 6) )=y -

VT:I(F_,T)a, b)=IT(a,—b)

and this for 7 in any of the classes considered above (all the

spaces we have introduced are invariant under the Fourier 21 ( dE |wf th
transform). This leads to the property Q (F_.T) = QT-IT (IT M5 01t E)6 () < oo, then
is the parity operator) for the Weyl quantization procedure, dt of(E)8E)=¢(£).

but it also implies that the same Fourier invariance will turn
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Proof:
1. We have

as uy,\5)é(5)

= lim d¢ Uk 1 ](g) (&)

R Jig|<R

= lim
R0 (£"T11]

=;i1n S 1Ak + [I;R) =1 -

2. Analogously,

fdg S €)= lim

¢[k',1'15[k1[k'15[1][1']A1(|k| + Il |§R)

d¢ *(£)(C)

I&I<R

= lim 2 B, 11k, 8 Wik 18111
R—e (£][1)
k100

XA(|k|+I;R)
= lim 2 B 1 4k, 116 Aillk | + T |;R)

R—ow K1

=¢(5)-

APPENDIX B

We compute the asymptotic behavior of

AR = x x™ 2~ le= X1 4 xPe™ (Bl)

I'(m+ 2n) J;
for m— . To estimate the asymptotic behavior in m of the
integral

Tsp:q,m

I =f dxexp[ —x+ 7+ {m+2n— l)nx
0

+plnx+1)], (B2)
we shall use a stationary point method. The exponent
Xx)= —x+mx9+(m+2n—1)Inx+plnix + 1)

has a unique maximum in

xo =m(l + 7gm?~ "' + O (m?~')). One can use this to esti-
mate that

.. =7

rpam =Irpgm(l +0(m™Y), (B3)

where
I'r,p,q,m =L dx exp[ — x + 7x? + (m + 2n +p—1)Inx].
(B4)

We shall therefore restrict ourselves to this last integral. The
exponent in (B4),

Yx)= —x+mx'+m+2n+p—1jlnx, (B5)
has a unique maximum defined by the equation
x=—(m+2n+p—1)=71gx7. (B6)

The solution to this equation can be computed using pertur-
bation techniques:
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Z=m(l + rgm?~ )1 4+ O (m™~ 12~ 2) (B7)
One has then
Y"(x)= 1 (14O (mm~12-2), (B8)
m
Vji>2: Y®) =0(m'), (B9)

YFX)=(—m+(m+2n—4)lnm)+(p—4lnm
+ mrm?~ ! + O (m™=x02 1)
hence
—InI'(m+2n)+ Y(X)

=(p —§) Inm 4 7m? + O (m™=02~ 1), (B10)
Collecting all these results, we see now that
_r I - 1
Cm+2n) ™" mowy/m=T

Xexp[(p - %) Inm+m™m9 + O(mmnx(o,zq_ l))]

X (1 + O (m™ex(~ 17224~ 2)) B11)

[the higher derivatives contribute only a factor

(1 + O (m —7?)) because of the estimate (B9)—see Ref. 21].
If g<4, we can rewrite (B11) as [being a little more care-

ful in estimating X in (B7)]

AL~ constxmPe™ (1 + O (m™=x— /224~ 1)

m—s oo

(B12)

For ¢ > }, the estimate (B7) is too coarse. The next term in the
perturbation gives

X=m(l + rgm?~ "' + 7¢*m* ~ (1 + O (m™~ 13— )
yielding, for } <¢<3,

ALY < const xmpe™™ +WATERTN ] 4 O (m™xa— 13— 2))
(B13)
It is easy to see that for ge[1 + 1/n,1 — 1/(n + 1)], n extra

terms have to be introduced in the perturbation series for X,
and that finally

1 1
1 — —<g<l — —— (n3»2

L <1 o (n>2)

FeT

=A4,7 ~ constxmf

Xexp[rm? + Am* '+ A,m* " 4 ..

+An_lmnq—(n—l)]

X [1 + O(mmaXIq— l,g + nig — IH] ,
where 4, = }7%¢* [as in (B13)].

(B14)

APPENDIX C
We indicate here how the definitions of Ref. 17 have
been adjusted to fit the A, , .

Define on .#(E ) two sequences of operators by the fol-
lowing recursion:

M, =;(xj M, _ . x;+p; Mm—le

SRS BV

1 a8 M a _
4 dp, ap;

~H M o

7
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m=z(ix -—1x+§P; m—lpj
7

Sl Lot 2,
ox; ‘ox, o, 9p;
My=M,=1.
Both M, and ﬂ_,,, are positive; one can easily check that
VS ge Z\E):(f,M, §)=(f, M, g), where ~ denotes the
Fourier transform F, (see Sec. 6). The M,,, conserve the orth-
ogonality of the A, , | (see Ref. 17),

(i, Mon Bri 1)) = By By salms |k | + 1)
the a(m;k ) satisfy the following relations:
Vk: al0k)=1,

alm— Lk +1)

m>1=a(mk ) = k+22”

+ %a(m— Lk —1).

This last recursion relation implies
y-m Lk +2n+m) Lk+n+m
I'(k+ 2n) I'k+n)
The Hilbert space H (a, A ) is then defined as

Hia 4)= | RAEL 115,

<a(m;k )<

—;;F%Ewmﬂ<}
Since

1
”h[k,l 1”i,4 = 2

- am: !
,,.AZ"'rz(am)a(m’lkHl )

_ 1+y-—l)m
<1+ k| +1j+n—1 _(— m+1
(1+y) 2 47 am) I )
and this V y > 0, we see that if 3z > 0 such that

_ v (1 +2"m!
a A ( ) 2 zmr z(am)
converges, then A, , € H (@, A)V [k ],[!]. This conver-
gence is guaranteed for any 4 if @ >}, for 4 > (2(1 + z))*/? if
= J. Hence H (a, 4 ) is an infinitely dimensional Hilbert
space with orthonormal basis ||k, ;|la 4 Ak, if @ >4, or
a =}, A> V2. One can check that the topology on H (@, 4 )
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defined by the norm || ||,,, 4 is really stronger than the topol-
ogyon ¥ (E),and that H (@, A }isapropersubsetof 7 (E }(see
Ref. 17).

The norm || ||, 4 on H (@, A) can also be written as

I Al2. = Z (£ h[k,,])|2y,;,2+|,|(a,A),

(K701
with

vt d)= 3 F—;IL”;)’; )_.

The Hilbert space H (@, 4 ) is then defined as the dual of
H (a, A ) with respect to the normal action of ¥’ on % It can
be constructed as the closure of #'(E ) for the norm || ||z 4:

|]T||‘27,A—= E |T(h[k,11)|27|zk|+|1|(aw4)-

(k]{1]
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On the Laplace asymptotic expansion of conditional Wiener integrals and the
Bender-Wu formula for x*¥-anharmonic oscillators
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Rigorous results on the Laplace expansions of conditional Wiener integrals with functional
integrands having a finite number of global maxima are established. Applications are given to the

Bender—Wu formula for the x*¥-anharmonic oscillator.

PACS numbers: 02.30.Rz, 03.65.Db

1. INTRODUCTION

In a previous paper we showed how it is possible to
extend Schilder’s rigorous results for the Laplace asymptotic
expansions of Wiener integrals, with integrands having
unique nondegenerate global maxima, to conditional Wie-
ner integrals.' There we gave applications of this result to the
derivation of generalized Mehler kernel formulas. In this
paper we treat the case of the Laplace expansion of a condi-
tional Wiener integral with a functional integrand having a
finite number of nondegenerate global maxima—a situation
which arises frequently in theoretical physics.? Here we ob-
tain equivalent results in this multiple maxima situation and
give some applications to the Bender-Wu formula® for the
x*".anharmonic oscillator, N>2.

The Bender—Wu formula for the large order behavior of
the perturbation series for the ground-state energy of the
x*"-anharmonic oscillator has been obtained formally from
a function space integral, with a manifold of maximum
points, by a number of authors.* Modulo the interchange of
two limits, using a very clever argument, the behavior of the
leading term for the large order behavior of the ground state
of the x*-anharmonic oscillator has been obtained rigorously
from a function space integral by Simon.> The fact that the
functional integrand in these treatments has a manifold of
maximum points makes it difficult to use function space ar-
guments to take the calculations beyond the leading term
and difficult to extract more detailed information about even
the leading term.

Here we give a functional integral realization of the
ground-state energy for the x**-anharmonic oscillator so
that (modulo the interchange of virtually the same two lim-
its) the large order behavior is given rigorously by the La-
place expansion of a conditional Wiener integral with an
integrand having exactly two nondegenerate global maxima.
This offers the possibility of taking the function-space calcu-
lation to a higher order and yields more detailed information
about the leading term.

At first sight the more detailed rigorous results which
this realization gives seem somewhat disappointing in that
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®ICentre de Physique théorique, CNRS, Marseille, France.

9 Supported in part by CNRS-ATP Internationale research grant: “Les
intégrales stochastiques et leurs applications en mécanique statistique ri-
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they differ, in the fine detail, from the behavior given by the
numerical Bender-Wu formula. (Presumably the problem
here is the interchange of the two limits.) Nevertheless, as
will be seen below, the method does lead to results for the x>V
-anharmonic oscillator (N>2) parallel to Simon’s for the x*-
anharmonic oscillator. To this extent then the interchange of
the two limits does appear to be justified. Moreover, since we
are dealing with the conditional Wiener integral, as opposed
to a general Gaussian, our method is easier to apply. For
instance, because the necessary bounds on the functional in-
tegrands in our Schilder type results can be expressed in
terms of the sup-norm on the path-space, rather than the L 2-
norm, these bounds are easy to check and do not require the
clever technical estimates given by Simon. This seems to us
to be the main practical advantage of applying the Schilder
type results over using other treatments.®

We use substantially the same notation as in our pre-
vious paper. We recapitulate our main conventions here.
C,l0, T'] is the Banach space of continuous functions z: [0,
TJ—R with z(0) = z(T') = 0, equipped with sup-norm
1z}l = sup,c(o,r,12(7)|. ColO, T} supports the conditional
Wiener measure, with covariance

J 2sJe(t ) dito rl2) = (2 T) (1 — 1 /T,
G,[0,T]

0<s < 1<T, with mean zero (¢ o1 12(5) ditg00.r(2) = O,
0<s<T. For the associated probability measure g4 1
{Col0, T} duop0,r(z) = (27T)"' dpo g, rlz), we use the
notation

(27T)1/2f

Gl0,T]

F(2) dpoo0,r(z) = EJ{F(2)},

for suitable functionals F. Abusing notation, for measurable
sets A, we shall sometimes write

]EzT{XA(Z)] =E;{4},

where y,, is the characteristic function of the set 4.

C 30, T'] is the reproducing kernel Sobolev space associat-
ed with C[0, T']; zeC ¥[0, T ], if z is absolutely continuous
with derivative () in L2[0, T], §Z[2(7)]%d7 < .

We are now ready to state our basic theorem. This theo-
rem deals with the case in which the functional integrand has
two global maxima but the method of proof easily extends to
the situation in which there are a finite number of such
maxima,
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Theorem 1: Let F{z) be a real-valued continuous func-
tional defined on C,[0, T'] and suppose that the functional
{F(2) — 27 '§¥[2(7)]? dr} has exactly two distinct global
maxima x,, x,€C ¥[0, T'], with { F{x;) — 2757 [%,(7)]* dr}

= b, for i = 1, 2. If F satisfies conditions 1-6 below, then

exp{ — b4 *JEl{exp{4 ~*F(12)})
=L+ Al + Ay 4+ A", +0A™ Y,

as A—0, where the I'; are functional integrals depending
only on the functional ¥ and its Frechet derivatives evaluat-
ed at x, and x,.

(1) F(z) is measurable.
(2) F(2)<(b + Ly) + Ly||z|[* to,00,r almost everywhere,
L, and L, being positive numbers, with
L, <min{y/2T, 1/4T }, y being the constant in
Lemma 6.
(3) F(z) is continuous for
lzll<max{(L, + 1)'//|L, — 1/2T "3,
2T (L, + 1)/¥]'?} and upper semicontinuous on
Gol0, T']. We do not preclude the possibility that, for
somezy, F(Zg) = — oo,butthenF (2)— — o0 2822,
(4) F (z)has m >3 continuous Frechet derivatives in a ball
of radius 8, 6 > 0, centered at x, and x, in C,[0, T].
We further assume that D'F (x; + )2/ = O(|z|V), if
Il <8, fori=1,2.
(5) For some € > 0, for ||77]| <&, ET(exp{(1 + €)D *Flx,
+ 1)2°/2}} is uniformly bounded for i = 1, 2.
(6} x,(-) and x,{-) are of bounded variation on [0, T].

We need only prove the above result for b = 0. The
result for b #0 follows easily by considering the functional
{F(z) — b }. We defer the actual proof until Sec. 3 of this
paper. This proofis virtually the same as the proof we gave in
our earlier treatment, save for the fact that we now have to
divide up the function space into two disjoint pieces contain-
ing x, and x, and treat these separately. The burden of the
proof is to show that it is possible to do this in a manner
consistent with the earlier treatment.

In our earlier treatment, after Simon, we obtained two
of our crucial estimates (Lemmas 5 and 7) by simply exploit-
ing the Gaussian nature of the conditional Wiener integral
and the underlying idea in the proof of Kolmogorov’s
lemma. In this paper, following a suggestion of Baxendale,’
we present proofs of improved estimates for the conditional
Wiener integral (e.g., Lemma 6 gives the best possible value
for ¥, ¥ = 2) by making use of the reflection principle for
Brownian motion. This gives a simple proof of our basic
estimate and, incidentally, a nice application of the strict
Markov property of the Wiener process. Other proofs of this
best possible estimate are available, but our results here do
not merit these more abstract treatments. The improved esti-
mates can be used to extend our results on the Mehler kernel
formula, as we will discuss in a later paper.

We begin in the next section by establishing our applica-
tion to the Bender—~Wu formula for the x**-anharmonic os-
cillator. Qur main result in this direction is contained in
Theorem 2. For the statement of this theorem, let N>2 and
letB>0,H(B)=[2"Y—d?*/dx* + x?) + Bx*" ] betheself-
adjoint anharmonic oscillator Hamiltonian defined on some
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suitable domain in L %(R), with eigenfunctions ¢, and corre-
sponding eigenvalues £, ( S ), arranged in order of increasing
magnitude, » = 0,1,2,... . Then we shall prove:

Theorem 2: Define the functions g,,(T), for n = 0,1,2,...
by

g8 =3 ¢~ ™4, (0)

n=20

- 2 2.(T)B" (B>0).
Then, as n— o0,
[( — 1y'nlg,(T)

1/n
—>e o7
b
nNn

where, as 7> w0,
a(T)—N + (N — YIn{2V¥ ‘TN /(N — 1))/

(N— )C(2N /(N — 1))}

This result, which is formally consistent with the nu-
merical Bender-Wu formula, is the analog for the x**-an-
harmonic oscillator of Simon’s Theorem 18.3, which gives
the large order behavior of {Z2_ e~ TEAB )} for the x*-an-
harmonic oscillator. As will be seen below and in the next
section our results actually yield more detailed information.
This leads to a slightly different result from the numerical
Bender~Wu formula as we now explain.

The connection with the Bender—Wu formula comes
about by observing that

EyB) = g E,B"=lim — T~'Ing(T, §), 0)

since |@,(0)|*#0.

After previous authors, formally commuting the T and
n limits, gives for the leading term E, —lim,. ,
{ — T '[golT)] 'lim,_, _ g,(T)},asn— . Using the actual
result established in this paper,

nﬂ(T)e—'la(T) 1
& (Tt T) =" — 11+ 0(1)),
n:

and Stirling’s formula yields, as n— o,

E, —[n(N — 1)]1[ — %[r(zzv/w— 1)/

TN /(N — 1))]N_1]" lim {

Trwo

_T—IV(T)nBlT)—l} .
(1)
2mg(THN — 1)/

Our method (in contradistinction to previous treatments)
gives rigorously explicit values for the above Y(T") and 8 (T')
[as well as (T )] and enables all higher-order terms to be
computed. These results lead to 8(T)=0. To obtain exact
agreement with the numerical Bender—Wu formula would
require 8 (T }—}. Thus, although the method does lead to the
correct rapidly varying factors, as given by the first two
terms, the relatively slowly varying third term does not
agree. Hence, the T'and 1 limits only seem to be interchange-
ableforlim, . E ", E, being defined by Eq. (0). This then is
the extent to which the limits commute. We discuss this
further in the Conclusion.
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2. THE PROOF OF THEOREM 2

We begin with a proposition which may be of some in-
dependent interest. We fix the integer ¥>2 in what follows.
Proposition 1:Forf>0,letH (B) = 2~ — d */dx* + x?)
+ Bx*" be the quantum mechanical Hamiltonian for the x**
-anharmonic oscillator. Then, on a suitable domain in L *(R),
H ( B)isself-adjoint, withadiscretespectrum [ E( 8 ), E,( B ),
E,(B),}, 0<EyB)<E\{B)<-, with corresponding non-
degenerate orthonormal eigenfunctions {¢q, ¢,,-},
¢,€C ~(R) and sup, g |#;(x)| < 0, eachj. Moreover, defining
G(x,y, T)by

Gy T)= [ dyx,o..v,r(zwxp{ —2f '24) ds

—B.erz”(s) ds}, T>0,

K0, 7 being the conditional Wiener measure,
Gy, T)=3 e “ g 2x)p,0), x yeR
n=0

pointwise.
Proof: See the Appendix. O
The above proposition leads easily to the desired func-
tional integral representation for g, (7). Settingx =y =0,
G(0,0, T)=g(T,B) = Z7_,8,(T)B" and so we obtain

SO P

Xexp[ — 2“J;Tzz(s) ds}.

Equivalently

_____( _ 1)"5:(””! = (2o T)~2El(exp{nF(n~"?2)}},

where
T T
Fiz)= — 2“f Z(s)ds + ln[f N (s) ds], z+#£0,
0 0
and F(0) = — «.Hence, toapply Theorem 1 we must prove
that

Gl2)= [2‘ ‘J: 2ls)ds +2~ ‘J;Tzz(s) ds — an;Tz’” (s) ds]

has exactly two global minima in C#{0, T']. This we now
establish.

Lemma I: Thefunctional G (z) = 2~ (32%(s)ds + 277
2%(s) ds — Inf3z*" (s) ds (N'>2) attains its global minimum
a(T') at at least one path XeC %[0, T ]; X satisfies the “Euler
Lagrange” equation

—X(t)+X(t)— 2NXP~ l(t)/fTXz”(s) ds=0, [0, T].
0

Proof: The proof is only a slight extension of well-
known results in the direct methods of the calculus of vari-
ations.® Firstly the existence of the minimizing sequence fol-
lows from the inequalities
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L " V) dsc 2] - f " 2s)ds,

T
<T"’[f 2(s) ds}m, some t€[0, T'],
0

t

el = | [ 2945
(V]

where || || denotes sup-norm. We can now see that, for N>2,

Glz)>4~! fo 2(s)ds + [% — (2N — 2)in|jz]
+2- ‘JTf(s) ds —In Tzz(s) ds] >4~ 'frf(s) ds +c,

for some constant ¢. Hence, 3 a minimizing sequence {z, }
withlim,_, G (z,) = a(T). Without loss we can assume that
G(z,)>G(z,), n = 2, 3, and so by the Cauchy-Schwarz

inequality
‘dz,
J- (r)dr
s dt

s, [0, T).

Kls—1]"2[Gz,) — €],

|Z,,(S) - zn(t )l =

Thus {z, } is a family of uniformly bounded equicontinuous
functions, which by Ascoli’s theorem® has a subsequence
uniformly convergent to some XeC #[0, T ]. The lower
semicontinuity of G now guarantees that G (X ) = ¢(T'). The
result that X satisfies the above equation follows because X
must be a local minimum as well as a global minimum. O

We now scale according to X = kY, where k is given by
k=2 = (XN () ds. Then Y satisfies the “instanton”
equation

- Y(t)+ Y(t)—2NY*-1(t) =, Y0)=Y(T)=0,
(2)
k*=[§5Y*"(s)ds]~". Also, multiplying the last equation
by ¥ () and integrating by parts leads to

LT Y2s)ds + L TYz(s) ds = 2NJOTY 2N(s) ds,

from which it follows that
T
GX)=N+(N-— l)an Y2N(s) ds},
0

where X = kY, Y satisfying Eq. (2).

As expected Eq. (2) governs classical motion in the po-
tential ¥ (y) = — 2~ 'y + y*¥, leading to the usual “instan-
ton” interpretation of Y. The potential ¥ has turning points
aty=0,ory= + (2N)~?¥-2 ¥ having a double-well
shape. Each instanton solution has a constant energy
E =2"YY*s) — Y¥s)) + Y ?"(s). Fortheinstanton tosatisfy
Y(0) = Y(T') = 0, the corresponding energy E»0. Hence the
solution Y is periodic, oscillating between the extremes

+ yi(E), »,(E ) being a positive solution of
E= —27"% 4 y?" Trivially y,(E)»>2~"/2V~2
>(2N)~1*N=-2 N 1, and so, for E>0, dE /dp, = — y,

+ 2Ny}~ 150. For y, = y,(E ), E>0, the periodic time 7 (y,)
is given by
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2

t)=2v2[ [(y% —yZ)(— o

1 =y -
A=) @

7/2
=2V7f { —1+p}"~2sec’d (1 —sin?0)} ~ /2 db,
(1]

where we have set y = y,sin 6.

It follows easily from above expression that, for N> 1,
dt (y,)/dy, < 0and (y,)is amonotonic decreasing function of
y,. Hence, fixing the periodic time 7', say, uniquely fixes a
corresponding positive value of the energy E = E (T'), with
E(T") /7 w0 as T'\0.

To summarize then: The solutions Y of Eq. (2) can be
labeled in 1-1 fashion by their periodic times 7', which give
rise to corresponding energies E = E (T')»0. Clearly, to sat-
isfy the boundary condition Y (0) = Y (T') = 0 we must de-
mand that 7' =T /n,or T’ =T/im + i), n = 1,2,...,

m =0,1,2,..., to within a sign, Y consisting of # or (m + 1)
cycles of the periodic orbit starting from 0. At least one solu-
tion ¥ must give the global minimizer X of G.

Hence, according to the above identity for G, minimiz-
ing G (z) over C*[0, T ] is equivalent to minimizing
{nS[T/n], (m + HS[T/(m + §)l|n = 1,2,...,
m=0,1,2,..} ={27'nS[2T/n]|n = 1,2,...}, where

ST =2V?JYIy2N[E(T')* Vi1~ dy, (3)

Viyy= —27Y%* +y*and E(T"') = V (y,). Itis easy to prove
that S [7 '] as defined above is a continuous function of
T'€(0, 0 ) with

S[e] = lim S[T"]

— 222—N(N— I]J.l xZN— 1(1 __xZN-—Z)—l/Z dx.
()]

Here the last identity follows by observing that, as T'— oo,
y1—2~2¥~ 2 and by changing integration variables using
y=2"Y"*""25in @ =2~ —2x, We now need an ele-
mentary lemma.

Lemma 2: Let S[T'] be a continuous function, for
T'€(0, ), with S [T']—>S[0] as T'— . Then, if
S[T1>27"'S[w]>0, for T'€(0, ), we can deduce that, for
all sufficiently large T,

21
n

Proof: For each T, consider the sequence {nS [T,/n]}.
Then, since nS [T,/n]— 0, as n— o0, I a finite integer n(7)

SUCh that
n=1.2 n

min [2_'nS[

7= 1,2,

]} =2"1S[2T].

T,
n(T5)
Either for all sufficiently large T, n(T,) = 1, or 3 a sequence
{T,}, T.— 0, as r— oo, with n(T’,)>2. In the first case there
is nothing further to prove. In the second case either
T,/n(T,) < K, for some finite X, for all , or 3 a subsequence
{T,/n(T,)}, with T, /n(T, } > as s— oo, where in both
cases S [T,/n(T,)] — n(T,)"'S [T,] <0, n(T,)>2. In the
first subcase, letting 7— oo, we see that inf, S [#]
<27 'S (), which is not so. In the second subcase, letting

= min

n(To)S [
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5— 00, gives S[00]<27 'S [oo], which is not so, since
S[e]>0. O
Lemma 3: Let S[T'] be defined as in Eq. (3). Then, for
each integer N»2, S[7']>27'S[w], T'€0, ).
Proof: Arguing as above,

S[T= 23/2f

(4]
X sec’0 (1 — sin*V6)} ~'/2 d6.
Using the obvious inequality, for 0<0<7/2,
sec’d (1 — sin**8) = 1 4 sin’@ + - + sin?¥ ~20<N,

we obtain

/2

yi¥sin®0 { — )+ yiV 2

/2

S[Tl]>23/2y?N _%_'_Ny%N—Z}—I/ZJ siHZNHdG’

0

where by inspection y,»2 ~ ?¥~ 2, E>0. A simple computa-
tion now shows that

i, DR = M)
M
— 2-(N+ ll/(ZN—Z)(N_ 1)—1/2’

the minimum being attained at y, = 2~ '/?¥ ~ 2, Hence, we

have shown that

2 N = )7
2¥N

where we have used the well-known result §7/%sin*"8 d6

= (2N — 1)t7/2% N 2N — 1)l = (2N — 12N — 3)--1.

Integrating by parts

S[T']»2- Y- N—-1)~

S[w] = 222—N/(N—1,J'1x21v_ (] — X2V =212 gy

0
1
— 222 — N/N— l)(N - 1)—1J‘ (1 . x2N— 2)1/22x dx.
0
Observing that the final integral is a monotonic increasing
function of N, we see that
S[lew] <22 MW= _ 1)L
Comparing the last inequality with the inequality for S [T']
we see that all we must prove is that
228NN — 1)~ 2 [N — 11—,
for each integer N3>2. But denoting by I,,, I, = §7'*sin"0 d6,
as is well known
Ly = (2N — 1l7/2¥ T 1IN
and
Ly, =2"NV/Q2N + 1)1
and since
Ly>hy,y @252 NIQN— 1]~V +4)~Y2
The final result now follows from the simple observation
that, for N>2, 7'/2> (N + §)"V/3N — 1)7 /2, a

The last two lemmas lead to the corollary.
Corollary: For each fixed integer N2, for sufficiently
large T, F(z) = — 27 'fT[2(s)]1* ds — 27 ' f323(s) ds
+ In{ §22%¥(s) ds}, achieves its global maximum ( — a(T’)) at
exactly two paths Xin C$[0, T ], X (s)
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= + Yys)[sTY 3¢ )dt |71/ 5€[0,T], where Yyfs) is the
unique instanton solution of ¥ (s) = ¥ (s) — 2NY >V~ (s),
s€[0,T], with Y (0) = Y(T') = 0, withtime period 27, and cor-
responding energy E (27')50. In addition

2NN /(N — 1)) ]
(N—1)reN/N=1)

aT)>N + (N — l)ln[

Proof: From the above we see that
a(T)—N + (N — 1)In{27'S [ ]}, where

1
S[w] — 222—N/(1V— 1)(N_ 1)—1f (1 _xZN—2)1/22x dx.
(4]

The proof is completed by the following identity, which is a
simple exercise on I" and B functions using the duplication
formula,

1
f (1—x*=% 2 dx = (N - 1)—13(3, 1 )
0 2 N-1

— w1 CANV/N 1) O

T2N/(N—1)’
It is a routine exercise now to check the conditions 1-6 in
Theorem 1 for the functional F defined above F: C¥[0, T']
—R. In this connection notice in particular how easy it is to
establish condition (1) because || || here refers to the sup-
norm and not the Z 2-norm. Finally, recall that
H = C#[0, T'] is a reproducing kernel Sobolev space when
equipped with the inner product

(& h) =J; g(s)h (s) ds,

8, heH. We require a last lemma to complete the proof.

Lemma 4: The functional - H=C#*[0, T]—+Rhasa
trace-class second Frechet derivative at X, L = D*F(X)
eL(H,H),X= + Y,[sTY2¢)dt ]~'/* being either global
minimizer of F. If det denotes the Fredholm determinant
defined with respect to H,

a7
det[1+ L] = —47E— (N—1),
( ] 9E( )

where E is the energy of Y;, and (with above conditions)

»\(E) d
T(E)=V2J; EovonT F;V(v)l”z'

Proof: A straightforward calculation yields
2
(h, [ - d—2+DZF(X)}h) =<(h,(1+L)n),
ds L?

where LeL (H, H) is defined by L = (L, + 4N I ~'7),
I= X" (s)ds,

2
- :—sz (Loh )is) = h {s) — 2N (2N — 1) ~'X V= %(s)h (s),
and
— ii—z— (mh)s) =X - '(s)fTXz”* Ye)u(e)dt
ds® o .
The above L can be expressed as the product of two Hilbert—
Schmidt operators in exactly the same way as in Corollary 2

of Sec. 3 of Ref. 1a. Hence L, is trace-class. We now show
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that (1 + L): H—H is a bijection, i.e., (1 + Lg)v = 0=v
=0eH.
To see this from above observe that v must satisfy

s} = vls) — 2N (2N — )T ~'X 2%~ {s)p(s),

with v(0) = v(T') = 0. In terms of the scaled variable ¥, v
satisfies

Bls) = vls) — 2N (2N — 1)Y 2¥ ~ ¥{sh(s), (4)

with v(0) = v(T') = 0. However, Y, satisfies the instanton
equation
Yols) = Yols) — 2NY ¥~ !fs),
with Y{0) = Y,(T') = 0. The Jacobi fields along Y, give rise
to the two linearly independent solutions of Eq. (4). Let p,
denote the initial momentum of the instanton solution ¥,
Then the Jacobi field v, = dY,/dp, spans the solution space
of Eq. (4) with v,(0) = 0. We now show that y,(T)#0, N>2.
To see this let y(£, p,, 5) be the solution of the instanton
equation, Eq. (2), with y(&, p,, 0) = &, (£, po, 0) = po. If py is
chosen so that p2 = 2E, E being the instanton energy,
Y(s) = »(0, po, 5) and vo(s) = (Ay/Ipol0, po, s)|p0= v2E Satis-
fies Eq. (4) with v,(0) =0, 9,(0) = 1, the remaining Jacobi
field uyls) = (Ay/BE)(0, po» 5)|,, — =& satisfying Eq. (4), with
u,(0) = 1, 4,(0) = 0. By definition of T'(E ) = T (p),

Y0, po, T (po)) = 0.
Partially differentiating with respect to p, yields
Uo(T) = po T /3p,#0(N # 1). Hence, (1 + Ly): H—Hisabi-
jection. Arguing as in Ref. 10 we actually obtain, for N #1,

aT aT
det(1 + Lo) = 27py = = 47E 40, (5)

Po
confirming that (1 + L,) is a bijection.
We now turn our attention to . By definition of 7, for g,
heH,

(& mh) =g, (h)) = — (g (wh)
=g XM N XN L k). =g, W)(W,h),

the last step following by definition of W, W: = X2V~ 1
WeH. Thus 7 is just a multiple of a projection in H.

Since we know that (1 + L) = (1 4+ Ly)[1 + 4N?I 2
X (1 + L) '], we can now deduce that
det(l1 + L)
=det(l + Lo)[1 + 4N T ~X(W,(1 + Lo) " 'wW)(W,W )~ ].
It only remains to calculate Z = (1 + L)™' WeH. Using
W=(+Ly)Zgives W=2+(L,Z), ie.,

XWN-'=Z-Z+2N(N—- 1) ~'XW-2Z,
where X = X — 2NI ~'X?¥~ ', Trying Z = kX gives the
(unique) solution for k = I /2N (2N — 2), N>2. The final ex-
pression for det(1 + L ) follows by combining Eq. (5), the
definition of 7 and the last expression for
Z=(1+Ly)"'W. )

We can summarize the above: let

S e g, 0= $ g7

n=0
E_(B), ¢, being the eigenvalues and eigenfunctions of
H(B)=2"Y—d?*dx*+ x}) + fx*N,> 0, then,as n— oo,

|. Davies and A. Truman 259



Nn
sy 2 —1p[1+0(2)| W,
n! n
where $(T') = 2[det(1 + L))~ " = (— nE 3T /JE )~
X (N — 1)!/2, E being the instanton energy, the instanton Y,
having time period 27T Finally, we recall that

oT) >N+ (N — l)ln{ZVN‘ lFZ(?v%) /

w- I)F(Nzivl )]

as T— .
This completes the proof of Theorem 2.

3. PRELIMINARY LEMMAS AND THE PROOF OF
THEOREM 1

A. Preliminary lemmas

The proof which we give here is a simple extension of
the proof which we gave in Ref. 1a. For Wiener integrals the
basic argument was first elucidated by Schilder in Ref. 1b.
We shall frequently refer to these papers in what follows.
Following a suggestion of Baxendale we first use the reflec-
tion principle to establish some improved estimates. The cor-
responding estimates in our earlier treatment were estab-
lished by using the underlying idea in Kolmogorov’s lemma.
The treatment below seems more transparent. Since the re-
flection principle is not well known to physicists we include a
brief account of it below.'’

Lemma 5: Let x(s) be Brownian motion starting at 0. Let
7{a) be the first hitting time of q, i.e.,

r(a) = inf{s> O|x(s) = a}. Let B be any Borel subset of
( — 0,0). Then, if 7", denotes expectation with respect to
Wiener measure du” (x),

W oix(t)ela + B), rla) <t} = # o{x(t)ela — B), rla) <t }.

Remark: There is a simple geometrical interpretation of
the reflection principle: to every Brownian path x(-) with
7{a) < t arriving in the set (@ + B) at time ¢ there is an equally
likely reflected Brownian path r{a)x(-), reflected in the line
x = a for times s > 7{a), arriving in the set (@ — B) at time ¢
(see Fig. 1).

X
[(a-B)
a 1 by
1(2+B)
O S
O oz 1@t

FIG. 1. The reflection principle.
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Proof:Letf = y (a + B)bethecharacteristic function of
the set (a + B). For each a >0,

fw e~ W [x(t)ela+ B), rla)<t]dt

= Wo[fw e~ *f(x(t)) dt]

ma)

= Wo[e - “"“’J. e f (x(s + r(a))) ds].
0
For the stopping time 7{a), let B, , be defined as on p. 67 of
Simon.*® Taking conditional expectations # (:|B,, , ), us-
ing the fact that e~ *"@ is B, . measurable, gives

rhs = Wo[e“’""’Wo(J: e ™ “f (x(s + r(a)) ds|B,, . )]

Using the strict Markov property of Dynkin~Hunt,'* we see
that

rhs = Wo[e“‘”‘“'J: e~ =¥ [ fixls)] ds],

¥, being the expectation with respect to du* (a + x).
Hence, setting Fy(s) = f e, 5y~ /"> (2ms)~ "2 db
gives, for a > 0,

J:e— % [x(t)ela + B), rla) <t ] dt
= Wo[e - “’("'J;we g (s) ds]
= #ifemn " emer il

=f°° e~ [x(t)ela — B), la) <1 ] dt,

proving the result. O
To obtain the usual form of André’s reflection princi-
ple, set B = ( — «0,0) in above to give

W olx(t)>a|rla)<t] =271
By continuity of sample paths then observe
¥ olx(t)>al = #[x(t)>a, rla) <t ]
= W olrla) <t 1% o[x(t)>a|rla) <1 ]
=2"'"%,(rla)<t].

We now come to one of our basic estimates.
Lemma 6: For some fixed constants C, ¥ >0

El{|lz|| >a'} < Cexp{ — ya'*/T}.

The best possible value of ¥ is 2.
ProofSet B=(—a + A ), where AC( — e, a), some
a> 0, in above lemma. We obtain

¥ o[x(T)eA, ra)<T]
=¥ o[x(T)e2a —4), rla)<T']
=¥ o[x(T)e(2a — 4],

since x(T )e(2a — A )=r{a) < T by continuity of sample
paths. Hence, we have shown that

Wolrla)<T|x(T)ed)
= (21rT)_”2e“’1/"db/l. e~ 2T 2rT)~ "2 db.
(2a —A) Ja
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Choosing A = ( — 8, ) and letting §—0 gives for the condi-
tional Wiener process z

]EZT[max 2(s) > a} =e 2T,
s<T
Finally then

e~ 2"2/T<1EzT{max |2(s)| >a] <]E,T[max 2(s) >a]
s<T s<T

+ ]E,T[max — z(s)>a] =2¢~ 2T,
s<T

which proves the lemma. O

Let z"(-) denote the polygonalization of the sample

o) D

n n

forj =0,1,2,...,(n — 1). Then the following lemma is a trivial
consequence of the triangle inequality.

Lemma 7 (Schilder): If

. sup . ,

£<S<M z(s)_z("l‘)’]<_5_’
n n 2

max [
ojsn—110 N

then ||z — z"(})|| <&.

Proof: See Lemma 6 in Ref. 1b. O
We also need the basic estimate:
Lemma 8.
El{||lz = z"()||»>8'} < ———= 32 —_" 1(mT)”zexp{ 512].
: (2m)'/? 8T

sup

Progf: Unless otherwise stated s denotes

sup
se [E , M] in what follows and initially j can vary
m

so thatj = 1,2,...,(m — 2). Then

¥ r"p(x(s) _ x(JD) > b, x(T)e( — &, 5)}
= JW/ Orgp(x(s) - x(J;T)) >b, x(%eda,

x(T)e( — 6, 6)].
Let

A4, = [s.:p(x(s) - x(%')) >b, x((—j—_i;_—n—-l—)?—v)eda]

and observe that 4;€B,; , ,)r,,,, B, being the o-field generat-
ed by {x(s)|s<7}. Then, taking conditional expectations
Y o(*|By; 1 yr/m), We obtain

rhs = fWO[XAj W s s vt [x[T— %e( —5, a)”
= f?// o{s;p(x(s) - x(j;T)) >b,
A R T
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Repeating the above argument for the random variable
x(jT /m), we obtain

7ol (s =5(0))> o5 e

- J?/fo[ v, {x(—’i-)edc, s;p(x(s) _ x(%)) >b,

- J ¥, [x(j;T)edc} Wo{s;p(x(s) _ x(%)) b
x(% — x(fml')ed (@ = )\Byrm ]

Using the Markov property

= [dc - rerin (227
m

X 7//0' sup x(s)> b, x(%)ed (@a— c)]

o<s<T/m

and using the reflection principle

EH v R e

—1/2
- Jdce—mé/zjr( 2777T) (6la—c— b)e—™mia— /2T
m

a,

- 172
+e(b__a+c)e—m(2b~a+c)2/2T](27rT) d

m

where G is the Heaviside function.
This gives forj = 1,2,...,(m — 2)

ET[SUP(Z(S) -~ z(j:l_)) >b ]
= dec dae- '"3/217(%) ~12

X{e—m(a—cjz/ZTe(a_c_b)

+e—m12b—a+c)‘/2T6(b_a +C)}
X (ZWT) N 1/2e_ ma?/2m — j — 1)7( m )1/2’
m m—j—1
Using the inequality f e M di < (t/b)e b,
A>b

then yields forj = 1,2,...,(m — 2)

]EzTr.‘sl‘p z(s) —z(j;T)l >b]

ATV 1 1
)" b m—j—

—mb?/2T

1)1/2

Similarly, it can be shown that the above inequality is valid
for j = 0 and, setting j = 0 in rhs for j = (m — 1). Now let

o) - 4}
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m—1 16T1/2 .
T m ——mb /8T
E, [J.U QJ' } N YTIRTYE] b(27)”2 ,Z ]1/2

=0

mb2/8T
4

32 (mT)V* _
—_— e
(277.)1/2 b
the last step following by adding the inequalities
j1e < f,_yx~ "2 dx, forj=2,...,(m — 1). But, if
Xé U Q; ’ supjT/m<s<1j+ HWr/m |Z(S) - Z(_]T/m)l < %b for
j= 0 1 12,...,{m — 1), and so by thelast lemma ||z — z"(-)|| < b
and so

32 (mT)'“e_
@m'? b

mb 2/8T. O

Effllz—z"()>b} <

Lemma9:Fork,IeR,EX {exp{k ||z||* + !]|z||} } < o, for
k <y/T, y being as given in Lemma 6.

Proof: See the proof of Lemma 9 in Ref. 1b. O

Ashas already been stated, for each zeC,[0,T ], z*() den-

otes its polygonalization.
(- DS

Z"(s) = z(

_2(1_7_')13, T T
n/1T n n

J=0,1,2,....(n — 1). We write the associated vector z", where
z" = (2(T /n), 22T /n),...,2(T)) and in the following ||z”||

=Sup;_ ... %, Z being the components of z”. The next
four lemmas are due to Schilder.!

Lemma 10 (Schilder): Let 4, be the following (n X n)
tridiagonal matrix
[ 2 —1 0 0
—1 2 -1 0
0 -1 2 -1

n/T
0 -1 2 -1
. 0 o -1 1
Then, for s" an n-dimensional vector, s"4,,s"

=3 \(n/T)s; —s_,) 55 =0,

=1

J' ds"

b Ldr

s being any trajectory in C¥[0, T} with polygonalization
s"(-) and associated vector s”".

Proof: See the proof of Lemma 4 in Ref. 1b. O
Lemma 11 (Schilder): If zeC %[0, T ] then, for 7, > 7,

2 T
] dr = s"A,,s"<J [s'(n])* dr,
0

sup [2lr) — zlm,) 1<y — ) f " 21 dr.

TIKTLT,

Proof: See the proof of Lemma 5 in Ref. 1b. a

Recall that x, and x, are the global maxima and set
Sy = (2eC[0,T1|[2°) — xall> 1) — 4]}

= {zeC,y[0,T'1|||z*(-} — x4l > ||2"(-) — x|}, so that, for suf-

ficiently large n, x,€S, x,€5,, and x5, + s, = 1, y being the
characteristic function. We temporarily defer specifying »,
although we shall assume in the following that » is so large
that x,€S, and x,€S,. We refer to this as the condition % on 2.
Let 4;; = {2€S,]||z — x,||»6}, for i = 1,2, and let
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A,(6)= it;ﬂ [F(z) —2- 'J;T [2(7)]? dT],

& > 0. Then the following lemma is valid.

Lemma 12: Suppose F (z) satisfies the conditions given
in Theorem 1 then 4,(5) <0, for §>0,i = 1,2.

Proof: The proof is an easy generalization of Schilder’s
original Lemma 6 in Ref. 1b. We only prove the result in the
case i = 1. Suppose the result is not true; then there is a
sequence {z,, } CA,s such that

lim, [F (@) — 2"f [2,, (r)]ZdT] —

We show that under the above assumptions the sequence
{z,,} has a subsequence {z¥ }, uniformly convergent to x¥,
in C#[0, T'], x¥+#x, or x,, and yet F (x¥) — 2~ ' {F [x¥(n)]?
dr>0. This is contrary to the hypothesis of Theorem 1.

It can clearly be assumed that, for all m,

— 1<F(zm)—2_1J-T [Z,.(1))? dr.

From the last lemma and the second condition on F (z) it
follows that

J [Z,.(7))Pdr<4(L, + 1).

From the last lemma again

sup |z,,(7) — z,, (7)) <[(7'2 — Tl),[; [im(T)]sz]l/z

KTET,

L2lr, — 7L, + 1)]1/2-
Therefore, the sequence {z,, } is equicontinuous and bound-
ed. By Ascoli’s theorem there exists x*eC ¥[0, T'] and asub-
sequence {z¥ ] such that x¥ is the uniform limit of {z* }.
Moreover x*cA,; entails x* #x, or x,. From the inequality

— 1<F(z,,} — 2_1f [z.(7))?dr

and Conditions 2 and 3 on Fit follows that Fis continuous at
x* and F (x*)# — oo. Since fI[Z(r)]’dr is lower semicontin-
uous, it follows that

Flt)~2 [ Lettnlar

T
>lim inf[F(z;) —2! f [ ()] d'f} >0. 0
0
Lemma 13:Ifs,(-€S; and ||s"() — x}( )||>w and @ — pi,
>0, then F(s"(-)) — 27 's"4,,5"<A4, (@ — p’,), where p,
= ||Ix, — x[{)||, x}{-) being the polygonalization of the
unique maximizing paths x; of { F (z) — 27 ' §3[2(r)}* d7}; for

i=12
Proof: The proof follows easily from the last lemma and
the proof of Lemma 12 in Ref. 1a. O

Lemma 14: Let A, be the matrix defined in Lemma 10.
Then if w” is any vector in R”,

wd,w'> T~ |w|
| || being the sup-norm.
Proof: See the proof of Lemma 13 in Ref. la. O

We now come to one of our most important lemmas,
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which is based on Lemma 14 of Ref. 1a.
Lemma 15: Let F satisfy the conditions in Theorem 1
and let § > 0. Then, for sufficiently small A,

I%A)

5 X;
N

= O (expla;4 2))’

for some a; <0, fori = 1,2.
Proof: Since x;(7} is continuous on {0, 7'] we have
lim,_,_ [|x; — x7()|| = 0 and from Lemma 10 we have

T d X 2

lim x;‘A,,fo [i (1')] dr,

A o Ldr
for i = 1, 2. Therefore, both sequences { ||x7()||} and
{x}A4,x}} are bounded for { = 1,2. Hence 3 a positive con-
stant ¢ sufﬁciently large so that, for all n,
Ly/c+ 2L, XI(T /€)' + Lolix?|*/e + (xi4,x7/¢)'* <}
and, simultaneously,

—A;{6)/c < i
fori=1,2.

From the continuity assumptions on F we can find an
7 <8 /4 such that, for ||z|| <a = [T'(L, + 1)]'/* and
fz =yl <=,
F(z) — Fy)<D,

= - Z(E)ZA,.(i)/Tc> 0, fori=12
) \2

Finally, we choose n so large that condition « holds, that
L, —np*/16T< — 1

and so large that p;, = ||x, — x}(-)|| <6/8, fori = 1,2. In

what follows we keep these choices of n, 7, and c fixed. We

only prove the result for 7"(4 ); the proof of the result for

I'%(4) is similar. We observe that
I'YA)=LA)+ I{d) + L1), where

wn-siof8 2 -n(2n)

X xs,(Azjexp{A ~2F(Az}} },

s{1(2 2 (02

Xxs, Az)exp{A ~7F (Az)} ],

e e e

[1 —x (% ,0, z)]xs, (Az)exp{A _2F(/12)]],

H (5/A4, n, z} is the characteristic function of the set
[2eCol0,T']||z — z"(-)||< /A }. Weshow that I,(4 ), I;(4 ),and
I(A) are each O (exp{a,A ~?}), for some a, <0, just as in
Lemma 14 of Ref. 1a.

In I(A ) [and 1,(4 )] we simply observe that ys, (Az)<1
and [1 — y (6 /4, x,/A, 2)]<1 [and H (5/A, n, 2)<1] so that

#)|rsptzienpia 2z
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LA )<ET([1 — H(q/4, n, 2)lexp{A ~*F (12)})
and

L(A)<EI{[1 — yl(a/A, 0, z)lexp{4 ~?F(42)]}.

We can now argue in exactly the same way as we did in
Lemma 14 of Ref. 1a. Using the Cauchy-Schwarz inequality
and the improved estimates of Lemmas 6 and 8, together
with the facts that here (L, — n9?/16T) < — 1 and
a=[T(L,+ 1)]"? yields I,(1 ) = O (exp{ — A ~?)) and
IA)=O(exp{—1 7).

The tricky term is I,{4 ). It is here that we require the
presence of the Y term. Repeating the argument of Lemma
14 we obtain, using Lemmas 12 and 13 and the presence of
the y;, term,

LA )<v "~ Yexp(D,A ~3)ET

X{[1=x{6 —n—pu)d "', 0,2)]},
where v = [ — 24,(6 — 7 — 20,)/c]'"2, p}, = |lx, — %10l
We now use Lemma 6 to deduce that, for an absolute con-
stant K, for sufficiently small 4,
EI{1 —x(6 —n —p. A "', 0,2)}

<K exp{ —2(6 — —pLVv*/AT).

Finally then, since 7 <8 /4, p) <& /8, and 4,(-) is a negative
decreasing function, for K’ an absolute constant,

IiA)

<K ‘exp(A “2[D, + 48 — 7 — p} 4,6 — 0 — p})/Te))
<K'exp{A 7*[D, + 4(5 /2/°4,(6 /2)/ Tc]}

= K'exp{A ~8°4,(6 /2)/2T¢}.

This completes the proof if we take &, = max{ — 1,

524,(6 /2)/2T¢c}. O

Lemma 16: If x,(-) is of bounded absolute variation on
[0,T)and if §5 f(rW{r)dT — §5%() dy(r) = O, feL *[0,T’}, for
all yeC¥[0, T' ], then

T T
fo Flrir) dr = f () dyir)

for a.e. yeC,[0,T']; i = 1,2.
Proof: See the proof of Lemma 15 in Ref. la. a

B. Proof of Theorem 1

Choose a § >0, § < ||x, — x,||/4, such that the hypoth-
eses on F hold. Then, following the argument given in Ref.
la,

Ef{exp{d "2 F(Az)}} = h,(A) + hy{A),
where
hA)=ET{y (6 /A, x,/4, z)xs,(Az)exp{A ~*F (2)} }

+ ET{x (8 /4, x,/A, 2)y s, (Az)exp{A ~*F(2)}},
hyA)=EI{[1 — x (6 /A, x,/4, 2)lxs (Az)exp{d ~*F(Az)}}
+ET{[1 — x (6 /A, x,/4, 2) x5, A2)exp{A ~2F (Az)}}.
From the penultlmate lemma we deduce that A,(4 )
= O(exp{ad ~?}),a = max{a,,a,} <0andso for any inte-
germ, h{A)=0(A "2

We will now consider the first term in 4,(4 ). The neces-

sary results for the second term follow similarly. Let
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ki) =E]{y (6/4, x,/4, 2)xs,(Azlexp{A ~F(Az)}},

then using a Cameron—-Martin transformation we arrive at
T
hid)= exp[ —2-1p 2 [x{(r)]zdr]
0
XEJ{6/2, 0, yis, Ay + %)

T
Xexp[ — A7 X dyln)+A TR Ay + xl)”.
0
From Taylor’s theorem for functionals we may write
F(dy + x,)
=F(x,) + ADF (x,)y + 42D °F (x,)(p, y)/2 + k 3(Ay)

=fo(0)+ A 10 +A%F 100" + k3(Ay),
say, where |k }(Ap)| = O (4 ?) if || Ay|| < 8. Therefore,

hiA)= exp{ -2 _ZJ [xi(n]*>dr+ 4 "2f0‘(0)}
XET{(x(6/4, 0, plys, (Ay + X))}

X exp[ —A~ ‘J:x; (rdyir) + A~ lfI‘(O)y]

Xexpl £3(00% + A~k S |-

By hypothesis { F (z) — 27" 3 [2'(r)]°d7} has a maximum of 0
at x, over C¥[0, T ], soit and its first Frechet derivative are
zero at x,. Thus,

T
110 = [ xi(r) dvir) =0
for peC ¥[0, T ] and so, by the last lemma,
hid)=E;{x(6/4,0,2)ys Ay + x,)}
X exp{f;(0)* +4 ~%k 3(Ay)}-
The Taylor expansion of exp{x] reads
n—1
exp{x} = > xVil+R,(x),
i=0
where
x"/nlexpf{x]} if x>0,

R |
<] /me if x <0.
We may now write 4 ! (4 ) in the form

WA =" @ BT (6 /4,0, 2hts Az + )

Xexp{ f3(012} [ %k 3(A2)]'} + T o ()
where, denoting the characteristic function of the set
[2zeC,[0,T])k }(A2)>0} by B (4, z),

Mo — 2 )|<((m — 2007 'E](x(6/4, 0, 2)|4 ~%k 3{Az)|™ ~*

X xs,(Az + x,)exp{ f7(0)2® + A ~*k 3 (42)} B (4, 2)}

+ ((m — 2)) 7 'ET{x(6/4, 0, 2)|A ~*k }(Az)|" ~*
Xxs, Az + x)exp{ f5(0)°} [1 — B'(A.2)]}.
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From Taylor’s theorem for functionals it follows that, if
||4¥|| < 8, then
A°f 0 + k3 (Ay)
=k (Ap) = A °f (%
1€Col0, T'] with ||7]| <6,
where by hypothesis |k }(1y)|<C,A *||y||?, C; being a con-
stant. Thus,
o —2 (A )]
<((m — 2)~'EJ(x(6/4, 0, 2)(CoA )™~ *||||*" —*

X Xs,(Az + x,)exp{ le(n)zz}B ', 2)}

+ ((m — 2)) " 'El {(x(6/4, 0, 2)(C:A )" ~ 2||2|| ™~

X ¥s, Az + x))exp{ f2(012*} [1 — B'(4, 2)]}.
By using the Cauchy-Schwarz inequality and Condition 5 of

Theorem 1 we have J,, _,(1) = O(A ™ ~?2). We have now
proved that

BUA) = ""23 @)~ 'ET{x(6/4, 0, 2)

xexp( £1(012%} [A ~k1(A2)]} + 011",

using y; (Az + x,) = 1, if ||Az|| <6, for sufficiently large n.
However, k }(Az) = A3 £;(0)2°
4o AL (0 + k) (Az), where A T2k L (Az)
= O(A "~ ?||z||"), for ||Az|| < &; expanding by the binomial
theorem, therefore, gives, using Condition 5 of Theorem 1
and Holder’s inequality,

m—3
RiA)=S ()7 'E](x(6/4, 0, zjexp{ f(0)*} [4.£5(0)2°
i=0
ok AT (O] = 0 )
It can be seen from the Holder inequality, Lemmas 6 and 9,
and Condition 5 of Theorem 1, that for sufficiently small 4,
m—13
S @ 'EI{[1 — x(6/4, 0, 2))
i=0

xexp{ f(0)12} [4 £3(0)2° + -
+ AT 102 ]
=O0(P(A)exp{BL "Y})=0(A""2),

where Pis a polynomial and £ is a negative constant. Replac-
ing y by [1 — (1 — y )], we finally obtain

B ="S (0 ET(expl 1002} [ /08 + -
AR 0 1)+ 0T,

so that

BYA)=TL 4+ Al 4+ A", _s+0(A" 73,

where the I" ! depend only on F and its Frechet derivatives at
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x, fori=12,.,m—3.
Repeating the above argument for [4,(4 ) — A [(1)] we
may finally write

hl(/{)=F0+/1rl+"'+/1m_3rm_3 +0(/1m—2)’

as A—0, where the I'; depend only on F and its Frechet
derivatives evaluated at x, and x,. O

Corollary: For A > 0 and F satisfying the hypotheses of
Theorem 1, with D ?F (x,)=D *F (x,),

E]{exp{A T’F(Az)}}
= 2ET{exp{D*F (x,)(z, 2)/2}} + O(A).

Proof: By observation. O

4. CONCLUSION

We have seen how Schilder’s rigorous results on the
Laplace expansions of Wiener integrals can be extended to
conditional Wiener integrals with functional integrands
having a finite number of nondegenerate global maxima. We
have applied these results to the derivation of Bender-Wu
type formulas for the large order behavior of the perturba-
tion series of the x*"-anharmonic oscillator (N>»2), in a
scheme which {modulo the commutativity of two limits)
leads to detailed information about the asymptotic behavior.
The rapidly varying terms in this large order behavior agree
exactly with Bender and Wu’s remarkable formula. The
slowly varying term, however, differs slightly from the pre-
dicted behavior of the Bender~Wu formula. (The problem
here presumably is the noncommutativity of the two limits).
Nevertheless, our results do give an analog of Simon’s rigor-
ous results for the x**-anharmonic oscillator, for N>2. A
Feynman graph analysis of higher order terms in the asymp-
totic expansion is possible. This is currently being attempted
to compare with the formal Feynman graph analysis carried
out with collective coordinate methods. Generalizations to
field theory are also currently being investigated.
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APPENDIX: THE PROOF OF PROPOSITION 1

The self-adjointness and discreteness of the spectrum
are well known.'*** We now show by a standard argu-
ment® that the eigenfunctions are not degenerate and
bounded. We consider the eigenvalue equation
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[2"(— a +x2) +Bx2”]u(x)

dx?
- [ PR 5_:5 + V(x)]u(x) = Eufx),

Eeo{H(B),H(B)=2""—d?¥dx* + x*) + Bx*N. Without
loss we assume that u is real valued. Firstly, observe that if
ueL *(R)is a solution of above equation necessarily u’cL *(R).
To see this we multiply the above equation by u(x) and inte-
grate by parts from x = a to x = b, giving

ulb u'(b) — ula)u'(a)

b b
=J [u’(x)]zdx+2j [V(x) — E lu?x)dx

>f [u'(x)]?dx — ZEJ; u?(x) dx, u'(x) = Z—Z-{x).

For ucL }(R), letting 5— 0, we see that the divergence of

§ & [4'(x)]? dx would imply that, for all sufficiently large b,
(d 7db )2~ 'u?(b)) > 0, contradicting the hypothesis that
uel *(R), so u'eL *(R). Now let u, veL *(R) be two linearly in-
dependent solutions of the above eigenvalue equation, real
valued and normalized so that W (u, v)(x) = u(x)v'(x)

— u'(x)v(x) = 1. Then the Cauchy-Schwarz inequality
shows that the divergence of §* _ W (u, v)(x)dx is not consis-
tent with the hypotheses u, v, #’, v'eL %(R). Hence at most one
of u or veL }(R). What is more the inequality

|u?(b) — u?(0)]

= ‘ ZJ: ulx)u'(x) dx

proves that any L *-eigenfunction satisfies sup, g |4(x)| < c.
We denote orthonormal eigenfunctions and eigenvalues of
H(B)byd, and E,(B),n=0,1.2,...
We now establish that G (0,0,7°)
=32_oe” P7T|4 (0)|% the more general result involving
x’s and y’s follows in almost exactly the same way. For the
Brownian bridge a**

<2l 'Yl

G(x,y, T)=(2nT)""exp{ — |x — y|*/2T |

ool 7]~ g vz o]

Evidently then, for T> 0, |G (x,y,T)|<(27T)~ /2and by
dominated convergence, we see G (6x, 8y, T)—G (0,0, T),
for each x,yeR, as 5—0. Let 8 #(R) be such that 8 (x)>0
with {8 (x) dx = 1 and define 05(x) = 6 ~'6 (6 ~'x), x<R,
6567 (R). Changing integration variables, using dominated
convergence for Lebesque measure, for T'> 0, gives

fG (%, 3, T)85(x)65(3) dx dy

- fG (6x, 8y, T)B (x)0 ») dx dy

—-G (0,0, T), asd—0.
The proof will therefore be completed if we prove that for
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T>0
fG (5,3, T)05x)65(») dx dy

_:; e 5T 4 (0))% as 80,

¢, being orthonormal eigenfunctions of H ( 8 ) with eigenval-
ues E, ( B). This we now prove by another application of the
dominated convergence theorem. Let §,, be a Dirac measure
concentrated at x = n, n = 0,1,2,3,... . Consider
pu=3c_pe TE"“B)&,, , for T> 0. Then, since for 7> 0,8> 0,
e~ TH(BIg e~ THO) o~ TH(A) i5 trace-class and so u is a mea-
sure on Z (with 2% as o-field), with f, f(x)du(x) = 2=_,
fin)e™ TEAB) for bounded continuous f: Z—R. We now con-
sider the particular function f °: Z—R defined by f °(x)
= |(@,, O5)]*>, whenx =n, n =0,1,2,... .
Then, using the above inequality

If 2| <|ia I <2l 2Nl 11 <2V2E % B),

where in the last step we are using

THG =f¢3(x) dx<2E, (B).

Define now g(-) by g(x) = 2v/2E /*}( B), for x = n,

n=0,1,2,... . Then, since E,— o0 as n— oo implies E /2

< e for sufficiently large n, arbitrary € >0,
[ stmdute) =225 B BYe ™4 < 0, T50
z [4]
But f 4(n)—|4,(0)|* = f°(n), as 50, n = 0,1,2,..., since by
dominated convergence (65, @,,) = §4,(8x)6 (x) dx—¢,(0),

as 5—0. Hence by dominated convergence for the measure u
onZ

Jf 5(x)du(x)—»ff°(x>du(x)
= $ 18,0 7, T>0

ie.,
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$ e 56, 4,)— S e TPg 0% T>0
n=0

n=0

as required. 0
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This paper deals with a system of linear non-Markovian—Langevin equations with memory
functions that are not constant in time and a nonzero initial instant of time. A set of statistical
means, based on the application of a generalized Furutsu—Novikov formula, was used to derive a
generalized Fokker—Planck equation corresponding to this system and holding for both long and
short instants of time. Considered as an example is the Brownian motion of a particle in a

viscoelastic fluid with a particular relaxation time.

PACS numbers: 02.50.Ey

1. INTRODUCTION

At present, problems occur in various branches of phy-
sics, that are reduced to Langevin equations with memory,
descriptive of a non-Markovian stochastic process. In the
linear case, its statistical characteristics can be determined
directly by presenting the solution of the initial equations in
an explicit form. However, in many cases, a more convenient
probabilistic description gives an equation for the distribu-
tion function. This is why it is desirable to establish a clearly
defined relationship between the Langevin equations with
memory and the corresponding equation for the distribution
function, similar to the Fokker-Planck (FP) equation for a
Markovian process.

In doing so we shall follow the Novikov—Klyatskin—
Tatarsky method' with a modification enabling its general-
ization, whereby it becomes applicable to non-Markovian
processes as well. This method permits deriving a general-
ized FP equation directly from non-Markovian-Langevin
equations. A specific feature of the derivation that follows is
that it is based on a generalized Furutsu—Novikov formula®
that enables separation of the mean of the product of two
functionals from a Gaussian stochastic process. Thus, it be-
comes possible to establish the necessary fluctuation—dissi-
pation relations without resorting to any additional assump-
tions that are not contained in the formulations of the initial
stochastic equations.

2. A SYSTEM OF STOCHASTIC INTEGRO-
DIFFERENTIAL EQUATIONS

Let us consider a system of linear stochastic integro-
differential equations for a set of variables (¢ ),
a = 1,2,...,n, determining the state of a physical system

13
2 eet)= = [ Auolthasls) s+ 0,11, (1)
o
where A 4(¢,5) are predetermined nonrandom memory func-
tions characterizing the dissipative properties of the system.
Random forces @,, (¢ ) are assumed to be Gaussian witha
mean value equal to zero. In this case, their statistical pro-
perties are fully determined by correlation functions

Kog(ts) = (P, (t)Pgls)).
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The angle brackets indicate averaging over an assembly of
realizations of the random forces.

The system of equations (1) together with the above as-
sumptions as to the statistical properties of random forces
determines a multidimensional nonstationary Gaussian
non-Markovian process starting at instant #,. Its explicit so-
lution satisfying initial condition a(t,) = a, is essentially a
linear functional of random forces

ealt) = Yaplttoaog + f Yapt)B5) ds B

Green’s functions y s(t,¢,) are defined by a system of
equations

a 14
2 uolttol = — f Aot Yeplsito) s,

Xagllorto) = Oup- 3)

In the case of real physical systems the causality princi-
ple must come into play, according to which the reaction
cannot precede an action. In the case under consideration,
this is equivalent to condition

X aB (t ’t ') = 0
If the system under investigation is asymptotically sta-
ble, Green’s functions also meet condition

Xapltit'}—0 at

For a complete formulation of the system under consi-
deration in the statistical sense one must establish the corre-
sponding fluctuation—dissipation relations that express the
correlation functions of random forces in terms of memory
functions and one-time cumulant functions

Pay(tilo) = (ag(t)ay () — (aqlt)){a, (1)),
which are determined by a particular physical situation. The
averaging is accomplished, provided at instant ¢, the sto-
chastic process a(t ) takes the value a,. Proceeding from Eq.
(2} we obtain the desired relations

if t'<tyt'>t

t— 0.

oy (t10) = f f Xasltt e (0t2) Kbt} dty dty (4]

as well as the necessary conditional means of the type
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'/’ay(t’to) = <a.a (t )ay(t ))
_[(2 _
~ [ [ £ tantetie -]

XX ye (1)K (21,25) dt, dt,, (5)
where
1 at >0
Ht)=
(t) [0 at t<0.

Relations (4) and (5) also follow from the generalized
Furutsu-Novikov formula® that permits separation of the
correlations of two linear functionals from a stochastic pro-
cess with a zero mean since in this case we are dealing with
functional derivatives

Oay (8)/06Dy(s) = x .p(ts) H (t — 5).

Note that in deriving the fluctuation—dissipation theo-
rem for non-Markovian-Langevin equations with memory
functions of the A ,4(2,5) = A,4(t — 5) type, Kubo® and
Henery* proceeded from an erroneous assumption that the
solution is noncorrelated with the subsequent values of
force. In fact, the correlations are in this case different from
zero within intervals of the force correlation time order. This
assumption holds only when the random force is a §-corre-
lated noise (has a zero correlation time).

3. NON-MARKOVIAN FOKKER~-PLANCK EQUATION

Let us introduce conditional probability density value x
of stochastic process «(t) at time ¢,

Px,t /xg,t0) = <5(X - a(t,to,xo))), (6)
where a(t,2,,X,) is a solution of system (1) at a given value x, at
time ¢ = £,, corresponding to a definite realization ®(t ). The
averaging is done over the set of all realizations {®(z)}.

Differentiating Eq. (6) with respect to ¢, we obtain the
following equation for the conditional probability density:

J daa(t)
™ < ” 5(X—a(t))>- (7)

-4
— P (x,t /Xyt = —
o ( Xo»to)

a

With the aid of the generalized Furutsu-Novikov formula®
for the mean of the product of the linear P [® ] and nonlinear
R [@] functionals of the Gaussian stochastic process & (¢ )
with a zero mean value

(PIPIR[P]) = (P[P (R[P])

* ff < 5;2;)] > <6§¢[z)] > (D (1)® (1)) dt, dn,,

we determine

(2 (1)8(x — a(t))) = (aq (t )P (%2 /Xot0)

+J f <:;;((§)) > ( 5¢f(’2) (o —elt ’”>

X AP ()P, (1)) dt, dt,, (8)

where we have used Eq. (6).
The limits of integration in Eq. (8) are arranged in ac-
cordance with the causality condition. Determination of
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Eq. (6) gives
[6(x—a(tm>

_ 9 Salt)
ax, 6P, (t,)
Given Eq. (2), 84, (t )/69®,,(s) = x,,(t,5) H (t — 5) may be in-
terpreted as the linear response function to the external force
D, ()
Taking the last relations into account, Eq. (7) can be
written as follows:

< a‘pf(tz)

Px,t /x0,t0)-

a
b—tP(x,t/xo,tO)
a am, (t,t,) ]
= — — 27 P(x,t /Xt
ox. [ o Lt /ol
J .
= HVH(t—t
+ ax. [J 9t [Xag(t ) H ( 1]

XX (882K (E1582) dit | dity ]

X 3a
x?’

Here, m, (t,t,) is the mean value of stochastic process «, (¢ },
provided at instant ¢, it assumes the value . It can be

easily seen from Eqgs. (1) and (2) that

P (x,t /Xgito)- &)

J
5{ ma(tito) = = ﬁaﬁ(t)to)mﬁ(t;to)y
where
Oasltity)
Bapltite) = — _X“a_t'L)Xsﬁ Ht,t,).

In addition, according to the generalized Furutsu—Novikov
formula we have

mg(t,to) P(X,t /Xooto) = Xg P (X1 /X1 0)

[ [ ettt ey oot i, i
fo

X J P(x,t /Xpt0).
ox,
Hence, Eq. {9) can be written as
J J
o e = 2. [Bus(titolxg P,y ]
t az
+ Bttt [ [ Kot 6tKeylt) ity dty = P,
to a“vy

" Jagltit) &
+ JL _gt—l'Xm(t’tz)K;q(tlatz) dt, d, m P,

a

+ f Yoo LK 1) s P, (10)
£

62
ox,0x,
In the case of a one-dimensional stochastic motion starting
at instant ¢, = 0 and involving an aftereffect characterized
by memory functionA (t,5} = A (¢ — s), Eq. (10} leads to Hiing-
gi’s result’® obtained by a known method.

Finally, using fluctuation—dissipation relations (4) and
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(5), we derive a generalized FP equation for the conditional
probability density of a multidimensional nonstationary
non-Markovian process determined by a system of equations
(1), in the form

d a
——P(XJ /xO’tO) = - [Bae(t’to)xe P(x’t /XO’IO)]
ot ox

a az

dx,0x,
where kinetic coefficients D 4(t,t,) are determined, with due
account for their subscript symmetry, as

-+

[Da‘y(t’to) P(x,t /Xpt0)], (11)

d
2Day(t’t0) = '5; Pay (t9t0) + Bae (t’t0)¢ey(t’t0)

+ Bye(t20)P o (1:20)-
Unlike the usual FP equation, the kinetic coefficients of the
non-Markovian FP equation depend on both the current and
initial instants of time.
The solution of Eq. (11) must be positive, normalized to
unity, and satisfy the condition

P (x,10/X0,t0) = 8(x — Xo).
Since two-time distribution function /(x,,t,; X,t ) is ex-
pressed in terms of the conditional probability density and
initial distribution /'(x,,t,) as follows,

£ Rostos X,t) = £(Xouto) P(X,t /Xo,t0),
multiplication of Eq. (11) by £(x,,t,) gives

J
g;/(xo,to; x0) = = Bl 5 /txots %t )]

a
2

+

axa axy [Day(t’IO) /(XO’tO; X,z )]'
Thus, for the two-time distribution function fully descriptive
of the non-Markovian stochastic process under consider-
ation, we derive the same kinetic equation.

In conclusion of this section we should like to point out
that the generalized FP equation for non-Markovian-Lan-
gevin equations with memory functions
Aap(t,s) = A (t — 5)0,5, derived on the basis of the conditional
probability density by Adelman® for the case of ¢, = 0 and by
Fox’ for an arbitrary f,, is not exact. This is so because the
derivation was based essentially on fluctuation—dissipation
relations for a system with initial moment ¢, related to — oo,
rather than a system of stochastic equations with finite #,.
Their approximate equation follows from Eq. (11) if in the
expression for kinetic coefficients D,,, (#,,), one substitutes

¢ay (O) fOI' ¢a‘y (t’tO)

4. BROWNIAN MOTION OF A PARTICLE IN A
VISCOELASTIC FLUID

The Brownian motion of a particle both in a viscoelastic
fluid and in a viscous one should be considered as a non-
Markovian stochastic process because in both cases the force
acting upon the moving particle is defined by a formula in-
cluding aftereffects.®® If the fluid in which the particle
moves is viscoelastic, and generally speaking, all fluids are in
fact viscoelastic, the Brownian motion of the particle is a
non-Markovian process even if the inertial effects in the fluid
are ignored. '® The interpretation of the Brownian motion as

269 J. Math. Phys., Vol. 24, No. 2, February 1983

a non-Markovian process is corroborated by comparison of
the results of a study based on numerical computation of
simple models."!

The Brownian motion with due account for the hydro-
dynamic aftereffect described by Boussinesq’s formula was
for the first time investigated by Vladimirsky and Terletsky.’
They derived the mean square of displacement of the Brow-
nian particle. However, the method they used taking the
aftereffect into consideration is essentially based on the as-
sumption of the random force being noncorrelated. '?

Consider by way of an example the Brownian motion of
a spherical particle of radius ¢ and mass m in an unbounded
viscoelastic fluid with a particular relaxation time 7, de-
scribed by a system of generalized Langevin equations

t
4 uiy= — £ | em-vmgdas + Loy (12)
dt mt Ji, m

Here, u,,i = 1,2,3 stands for particle velocity components,
while { = 61 a7 is the Stokes frictional coefficient of the
particle in a fluid having viscosity 7. For random force ¢
acting upon the Brownian particle all assumptions men-
tioned in Sec. 2 are true.

System (12) with finite z, describes the motion of a
Brownian particle at random instants of time and deter-
mines a nonstationary Gaussian non-Markovian process. At
the initial instant related to — oc, system (12) describes the
Brownian motion of the particle at instants infinitely remote
from the initial instant and determines stationary process
u_ (t). According to (12), the equation for v, (¢) = u,(¢)

— u_,(t) takes the form

—d—v,.(t)= _ 5 e "=V (s)ds
dt mrt Ji,
+ Loy (13)
mr
where

Cilt)) = —f e u_ s + ty) ds.

Solution of Eqs. (13) establishes that

wi(t) =1 ,i{t) + Viltol(t — to) = Ciltaly(t — 1o, (14)
wherey (t)=(r" — 77 )" 'rYe """ —7r7e~"" Jand r*
and 7~ are relaxation times defined by formulas

qr_ 12 —4rf/m'™

25 /m

Attt — ty— + oo, uft)}—>u,, (t); thatis, process u(z ) is station-
ary but asymptotically.

Now, using the results obtained in Sec. 2, we find the

following equation for the conditional probability density
corresponding to system (12):

2 Pt = 1o/ = Bt — 1) - [, Plut /)]

i

+ Dt —t,) a—zzP(u,t — to/up), (15)
du:
where B(t — 1) = — y(t — to)/¥(t — to),

Dit—1)= %%mt—to)w(r—towt—zo).
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Function g(t — ;) results from multiplication of u; (¢ ) by
u;(t), defined in accordance with Eq. (14), with subsequent
averaging at preset u(t,) = u,. The associated moments

(U i(t)u ;(t)) = (KT /m)b,; are calculated using the equilib-
rium Maxwell distribution, while moments {u (¢ Ju (¢ "))
= (kT /m)y(t' — t)5; are calculated using Eq. (15) at

t — t;—>co. In this limiting case, ¢(t — ty) = kT /m,

-g;w — 1) =0,
and Eq. (15) is completely defined. As a result, we have
(u;(t )’uj(t)) =@(t— tO)(Sij’
@t —to) = (kT /m){1 — y*(t — 1))
+rtr 24772 /2 7277 4+ 7))
XXt — to)}. (16)

The averaging bracket in Eq. (16), which involves a comma
separating the stochastic processes, is essentially a cumulant
bracket. In the case of a Brownian motion of a particle in a
viscous fluid, when 7 = m/{ and 7~ =0, Egs. (16) and,
consequently, (15) are reduced to the known classical result.
Multiplying Eq. (15) by £(u,,t ), we find that the two-time
distribution function of this process £{ug,Zy; u,? ) satisfies the
same equation as the conditional probability density.
The Brownian motion theory under consideration

should be characterized as a phenomenological theory as
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opposed to the statistical theory of Brownian motion,'*~">

which provides a more detailed explanation of the effect of
the fluid on Brownian particles, proceeding from point parti-
cles with a Brownian particle among them. Averaging of
microscopic equations of motion has given'>'* a generalized
FP equation with a memory kernel. This equation, however,
is approximate'® and exactly defines only first-order mo-
ments.®
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We show by means of several examples how the Hamilton—Jacobi equation can be used to solve
nonlinear ordinary differential equations whose direct integration is otherwise difficult.
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I. INTRODUCTION

The Hamilton—Jacobi formalism has not played a cen-
tral role either in the solution of classical mechanical prob-
lems or in the subsequent development of quantum mechan-
ics (although for a brief period action-angle variables
appeared to be the fundamental link between classical and
quantum ideas). It is probably fair to say that to most physi-
cists the Hamilton—Jacobi equation is something which was
once learned (and/or taught) as part of an advanced course
on classical mechanics,' and which has since been seldom if
ever used.

It is the purpose of this note to point out that the Hamil-
ton—Jacobi equation can be of direct practical utility in inte-
grating certain nonlinear ordinary differential equations.
We shall illustrate this contention by means of a number of
examples, dealing with equations that have been of interest
in recent years: the spherically symmetric Yang-Mills—
Higgs monopole?>; the superconducting vortex*’; the axial-
ly symmetric Liouville equation®; and the spherically sym-
metric Einstein equations in five-dimensional space-time.”

These examples fall into two classes. In the first, only a
particular solution to the Hamilton-Jacobi equation can be
readily found, containing no free parameters. In this case,
one obtains a set of first-order equations which imply the
original second-order equations that one started with. (For
instance, the Yang-Mills~Higgs equations are reduced to
the Bogomol’ny equations). Whether these first-order equa-
tions generate solutions of interest will depend upon the indi-
vidual problem.

In the second class, one is able to find not necessarily
the most general solution to the Hamilton—Jacobi equations,
but at least a solution depending upon a number of indepen-
dent free parameters equal to the number of degrees of free-
dom. In this case, one is able, without further integration, to
deduce the most general solution to the original equations.
The Liouville equation and the general relativity example
fall into this category.

We stress that the use of the Hamilton~Jacobi equation
is not guaranteed to lead to a solution. Rather, it maps the
original (presumably nonlinear) equation onto another non-
linear equation which, in some cases at least, is more tracta-
ble.

In Sec. II, we briefly review the Hamilton—Jacobi for-
malism. In Sec. III, we discuss the monopole and vortex
examples, and in Sec. IV, the Liouville equation and the Ein-
stein equation. Section V is devoted to some conclusions.
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Il. THE HAMILTON-JACOBI FORMALISM
Consider a dynamical system whose degrees of freedom
are a number of coordinates ¢,(¢), i = 1,...,n, and which is
governed by a Hamiltonian 5#7g;, p,,t ). We wish to perform
a canonical transformation to a new set of variables
Qi = Qi(qj’pj’t )y
P = Pi(qj9pj9t ).
One way to do this' is to specify a function
S(g:P:t)
and to let
as
Q= aP.
_as
aq; .
Then the dynamics will be the same provided the new Ha-
miltonian X (Q,,P;,t) is given by

, (1)

(2)

as
K(Q,.,P,-,t) = %(qi!pi!t) + E’

We observe that if K vanishes, then the dynamics has been
rendered trivial:

Q; = Qo = const,

P, = P, = const.

The Hamilton-Jacobi equation is simply the requirement

that K = 0:
gy —t | +—=0. 3
(q 9, ot ®)
We now explain the two variants of the Hamilton—Ja-
cobi method that we shall encounter below. (i) If we have a
particular solution to Eq. (3), then we can apply Eq. (2). The
canonical momentum p; is found in terms of {g;} and {¢;}
either from Hamilton’s equation

8S) a5

. OX
"=
or directly from the Lagrangian:
aL
b= 5;" s

if L is known. Then Eq. (2) becomes a first-order equation for
q;(t ). Of course, since we have started from a particular S, we
can at most obtain particular solutions to the original equa-
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tions of motion. Sometimes these will be the solution of inter-
est, and sometimes not. We shall experience both possibili-
ties in the next section. (ii) If we have a family of solutions to
Eq. (3), containing a number of parameters y;, i = 1,...,n,
then in general the ¢, will turn out to be functions of the new
momenta P; and, therefore, by Eq. (1) we have

S _ s op, P,
e = o — = )y — = const.
dy, 9P, 9y, 9,
That is, the set of n equations
as
e — ai,
oy

where the ; are constant, allow us to solve algebraically for
the unknown functions g; (¢ ). Furthermore, this must be the
general solution, because we have enough parameters (the n
v: and the n a;) to specify both ¢; and g, at some initial time.
We shall explore two applications of this method in Sec. IV.

ill. THE MONOPOLE AND VORTEX EXAMPLES
A. The monopole

We consider the classical dynamics of the Yang-Mills
field 4 ;; (x) coupled to a Higgs field @ “(x) in the adjoint re-
presentation, in the limit of vanishing Higgs self-coupling.
By making the ansatz?

A7 = €71 - K(r)]/er,

Ag =0,

@ =r, Hir)er,
we find two coupled second-order equations for the func-
tions H (r) and K (r):

PK” =(H?+K?*— 1)K (4)
and

rK”=2K’H. (5)

The first step in applying the Hamilton-Jacobi formal-
ism is to find a Lagrangian for this system of equations where
the variable 7 plays the role of time. This is easily done. The
result is

L:2K’2+H’2+—”15(K“+2H2K2—2K2). {6)

Consequently, the canonical momenta are

P.=4K', P, =2H',
and the Hamiltonian is

H={Px+1P;, —(I/P)K*+2H?K?—-2K?). (7)
Note that the potential is unbounded below. Since we are
using the Hamilton-Jacobi formalism merely as a technical
device, this is of no particular concern.

From 7 we immediately obtain the Hamilton-Jacobi
equation
as 1 (aS)Z 1 (8S)2 1 4 202 2
24— (= — =) == (K*+2H?’K* - 2K?).
ar 8 \dK + 4 \gH r ( )

(8)

On first, and subsequent, glances this equation appears
too difficult to solve generally. The best we can do is to guess
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a plausible form for a particular solution. First we eliminate »
from the equation by making the substitution

S=UHK)/r,
which results in
—U+§U§<+},U§,=K“+2H2K2—2K2. {9)

Because the right-hand side is a polynomial in H and X it
seems natural to try a polynomial in H and X as an ansatz for
U. One finds the solution

UHK)=2HK>+H?*-2H+ 1. (10)

Not only are there no free parameters in the solution, it was
actually fortunate that the ansatz worked at all, because
there was one more equation for the coefficients of the polyn-
omial than there were unknowns.

Armed with this solution, we can apply Eq. (2). We have

P =4k =95 _ 1 unk),
K r

, a5 1 2
Py =2H =£=7(2K +2H —2).
These are the Bogomol’'ny equations’
rK' = HK, (11)
rH' =K>4+ H—1. {12)

One can eliminate H from these equations. In terms of
W = In K, one has

W =(1/re" —1). (13)

The best way to proceed at this point is to make the substitu-
tion

W=X{r+Inr, (14)
in which case
X [ eZX

which can be integrated straightaway. However, it is instruc-
tive to continue with the Hamilton-Jacobi method. A La-
grangian for Eq. (13) is

L=\W'+ (1727 — 2W),
from which follows

P, =W', % =1\P} +(1/27)2W — &%)

and
Ly o1
2 \oW, ar 27
Once again, it is tempting to eliminate the r dependence from
this equation by letting S = U /r. Then
Ui —2U=e"—2W.
Furthermore, if one is guided by the form of the right-hand
side, it is natural to try
U=ae” +BW+7,
and one finds the solution

U=mne” + W41,

¥ —2w). (15)

n= +1
From this, we get the first-order equation
W' = (1/r)ne” + 1)
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with solution
Kin=e¥=ncr{l —cn™},

For the monopole solutions, however, we want
K{0)=1, K{x)=0

so these solutions have the wrong boundary conditions.
To obtain the desired solution (in fact, the most general
solution) requires a more complicated ansatz. We try

¢ = const.

S=W/r+m(r)+ F(t), (16)
where ¢ is the variable
t=e*" /P2 (17)

The motivation for this guess is as follows: the W /r term,
when inserted into S,, will cancel the — W /r* term on the
right-hand side of Eq. (15). Then the rest of the right-hand
side is simply ¢, so it is reasonable to think that the remain-
der of S should be a function of ¢. It is necessary, however, to
add a function of 7 alone to deal with the term 1/7in S},
induced by the W /r term in S. That the complete ansatz, Eq.
(16), actually works is due to the fortunate cancellation of the
cross term

in 153, with the term
dt
dr

in S, on the left-hand side of Eq. {(15). ,
Putting Eq. (16) into Eq. (15) and choosing

aZ

1
m(ir)=———r,
2r 2

Fl

where a is arbitrary, we find the equation
aF _n (t+a)'?

) 18
dt 2 t (18)
where 7 = + 1. This equation is easily integrated, and we
find
2 —
S=z+—1——a—r+n[v+g-ln(v “)] (19)
r 2r 2 2 v+ a

where v=(t + a?)"/%.

The presence of an abitrary parameter in this solution
enables us to use the second method outlined in Sec. II. We
differentiate S with respect to &, and equate the result to the
constant value — ar,. After some straightforward algebra,

we obtain
¥ = K *(r) = a*F/sinh’a(r — r,).

The desired boundary conditions lead to the choices a = 1,
ry, = 0, with the expected result

K (r) = r/sinhr.

B. The vortex

In this example as well, the Hamilton—Jacobi technique
will be useful in reducing the original second-order equa-
tions to a system of first-order equations, but in this case we
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shall not be able to proceed further and solve the problem
completely.

The superconducting vortex is a special case of a
charged scalar field ¢ coupled to the electromagnetic field.
Physically, it describes the magnetic lines of flux which are
expelled from the interior of a superconducting medium.’
We assume axial symmetry, and let the distance from the
axis be p, and the angle about the axis to be 8. We make the
ansatz

A=V ()b, 4,=0, ¢=¢(p) (¢ real)
The Maxwell-Klein—-Gordon equations then reduce to
V" +(1/p)V' —V/p* =24V,
$" 4+ (Uplp' =V +iA(47 — )4,
where we have included a term
~Rg*—-1)
in the original Lagrangian.

As before, we seek a Lagrangian for this system in
which p plays the role of time. We find

L=p{g'} +3p(V'} +Epp 2V + Yiplp* — 1} + V/2p.
Thus

P¢ =2¢'p, P, =pV/
and the Hamilton—Jacobi equation is

Ao b e 2o A, o
” (Sy) +2P(SV) eppV 4P(¢ 1)

% + P (20)

To eliminate p, we try

S=R(,V)+pT(s,V)
Comparing powers of p, we find the three equations

RS+ RS =V,

iR,Ty +R, T, + T=0,

AT, +4T =92V + U (¢% — 12
Although these are three equations in two unknown func-
tions, the choice

T=eg>— 1)V, R= —}V?

is a solution, provided we also demand that the self-coupling
constant A take the critical value

A =2
When A takes on this value, the force between two vortices
vanishes. Thus A = 2¢? demarcates the boundary between
the type I superconductor (4 < 2¢%) in which vortices attract,

and the type II superconductor (A > 2¢%) in which they re-
pel.’ Then

S=elp>—1)Vp —iV?
and, therefore, from Eq. (2),
@' =eVd,
V' +V/ip=el¢?®—1).
Letting W =In ¢, we have W' = eV and hence
W"+ W'/p=eéee" —1) (21)
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If we let ep = p, this is the axially symmetric version of the
inhomogeneous Liouville equation

VW =e" 1. (22)

We can continue with the Hamilton—Jacobi method, much
as we did for the monopole. A Lagrangian for Eq. (21) is

L=p(W)+p" —2W) (23)
and thus

P=2pW’
and

1(8S)2 s _ Lw

% \aw £ Al ) (24)

Unfortunately, this equation is much less amenable to solu-
tion than the corresponding monopole equation (15). The
situation changes dramatically, however, if we drop the last
term on the right-hand side, that is, if we consider the homo-
geneous axially symmetric Liouville equation. This is no
longer relevant to the vortex, of couse, but it is of interest in
its own right and it is a problem to which we now turn.

IV. THE LIOUVILLE AND EINSTEIN EQUATIONS
A. The axially symmetric Liouville equation

The general solution to the two-dimensional Liouville
equation

VW =e¥
is known; therefore, in particular, all solutions to
W" 4+ (U/p)W' =% (25)

have been found (we drop the distinction between p and p
introduced above). However, it is not trivial to integrate Eq.
(25), and it is of interest to see how the application of the
Hamilton-Jacobi technique successfully confronts this
problem. As noted in Sec. III, the equation we wish to solve
is the following truncated version of Eq. (24):
2

L (ﬁ) + a_S =pe2W.

4p \IW. dp
Multiplying by p, we have

IS + 8, =W+, 27)

where o =Inp.

The essential simplifying feature of this equation is that
the right-hand side depends only on the combination W 4 o.
Note that this happy circumstance would no longer obtain
had we retained the extra term in Eq. (24).

We take advantage of the situation by making the an-
satz

(26)

S(W,0)= —2W —(A2+ 1)o + F(t),

where ¢ is the variable ¥ + . This is essentially the same
variable we defined earlier for the monopole problem in Eq.
(17). Then Eq. (27) becomes

tYF't) =t+ A%
and

F'it)y=nqt+ A3/,
where 7= + 1.
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This equation is immediately integrable; the result is
S(Wo)= —2W—A*+ ljo

+ 17[2\/t T4+ 4 1n(——-w)] . @8
Vt+AT+4
We now apply the second variant of the Hamilton—Jacobi
method. Letting S be an arbitrary constant, we have

_Q.'S; = — 2o + nln(—__w_i) = Zﬂ,
ez i+ A7+ A
which leads to
e =(412/pp*e’ —p~ e PP, (29)

which is the general solution.

B. An equation from general relativity

Finding the spherically symmetric solutions to five-di-
mensional general relativity’ amounts to solving Einstein’s
equations for a metric of the form

ds? = —e'dt? + & dr* + r(df* + sin’0d¢ ?)
+ 24 dxdt + D *(dx),

where v, 4, 4, and @ are functions only of . One finds that
the function

Nr=ed>+4*?
obeys the equation

r(” —Q-)+ 1 +i2r4(n')2=o. (30)
7’

0" N
Here u is a constant of integration. We want the solution to
obey the boundary condition

lim 2(r)=1.

r~>00

As usual, we must first find a Lagrangian for Eq. (30); it is

L=(1/A2/2"' — (r/u’)27?, (31)
from which follows

P, = (1/A)2/02"7
and

H =~ 2/ — 2Py)"? + (r/p?)02 2.
The Hamilton-Jacobi equation is

S, —2(—S8.)"2 4+ =0, (32)
where « = In(£2 /u), and o = Inr. Defining

T=58+ L+,
we find

ITL 4+ T, =+, (33)

Observe that this is identical to the Hamilton—Jacobi equa-
tion for the Liouville problem, Eq. (27), although the roles of
the dependent and independent variables have been inter-
changed. This enables us immediately to set up a dictionary
to transcribe our previous results

Srel _>SLiou - ieZ(K + 0"
In(f2 /i) = k—Inp, (34)
Inr—W.
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Letting ¢ now stand for
t=rn3/u,

we find that the equation
as

rel

aA

becomes

1n(———‘”+’1"1> =2gn 2 +7, (35)
Vi+AT+ 4
where y = (@ —2AInu)y, and 7 + 1.

This is somewhat harder to solve explicitly for £2 as a
function of  than was the corresponding Liouville case, be-
cause In £2 appears on the right-hand side as well. It is con-
venient to define a new variable R by the equation

r2=(R*—B?*/R, where B?=u’1%/4. (36)
Then we have from Eq. (35)

R—B u/2B
R+ B) ’
where the choice of 7 has been absorbed into the choice of
sign of u. The relationship between r and R is then given
explicitly as
R?—B?* 1 R2—B*\(R 4+ B\**
S i v ) M
R 0 R R—B

Q =e#7( (37)

and we see that the choice ¥ = O insures that 2—1as 7— .

275 J. Math. Phys., Vol. 24, No. 2, February 1983

Note also that we obtain real solutions for {2 either when B is
real or when B is purely imaginary.

V. CONCLUSIONS

We hope to have convinced the reader that the Hamil-
ton-Jacobi equation has been undeservedly languishing in
obscurity. It is true that in the paper we have not solved any
equations whose solutions were not previously known; nev-
ertheless, in the examples we have discussed straightforward
integration of the equations [except for the monopole equa-
tion (13)] is difficult if not impossible. We have sought to
illustrate what types of equations are likely to yield to the
Hamilton—Jacobi technique, and to give the reader some in-
tuition for the kinds of Ansitze that will solve the relevant
Hamilton-Jacobi equations.
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I. INTRODUCTION

The Hamiltonian formulation of classical mechanics is
based on the symplectic structure of the phase space W of the
system here considered. The space N of observables (C*
functions on W) is given a Lie-algebra structure by the Pois-
son bracket.

A detailed study of deformations of this Poisson algebra
and of the usual associative structure on N was carried out in
Ref. 1. Such a study allows a new approach to quantum
mechanics as a deformation of classical mechanics which
generalizes the Weyl-Wigner’s quantization.

The phase-space W is supposed to be a symplectic, con-
nected, paracompact manifold. We denote by {u,v} the Pois-
son bracket of two elements « and v of N. Quantization of the
associated dynamical system is given by a deformation of the
usual associative product on N (a so-called * product):

Definition 1: Let & be the space of formal series in 4,
with coefficients in N. A * product on W is a bilinear map:

(u)eN X N—usv = Y A'C'(up)e?,

r>»0
where C" (r> 1) is a bidifferential operator on N X ¥, vanish-
ing on constants and such that, if u,v,weN

(i) C%u,v) = u-v,

[ 3 ClCwowl= 3 CluCpuwl,
(ifi) C '(u,0) = {u,v},
(iv) C(u,0) = ( — 1)°C"(v,u).

Each * product on W admits a natural extension to
& X & . Thanks to properties (i) and (ii), a * product is a defor-
mation of the associative product on N; properties (iii) and
(iv) ensure that the bracket defined on N X N by

[u,v], = (1724 Jusv — v*u)

is a deformation (with parameter A ?) of the Lie-algebra struc-
ture of N. Existence conditions of such deformations are giv-
en in Refs. 2 and 3.

In any quantization procedure, it is generally supposed
that some particular Lie algebra of observables is preserved.
Therefore the following notion is quite natural:

Definition 2: Let g, be a-finite dimensional Lie algebra
of observables. A * product is g, -relative quantization if

(8w-Q)

All physical examples, previously treated in the * for-

[u,v], = {u,v} foralluandvin gy .
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malism, admit g-relative quantization with respect to suit-
able Lie algebras. These Lie algebras are usually obtained
from natural geometrical symmetry groups acting by sym-
plectomorphisms on phase space.

If G'is a connected Lie group of symplectomorphisms of
W, we denote the action of G on N (and its canonical exten-
sion to &) by

(xu)( &) = u(x—1.£) for all ueN, xeG, EcW.

By differentiation, each element X of the Lie algebra g of
G is represented by a vector field X ~ on W.

Since it is the case in physical examples, we shall assume
that all vector fields generated by g are globally Hamilton-
ian, and that the associated functions satisfy the commuta-
tion rules of g, i.e.,

Assumption (H):

If Xeg, there exists uy €N such that X v = {uy,v} for all
veN.

If X,Yeg, ujx vy = {ux,uy}-

Assumption (H) means that g is represented by a Lie
algebra g, = {uy; Xeg} of observables. Assumption (H) is
satisfied, for instance, on the orbits of the coadjoint represen-
tation of G in the dual space g* of g.

Let us define some invariance properties of * products
with respect to a Lie group of symplectomorphisms of W.

Definition 3: Under Assumption (H), a * product is
called geometrically G invariant (G.L.) if:

x-(u*v) = (x-u)x(x-v) for all xeG, u,veN. (G.L)

Definition 4: Under Assumption (H), a * product is
called strongly G invariant (S.L) if it satisfies (G.1.) and
(@w-Q) with g, = {uy, Xeg, g the Lie algebra of G |.

Strongly invariant * products were introduced in Ref.
1, where their physical meaning is discussed.

Unfortunately, except in the case of the cotangent bun-
dle of a Stiefel manifold,"* or in the case of homogeneous
symmetric spaces,® we do not know if such * products exist
in general. Moreover, we suspect that there exist a lot of
symplectic manifolds [among which are natural phase
spaces of some relativistic systems (see the examples in Sec.
III)] on which there are no geometrically invariant * pro-
ducts. This negative observation is not so surprising, since, in
fact, quantum mechanics does not impose conservation of all
geometrical properties of the underlying classical system.
For instance, the notion of trajectories being generally mean-
ingless at the quantum level, there is no reason to require a
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geometrical realization of the invariance group. Therefore it
is convenient to generalize Definitions 3 and 4:

Definition 5: Under Assumption (H), a * product is
called G covariant if there exists a representation 7 of G by
automorphisms of the algebra (#,#), such that

7. (u) = (IdN +¥4 ’Tj)(x~u), for all xeG, ueN,
s>1
where 7; is a differential operator on W.

Note that Definition 5 means that 7 is a deformation of
the geometrical action: u—x-u of G.

The main result of this paper is that each quantization
relative to a Lie algebra g, is a G covariant * product with
respect to the connected, simply connected Lie group G with
Lie algebra g (see Theorem 1 and Corollary).

In all physical papers,"© the * products introduced are
g -relative quantizations with respect to some suitable Lie
algebras g. From our result, this assumption seems physical-
ly quite natural, since it means that some covariance proper-
ties with respect to symmetry groups of the system are pre-
served after quantization, even if geometrical invariance
might be lost. We give in this paper some examples of nilpo-
tent Lie groups G, where no invariant * product is known on
the orbits of the coadjoint representation, though relative
quantization can be constructed by natural generalization of
the Moyal techniques.

On the other hand, so many formulations of local invar-
iance were introduced that it seems necessary to establish
relations between all these notions. In fact, we shall show in
this paper that they are all more or less equivalent. For in-
stance, under Assumption (H) the following local invariance
properties of a * product with respect to a Lie algebra g were
introduced in Ref. 1:

(IP,) {1ty 000} = {1, )00 + % { 0]
for all X in g and v,w in N.
(IP")) {uy vxw} = {uy,v}sw + v{uy,w}

for all X in g and v,w elements of the associative * algebra
generated by g, .

(IP,) {uy,v} = [ux,v], forall Xin g, vin N.

In this paper, we prove the following:

1. If G is connected, (IP,) is equivalent to the geometri-
cal G invariance of the * product.

2. If, moreover, gy is “sufficiently large” (i.e., if vector
fields X ~ for X in g generate the tangent space at each point
of W), then the following notions of invariance are equiva-
lent:

a) gy -relative quantization satisfying (IP,),
b) gy -relative quantization satisfying (IP’,),
c) strong invariant * product,

d) * product satisfying (IP,).

The natural notion of equivalence of * products is given by
Definition 6: Two * products * and *’ on W are equiva-
lent if there exists an operator T of the form

T=1Idy + Y A°T,,
s»1

where the T, ’s are differential operators, null on constants,
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such that

T (u*'v) = (Tu)*(Tv) for allu and v in N.

In the compact semisimple case, we prove that, in the
equivalence class of any g-relative quantization, there exists
a strongly G invariant * product. This means that geometri-
cal properties are unchanged by quantization when the sym-
metry group of the system is a semisimple compact group.

In Refs. 1 and 6 a useful * exponential map is intro-
duced under the implicit assumption that the * product se-
ries converges (in some sense) for particular value of the pa-
rameter A. Is it possible to introduce this * exponential
without these assumptions of convergence, in fact, directly
at the formal level? We give a partial answer to this question:
In the case of a nilpotent Lie group G, we show that it is
possible to define a * exponential mapping from Ginto (&, )
for each orbit of the coadjoint representation (see Theorem
2).

Il. RELATIONS BETWEEN INVARIANCE NOTIONS OF *
PRODUCTS

Let g5 be a finite-dimensional Lie algebra of observa-
bles on W.

Proposition 1: If g, is sufficiently large, the following
are equivalent:

(1) * is a gy, -relative quantization satisfying (IP,).

(ii) * is a * product satisfying (IP,).

Proof: Let us write

usv=uv + A {up} + Y 1"C"uv); wu,peN.

Then: "
. [C2r+l(uX’uY)=0,
D9 o€ o0)} = C (o0 }o0) + Clos o))

({i)}=C >+ Nuy,w) =0 (1)
(Vrel; Yuy,uyegyu; Yo,weN).

(ii) implies (i) because (IP,) implies trivially g, -Q and
{ux vrw} = [uyvsw],

= (22)7 ((ux %0 — v¥uy Jow

+ vx(uy *w — wruy))
= {uy,v}*w + ve{uy,wl.
If (i) is satisfied, we shall prove (1) by induction. Using the

associativity of *, we obtain the following expression for the
Hochschild coboundary of C? (see Ref. 2 for the definition):

AC uv,w) = C*fu,w},w) — CHu,{v,w})
+ {CHuwhw} — {u,C*v,w)].
Then, computing
AC 3(uy o,w) — IC 3(v,uy w) + IC3(vw,uy)

for uyeay,
we obtain, using (1),

C3uy ww) — wCuy,v) — vC 3(uy,w)

= CZ({”X’U}’w) + C2(”9{ux’w}) - {uX’Cz(v’w)} =0
(2)

and, forv = uy and w = u; in gy,

3
Coluy,uyuz) =0 VYuyu,,ueqy.
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By induction, the differential operator C *(uy,-) is null on the
polynomial elements on g, and, since g is sufficiently
large, null identically. Now suppose (1) is satisfied for

r</ — 1. By acomputation similar to (2), we obtain, using the
induction hypothesis,

2CH+ Nuy ow) — 2wC >+ Yuy,v)
= (a) + (b) + (¢},

where

(a) = 2C*({uy,v},w) + 2C* (v, {uy,w}) — 2{uy,C*(w)},

b= >
r+s=2I+1
rs»2
r even

= 3
r+s=2l+1
rs»2

r odd

— 2C 2+ Yuyw)

[ — Cuy,Cw,w)) + C'(Cv,w),ux)],

[CCuy,v)w) + C"(v,C(uy,w))

— C(Cux)w) — C'v,C(w,ux))].

The symmetry properties of the C* imply that (b) = (c) =0,
and (i) that (a) = 0. We now have the analog of Eq. (2), and
the end of the proof is similar to that for the case / = 1.

Now suppose G is a connected Lie group acting on W
under Assumption (H), and g is the space of functions u .
By differentiation of (G.1.), we immediately obtain

Proposition 2: A * product is geometrically G invariant
if and only if it satisfies (IP,).

Corollary: A * product is strongly G-invariant if and
only if it is a g, -relative quantization satisfying (IP,).

Moreover, if g, is sufficiently large, strong G invar-
iance is equivalent to (IP,).

A priori, (IP')) is weaker then (IP,). However,

Proposition 3: If gy, is sufficiently large,

(i) (IP" )T, ).

(ii) A gy -relative quantization satisfying (IP',) is strong-
ly G invariant.

Proof: Let (uy,); _ 1 5,.,, be elements of g,,. We write

uy, sty oy, = 3 ASE(X,,e, X, ),

k>0
From (IP’,) we have

{ux,S5(Xys X)) = 2 R0 ¢ yXi_n[X X )0 X))
i=1
Let us write, with obvious notation,
{uy,Su} = 2 S

i=1
The associativity of the * product implies:
P
Sr=73%
J=0r4s=p—j

Suppose (IP,) is satisfied up to order ( p — 1); then
{ux,S z Z Cl{ux,Se}S0 )

J=0r+s=p—j

+C](S;c’{uxasf1fk})+ {uX’CP(SgrSg—k)}

~$ s
i=1

CASiSt_i)h Vk=0,..n
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(g5t )

i=1

+CJ( ;(1 Z Sfr—k,i)
i=k+1

CJ({”XrS 1S5 k)

CAS xS )

Then
{ux,C2S%.S% _4))
_CP({uX’SO]Snfk +Cp(Sk’{“x’ngk”-

By induction on # and %, and using the sufficient largeness of
8w, we obtain (IP)).

HI. VEY »"-PRODUCTS

Let I"be a symplectic connection on W. The rth power
of the Poisson bracket is the bidifferential operator defined
in any chart by

Piiup) =A".A i’j'V,-‘“,,.r uV; v, YuupeN,

where A"/ are the coefficients of the structure 2-tensor A.
If W = R*", the Weyl-Wigner quantization procedure
is associated with the well-known Moyal * product:

u* Yu,veN,

Pr(u,),
re>l1

(the connection being the Riemannian flat one).

Flatness of the connection is essential and, in fact, if
there is curvature, Moyal’s formula no longer defines an as-
sociative product. Following Ref. 7 it seems quite natural to
generalize Moyal’s notion for any symplectic manifold W by
introducing Vey *" -products:

Definition 7: A * product on W is called a Vey *" -pro-
duct if the principal symbol® of the bidifferential operators
C" and (1/A)P - (r<n) coincide, n = 2,3,..., 0

Looking for Vey *” -products is technically easier, and
supported by the fact that each equivalence class of * pro-
ducts contains a Vey **-product.’ [Note added in proof: A.
Lichnerowicz proved in a recent work; Deformations d’alg-
ebres associées a une variété symplectique (les *, -produits)
to appear in Annales de I'Institut Fourier (Grenoble), that
each equivalence class of * product contains a Vey *>-pro-
duct. Then Sec. III could be rewritten, considering only Vey
*=-products.] Nevertheless, when geometrical invariance is
required, this problem happens to have no solution, as
shown by the examples that we are going to give in this sec-
tion. The examples give some justification to our feeling that
geometrical invariance after quantization is too much to ask.
Let us remark that in each of these examples we can con-
struct a Vey *> -product which is a g, -relative quantization
and therefore (as will be shown in Section IV) we obtain
covariance after quantization.

Our first example is a massless orbit of the coadjoint
representation of the Poincaré group P.

Proposition 4: There is no geometrically Pinvariant Vey
*2.product on the orbit with m? = 0 and null helicity.
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Proof: Consider a Vey **-product; the third term in its
expansion is JP% + dH, where H is a differential operator
with order less than three.” Then if this * product is geome-
trically invariant, I' is an invariant linear connection.’

We shall prove that the considered orbit does not carry
any SO,(3,1) invariant connection. Let us suppose that I" is
an invariant connection; then the relation

holds for any Y in 50(3,1) (Lie algebra of the Lorentz group)
and any vector fields X and Z on W (Ref. 5).

Here W is the cotangent bundle of the half light cone in
R® with equations

PP +pt—pd=0 (ps>0),
Pid1 + P2g> + P3qs — Pags = 0.

We choose a global chart ( p,, Py, P1,91:92,:95) on W and
X =Z = J/dp, and successively, Y " =M ;;, M ,;, and
M.

Since in our chart
a d d

ad
— =P+ — — ¢
Ps o, ) 2] 3 qs 3, q> a4,

_ d g d
My =lplo-+ 2=

My =

dp, lp| 9g. ,

_ a pq d
Mg=lp| L + 242
* ap; IP| 9q;

writing
d 2 a 2 d
\" —_— 2 —_ 4 E: ,—,
a4/3p, apl . a; ) B aq

we obtain with the invariance relation for I” at the point
(0, P2 P,0,0,0) (P23 #0)

forY =M, (i=23)

_ _L= lP|§& @GPyt asps
pl dp; [pf
day _ da;
ap, ap,
In this linear system with respect to a,,a,, da;/dp;
{i,j = 2,3), it is possible to eliminate the derivatives da;/dp;
and the remaining system

(F=23),

=0.

P
— 1= "—a,—pa,

P2

2
— 1= —pa, + P_zas’
3
does not have any solution.

Remarks:

1. On the orbit considered here, there exists a Vey ** -
product which is a quantization relative to the Lie algebra of
Poincaré group.®

2. On the orbit with nonzero mass (without or with spin)
there exists an invariant connection and it is possible to
prove existence for a strongly invariant Vey **-product with
respect to the Poincaré group.’

We shall now exhibit a group such that “almost” all
orbits of the coadjoint representation do not admit any geo-
metrically G invariant Vey **-product. We are indebted to
M. Flato for suggesting this example.

Proposition 5: Let g be the (nilpotent) Lie algebra with
basis (X, X,....X«,Y; k> 3) and commutation relations

[YX,] =X._(i>1) [Y.X]=0;
[X,X,]=0, ij=0,1,..k

and G be the corresponding connected and simply connected
Lie group. The nontrivial orbits of the coadjoint representa-

for Y- =Mj;, tion are two-dimensional. The coordinate function &, de-

a P fined on g* by X, is invariant. On the orbits satisfying £,7#0,
p 222 _p, %% 40—, there is no geometrically G invariant Vey »>-product).

9p, dps Proof: Let ( &, £,,..., £x,m) be the coordinate functions
» da;  day ta, =0 associated with the basis (X, X,..., X),Y). Then the orbit of

* ap, P2 Ips 2T the point ( &, £,,..., £&,7) is given by
i
Sk k t_sj“ 1
{(é'o: §1 +s§0,..., §k +s§k—l + e+ Fé—o»” — & gk—l - (Z jj' )go)Q s,t}-E]R, j= 1,...,k ]
! y=1 :

The generic orbits ( £,7#0) are characterized by & invariant rational functions p; defined by (see Ref. 10 for definitions):

k-1 1

Po=Sbmpr=£6— ‘;“ (%)zgo’---’Pk =6k — 2

These orbits are two-dimensional (they are of maximal
dimension) and parametrized by £, and 7.

From these expressions we immediately see that the
subgroup of G acting trivially on these orbits is the one-pa-
rameter group generated by X,,. On the other hand, the
group of automorphisms of a given linear connection I"on W
is at most four-dimensional. Therefore if k is larger than 3,
there is no G invariant connection and then no geometrically
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4 2k — i)

(- s

G invariant Vey **-product on W.

Remarks:

1) We can use the above argument to prove that if k is
sufficiently large, there does not exist a geometrically G in-
variant Vey *>-product on the cotangent bundle of W.

2) We shall prove in Sec. V the existence of Vey == -
products which are g-relative quantizations on each orbit of
the coadjoint representation of any nilpotent Lie group.
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IV. RELATIVE QUANTIZATION AND COVARIANCE

Definition 7:

(i) We denote by L (&) the space of linear maps
T =Z_0,A°T, from & intoitself, and by GL(& ) the group of
invertible elements in L (&'). L (&) is endowed with the Lie
algebra structure associated to its usual associative algebra
structure.

(ii) Let * be a given * producton W. D=3 _ A°D,
€L (%) is called a *-derivation of & if

D (uxv) = D (u)*v + u*D (v);u,veN.

Wedenoteby Der(# ') thespaceof *derivations of & . Der( & )is
a Lie subalgebra of L (&).

(iii) Wedenote by Aut(% ) the subgroupin GL(%) of auto-
morphisms of (& ,*).

Theorem 1:

(i) Let A = 3,4 °A, be an element of L (€) such that

A, is a complete vector field X ~ on W,
4,(s>1) is a differential operator.

Then, there exists a unique one-parameter-group: t—A (t ) so-
lution of the equation

‘fi_‘j(;)onA(t) with 4 (0) = Id, . (3)

A(t)=Z,A°A4,(t)commutes with 4, and a (¢t} = A(t)
oexp( — tX 7} is a differential operator with uniformly
bounded order with respect to ¢, vanishing on constants if
that is the case for 4,.

(ii) If, moreover, AeDer(#’) for some * product on W,
then 4 (t jeAut(&),VteR.

(iii) Let g be a Lie algebra. If D:g—L (£’ is amorphism of
Lie algebras such that, for all Xeg, D (X ) satisfies the proper-
ties assumed for 4 in (i), then there exists an unique mor-
phism A from the connected and simply connected Lie group
G with Lie algebra g, into GL(%) such that, for all Xeg,

%A (exptX ) = D (X )oA (exptX ). (4)
If x€G, then A4 (x) = 2,4 °A, (x), where 4,{x) is the action
of G on W obtained by exponentiation of the morphism D,
from g into the vector fields on W, and 4, (x)odolx ™ ')is>1) is
a differential operator.

Proof: The proof of (i) lies in Ref. 11. The unique solu-
tion of

% (t) = X ~odolt) with 4,(0) = Idy is given by
t

(Ao(t)-u)(§ ) = ulexp( — tX 7).& YueN,YEeW. (5)

Equation (3) is solved by induction on the order s in 4.
The unique solution of the equation of order s is
s—1 4
Alt)= 2 exp(t — )X ~od,_ ,0d,(7)dT.
p=0J0
Ayt ) being a diffeomorphism of W, 4 (t) is invertible. On the
other hand, B(t) = A (') 'od (t + t’) satisfies

ﬁldl’i (f) = AoB () with B(0)=Id,.
t

Therefore A4 (¢) is a one-parameter group, and it is easy to
prove that A (¢) is the unique solution of equation
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%‘t‘.(,) — A (t)od, with 4 (0) = Id,,. (6)

Let us define an action of R on the space & of differen-
tial operators on W by

(exptX. T )(u) = (exptX ~o Toexp — tX ~)(u);

VTeY, ViR, YueN. (7)
Then

a,(t)=A,t)oexp(—1X ) —f exprX.A,dr.

a(t)is adifferential operator, with bounded order on R, van-
ishing on constants if that is the case for 4,. By induction,
a,(t) is a differential operator with the same properties.

In order to prove (ii), if u,veN, we put

Clt)=A(t)(u*v) — A (2 ) u)xA (¢t )v).
‘fi_c (t) = 40C, with C(0) = 0, and therefore 4 (f jcAut(#).

From (i) and (ii), we deduce that D can be exponentiated
to a neighborhood 7 of the neutral element e of G by ele-
ments4 (x)eAut(# )(xe?"). Moreover, 4,canbeextended toa
morphism on G."?

The proof of (iii) is adapted from Ref. 13. Let us suppose
that 4 is a morphism on G up to order (n — 1}in 4, i.e.,

A )= 3 A, (x)od, () VxpeGVp<n —1,
q<p
or equivalently,

Vx,peG,¥p<n — 1. (8)

a,(xp) = Y a,(x)oxod,_ (V)
q<p
_ For any element T = (7,,T,...,T, _,)€Z" and any
xeG, we put
(m(x)T), = Z a, (x)oxT) p=0l1,..,n—1

. Using (8), it is easy to prove that « is a representation of
Gon 2" Weidentify Z" ~ ' X N X W with aseparating sub-
set of the dual of Z" by

(fIT) =(Tou+STyu+~+S,_,T,_u)§),
where

S=(81S2 S, 1 E)ED "' XNXW,

T=(T,...T, )"
Gactson " 'XN X W by

(x.f|TY = {flwlx~ YT );¥TeD" Vx<G,

Yfegd" 'XNXW. 9

For each fin 2"~ ' XN X W, we define a 1-form  on G by
@/ (X)) = (F17D, 4 1 (X))p—o.m 1 ); VxeG,VXeg

(g being identified with the Lie algebra of left-invariant vec-
tor fields on G ).

Dbeingamorphism, (D, , , (X }}isacocycle for the coho-
mology of g with coefficients in the g-module & " obtained by
differentiation of 7. From this fact we deduce that o is
closed. Therefore, there exists a function 7 (x, f) on G such
thatw{ = dI (x, f). WefixI'suchthat I (e, f) = 0. Computing
ITon 7, we find
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I{exp X, f) = (fl(a, . (exp X)), ),
IexpXexpY,f)=1I(expX,f)+I(exp?, (exp(—X)f).

Since 2"~ ' X N X W separates the pointsof 2", we de-
duce

(@, 41 (X)), = (@, 1 (x)), + 7ixMa, 1 (X)),
Thus

A xx)= 3 A, (x)od,¥).

Then 4 is a morphism on G up to order n (Q.E.D.).
Corollary: Each g-relative quantization, for a Lie alge-
bra g of observables, obtained from a group action with As-
sumption H, is G covariant with respect to the connected and
simply connected Lie group with Lie algebra g.
Proof: Indeed, for Xe g and veN, we put

DX = %(ux#v—v*ux)= [ux.0],-

D is a morphism from g into Der (£} which satisfies the
hypothesis of Theorem 1.

We now examine the case of compact semi-simple
groups.

Theorem 2: Let G be a connected compact semi-simple
Lie group, acting under Assumption (H) on a symplectic
manifold W. Then, each g-relative quantization (where g is
the Lie algebra of G ) is equivalent to a strongly G invariant *
product.

Proof: With the same notations as in Theorem 1 above
and the corollary, we write: D (X ) =2, A *D,(X).

Let us denote by G the universal covering group of G
and define

T = f A (x)odolx) "' dx =3 4 ’J‘_ a,(x) dx

s>0 G

=3 AT, (dx=Haar measure on G).

5»0

From the relation
a,fexpX) = [ expleX ~Jo DX o expl — X ) dr
0

we deduce that, for s3>0, T, is a differential operator on W.
On the other hand, by definition of T, we have
A(x)oT = Todolx), VYxeG. (10)

But since

D(X)uy)=X"uy, VX, Yeg,

we have the relations

Alexp X)(uy)=expX ".uy, VX, Yeq
and
Y Yeg.
By differentiation of (10), we obtain

DX )Tv)=T(X ~v), VXeg, VveN,
which proves that the * product

ur'v =T ~TusTv)

satisfies IP,, i.e., is strongly G invariant.

T(uy) = uy,
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V. THE NILPOTENT CASE

Let G be a connected, simply connected nilpotent Lie
group, g its Lie algebra, and W an orbit of the coadjoint
representation p of G.

Proposition 6: There exists on W a global chart
£—( p,q)eR?* such that

1. The canonical symplectic form on W is

2. dp; Ndg,.
2. Each function u,(Xeg) defined by
uX( §) =§(X)’ §€W’

has the form

k
ux(pg)= > alg)p; +Blg)

i=1
where ; and B are polynomial functions and da;/dg;=0,
Vji=12,..,0

Proof: Using essentially the methods of Ref. 10, we
prove the proposition by induction on dimg. Ifdim g = 1 or
2,dim W = 0 and the result is trivial. Let 3 be the center of g,
the restriction of the form £ to 3 is constant on W. Let f be
this restriction.

First case: Ker f #0.

If g, is the Lie algebra g/Ker f, g* is canonically injected
in g* by the transposition map #* of 7: g—g,. By construc-
tion, WC 7*( g¥). In fact, it is easy to prove that W is the
image by 7* of one orbit W, of the coadjoint representation
in g¥. Moreover, by definition, 7* is a symplectomorphism
from W, to W and the conclusions of Proposition 6 follow
immediately.

Second case: Ker f=0.

Then dimg = 1 and g can be decomposed in:

g=RXeRYoRZag,

with3=RZ,[X, Y]=Zand g, =RY® RZeﬁ = {X,eg
such that [X;, Y] = 0}; g, is an ideal of g. Let £, be the ele-
ment of g* defined by £,(X) = 1, £x(X,) = 0if X,€g,. We
identify g¥ with the orthogonal space of X in g*. Let 7 be the
projection from g* to g¥ with kernel RSy, G, the connected
and simply connected subgroup of G with Lie algebra g, and
p, the coadjoint representation of G,. We have

pilexp X o = moplexpX,), VX,eg,. (11)

Thus 7{W)is afamily of p, orbitsin g¥. Now let £, bein #{ W)
and A be a real number such that &, + A£, belongs to W.
An easy calculation shows that

&1 =pew— 222 ¥) 16+ Ay

m{W)is a subset of W. &, being fixed, let W, be its p, orbit in
a¥. Let us define

@:W X R*g*
by

@ (&uts) =plexp tX) &, + sEx
First,

P(Euts)=p (CXP tX-exp j% Y) LW

Moreover, the relation ¢( & ,t,5) = @ (£ 1, ',s') implies s = 5.

§ieW,, (ts)eR.
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The value of this form at Yis {|(Y) — tf(Z) =& | (Y)
—t'f(Z), and since Y is in the center of g,, we have
Y )=¢§1(Y), thusz = ¢'. This proves that ¢ is one-to-one.
The surjectivity of ¢ onto W follows from the fact that G is
the semidirect product of R by G, (Ref. 10); for each £ in W
§ =plexp tX'x,)(£,), with x,&G,,
= plexptX ){p,{x,) €, + &) Isee formula (11)]
=@ (pyx1) §1,8.5).

Clearly, g is C* . Now, if we identify W, with R**—1
by our induction hypothesis, putting p, = s, g, = ¢, we de-
fine a global chart on W. In this chart u( £) = p,; more-
over,

ux,(§) = (Xi| plexpgx X)(£1)

-3 ‘“‘1—‘,” (ad'X (X,)] £,)

=S (=g (S aualp +Ai).

i=1
where a;,(¢) and 5, (q) are polynomial functions of ¢,,...,q, _ ;
and da,;/dq;=0, V j = 1,...,i. Thus, the second part of our
proposition is proved. Finally let us consider two elements
T=T,+AX,S=S8,+uXofgwithT,and S,ing, If{ , }
is the Poisson bracket for the form Z¥_ | dp, Adg, on W, the
above computations allow us to write

Jur,

94
Then

urs) = {ur, us} -
This relation finishes the proof of Proposition 6.
Corollary: On W, there exist g-relative quantizations.
Indeed, let us consider on R?* the * product of Moyal.’
With Proposition 6, we can write
uyruy =uyty + 4 (uy, uy} + W2Puy, uy),
VX, Yeq.

=Uxr,p Uns,) = {81, s} -

Then
[ux, uy], = {uy, uy}, VX Yeg

This » product is G covariant (Theorem 1). In fact, it is
possible to define directly a morphism from G to(#,#*}in this
case. An easy computation allows us to define this morphism
first at the Lie algebra level.

Lemma: Let g, be a finite-dimensional Lie algebra of
functions on W = R?** of the form

k+1

i=1
where p, = 1, @, ., €R, the bracket being the Poisson
bracket associated to the form 2%_ | dp; Adg;. Let us define

k
Tewr1 =0, rp=sup Yy nr, +1) j=kk—1..1,

tn} (=5

and ¢, from g, to & by
Paluy) = 2 a,,.. nk“(u )ri*zﬁ:in}(rj+l+ ! i M

Then
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24 {@luy), @aluy)} = @al{ux, uy}), Vuy, uyegy .

The map @: g—& defined by ¢(X) = @, () is a morphism
from g to & endowed with the bracket u*v — v*u. Now, we
exponentiate @ to the corresponding Lie group.

Theorem 3: Let G be a connected, simply connected
nilpotent Lie group and W an orbit of its coadjoint represen-
tation. If we identify W with R?* as in Proposition 6, and
define the * product of Moyal on W, then there exists a mor-
phism @ from G into (#,#) (* exponential).

Proof: First, we solve the equation in &:

%A(t)=<p(X)tA (£), with 4(0)=1. (12)

IfA(2)= 2,0 A°A,(t)and@ (X J#v = 2,,, 4 * D, (X ) vwith
D, (X e (the space of differential operators on W) since
Dy(X) is a function @y(X ), we have
Ao(t ) —_ et‘Po(X)
and
dA,
dt

Putting a, () = A, (t) exp( — 2@ (X )), we can solve equation
(12) by induction as in the proof of Theorem 1. We find

= @) A1)+ 3 D) 4, 40).

a,(t)= [ 3 0D X Jo €™ e i) .
0 k=1
The element

A(t)=3 A"a,(t) e

nx0

is invertible in & (Ref. 11) and the solution of Eq. (12). It is
easy toprovethat A (¢ )isaone-parameter groupin & and also
the solution of

%(t)=A(t)*¢(X), with 4 (0) = 1.

Let us define

DexpX)=A4(1), Xeg,
and suppose that @ is a morphism up toordern — 1, i.e., that
the relation

@ (expX )+ @ (expY ) = P (expX-expY)
holds for the terms in A ¥, k = 0,1,...,n — 1. Putting
DolexpX ) = e®¥), a, (expX ) = 4,,(1) DolexpX ), we define on
9" arepresentation of G by

T T)y = 3 a,_ (%) Bofx)oT,0Ps ).

where xeG, T = (T, T,,...T,,_ 1 )€2";p=0,1,..,n — 1. By
duality, Gactson & ~ ' X N X W (see the proof of Theorem
1)

(r*x =) fIT) = (f| 7x)T).
Or,
‘IT*(.X)(SI,SZ,.-.,S” _1sU4s g)

=[(:ngpap_q(x_l)d’o(x—l)) et

q
@ being a morphism of Lie algebras, we define a closed form

Arnal et al. 282



o’ on G by

o’(X), = (flmx)(Dp s \ (X Np,n 1) -

We now define I (x, f) as in the proof of Theorem 1. We
have

I(x, f) = (flla, 1 (5D, )5

Lixy, f)=1xf)+I(ym*x"")f).
This proves the relation at order n:

a,00) = 3 a,_,x) Bolx) ay(3) Soly 7).

=0

and @& is a morphism up to order n. Q.E.D.
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Interaction-set scattering equations
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The generalization of the pair-labeled Rosenberg equations for many-particle scattering are found
in the case where there are arbitrary multiparticle interactions. These are called interaction-set
equations because they involve auxiliary transition operators which are labeled by the same set of
partitions which characterizes the various connectivities of the interparticle interactions. The
technique which we employ also provides the analogous extension of a recently proposed set of
connected-kernel multiple scattering equations for the Watson-type transition operators.
Further, the structure of the interaction-set equations leads to the identification of an entire class
of interaction-set connected-kernel scattering integral equations, each of which is based upon a
distinct choice of unperturbed Green’s function and its associated connectivity structure. The
generalized Rosenberg equations and the connected-kernel Watson-type multiple scattering
equations, which are limiting members of this class, correspond to the choice of the N-free-
particle and two-cluster-channel unperturbed Green’s functions, respectively.

PACS numbers: 03.65.Nk, 03.80. + r
I. INTRODUCTION

The scattering integral equations proposed by Rosen-
berg' were among the first generalizations to more than
three particles of Faddeev’s” connected-kernel approach to
scattering theory. These equations have played an impor-
tant, although not well-recognized, role in the development
of muitiparticle scattering theory in the last decade.>® The
distinguishing feature of the Rosenberg equations is that
they are posed in terms of auxiliary transition operators that
are indexed by the same partitions used to label the interac-
tions. The physical amplitudes are then recovered by selec-
tive summations over these indices. Some possible advan-
tages of the Rosenberg approach for nuclear reaction theory
are discussed in Refs. 9 and 10.

In all previous work'*>%? involving the Rosenberg
equations, only pair interactions are considered so that the
transition operators are labeled by the N (¥ — 1)/2 pair parti-
tions i', where N is the total number of particles. The deriva-
tions of the Rosenberg equations given in Refs. 1, 6, and 9 do
not generalize in any obvious fashion to include multiparti-
cle interactions. The reason for this is basically graph-theo-
retical; namely, these derivations depend crucially upon the
particularly simple form of the so-called almost-connected
graphs,''112 which is realized when one has only pair inter-
actions. With multiparticle interactions the possibilities for
“almost connectedness” are much more numerous, and this
complicates matters considerably. In the present work we
avoid these difficulties by means of an entirely different ap-
proach, which enables us to obtain the generalization of the
Rosenberg equations to include multiparticle interactions.
We refer to these equations as the interaction-set equations
because they are posed in terms of auxiliary transition opera-
tors which are indexed by the same set of partitions which
characterize the interparticle interactions.

As emphasized in Refs. 13 and 14, truncation schemes
in nuclear reaction theory generally lead to few-body effec-

* Present address: Department of Physics and Astronomy, University of
Maryland, College Park, Maryland 20742.
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tive interactions which, from a microscopic point of view,
are of a multiparticle form. Our primary motivation for tak-
ing up the generalization of the Rosenberg equations is de-
rived from this occurrence of multiparticle interactions rath-
er than merely to include the possibility of fundamental
multiparticle forces, although the latter may prove impor-
tant in themselves. In fact, as discussed at length in Ref. 14,
the fundamental multiparticle interactions are actually a
very special case of the types of interaction we wish to in-
clude. The special advantages of interactions-set-type equa-
tions as proposed in Refs. 9 and 10 can then be considered in
the context of realistic approximation schemes to nuclear
reactions.

The similarity of the Watson'” and Rosenberg ap-
proaches when there are only pair interactions has been
known for a long time and provided the original motivation
in Ref. 1. Recently this structural similarity was employed to
obtain connected-kernel forms of the original Watson inte-
gral equations.’ The generalizations of the Watson formal-
ism to the elastic scattering of two composite fragments with
arbitrary interactions have also been found.'*'¢ In this arti-
cle we establish the structural similarity between these gen-
eralized Watson equations and the interaction-set equations
derived herein and then use this relationship to find connect-
ed-kernel integral equations for the generalized Watson
transition operators, thus extending the connected-kernel
multiple scattering equations of Ref. 9. Finally, we show that
the interaction-set equations and the connected-kernel mul-
tiple scattering equations are simply limiting cases corre-
sponding to N and two fragments, respectively, of a whole
class of interaction-set-type equations. Each of these equa-
tions is shown to be identical in terms of its associated con-
nectivity structure.'’

When we refer to the connectivity of operators, we refer
to the translational invariance properties of these operators
with respect to various subgroups of particles.'” This is
known as string connectivity € ;. In brief, subgroup invar-
iance (noninvariance) is correlated with disconnectedness
(connectedness). The elaboration and extension of this con-
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ception of connectivity is reviewed in Appendix B.

Many of the general expressions in this paper are rather
condensed. Therefore, for illustrative purposes we explicate
in Appendix C some features of the interaction-set equations
in the particular case of four particles.

Il. INTERACTION-SET EQUATIONS

Our development makes extensive use of the results ob-
tained and the notation'® employed in Refs. 14 and 17 (see
also Appendix A"). X

The interaction set is the set'® A of all partitions b of the
N-particle system such that [V'], #0, where [ V'], is the b-
connected part of the total interaction V:

V=3 1V],. 2.1)
bed
The (“prior”) transition operators
T** =V +GV?) (2.2)
are expressed in terms of the external interactions
Ve= z Za,b V., (2.3)
beAd
where
4,,=1, bda
=0, bCa. (2.4)

The notation bC a a means that bis contained in (or equal to)
a while b a signifies that b is not contained in a.V’
The operators T *° satisfy the generalized BRS equa-

tions'*!®

T=M+.4)G,{Q, G "+ (P, + )T}, (2.5)
where we have used a matrix notation in the partition indices

for the sake of brevity. For instance, T represents the matrix
(T**), while .# is the matrix with elements (), , = 1. Also

M,, =[VGGy l]b Sl,b ) (2.6)
where [---], denotes the b-connected part of the bracketed
operator, §,, =1 —4,,, and"

M =4P,[V], #0Q,[G1Gq ", 2.7)

r=0,4°CQ,. (2.8)
Here P, is the projector onto the i-cluster partitions, Q,
=I—P and([G]),, =[G, 8,,- The partition which
contains only one cluster is denoted by 1 [cf. (2.6)]. The diag-
onal matrix C has elements

Co=(=1)(n, —It= —(4 Y., (2-9)

n, is the number of clusters contained in partition g, while
(G)ap = G, 8, The superscript ¢ represents the transpose
operation while
A=Y —A. (2.10)
The full and free Green’s functions are denoted by G
and G, respectively. The channel Green’s functions are G,
=(E+ 10— H,)" ', where H, is the channel Hamiltonian
H, + V,, the N-particle kinetic energy operator is H, and
V, =V — V*. Obviously, G = G, and
G, = (E 4+ i0 — Hy)~, where we use 0 to denote the N-clus-
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ter partition.

Our strategy for obtaining the generalized Rosenberg
equations is the reverse of that employed in Refs. 1, 6, and 9
for pair interactions. We exploit the fact that T'is proportion-
alto 4, namely,

T*=Y4, T.G,G; ', (2.11)
in order to derive integral equations for the interaction-set
operators

T.=[V].[1+GV]. (2.12)

This is done by using the inversion theorems derived in Ref.
17 for A.202! In this regard we note that the sum in (2.11)
effectively excludes the partition Osince [V'], = Oand, conse-
quently, 7, = 0. We note that when there are only pair inter-
actions, corresponding to the partitions /', then [V'], = Oex-
cept for [V ], = V, and then the T are essentially the
Rosenberg operators.

The original®! inversion theorem for 4 is equivalent to
the statement that the restriction'”

A=0,,4Q,, , (2.13)

Q,=1-P —P,, (2.14)
of 4 to the (0,1)-excluded space possesses an inverse:

A7 =100 800,17 (2.15)

If we note that 7!* = 0, then, for a#0,1, we find from (2.11)
that

2 (Z _l)a,d T @b

d #0,1

= (Ta + [.;Z‘m 4 —l)a,,,} Tl) G,G; . (2.16)

A somewhat neater inversion algorithm follows if we
exploit the fact that'’

A-'=_0,47'Q, (2.17)
where

A=0,40, (2.18)
We have then from (2.11) that (recall T, = O}

S AN, T*=T,6,6,". (2.19)

d#1
[If one uses Egs. (3.33b), (3.49a), and (3.50a) of Ref. 17, it is
easy to show that (2.16) and (2.19) agree for a#1.]

In matrix notation (2.5) becomes

0,TQ, = ABQ,G, (0. G~'Q, + (P, + ') Q,TQ,},

(2.20)
where
B, ={[[V]1,GG5"'], +6,,[V],[GG3'],}5,,-
(2.21)

The representation

(7.1, =[[¥1.665 '], = {UV1IG]D) G5 }us »
(2.22)

where
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(716G oo =3 84 [V1,IG]., (2.23)

will prove to be useful in Sec. II1. Here auc is the partition
with the largest number of clusters which satisfies a Cauc
and ¢ Cauc. Evidently (2.23) is a sum of b-connected terms.

If we apply the inversion formulae (2.17)+2.19) to
(2.20), then we obtain the interaction-set scattering integral
equations:

T, =3 Bup+ 3 Kideo T » (2.24)
b b
where
(KI )a,b = 2 Ba,c (5n5,2 60,:1’ + rc,d) GO 3d.b .
cd #1
(2.25)

We observe that if we call K the kernel of (2.5) or (2.20),
then

K=A4K 4! (2.26)
Hence
K*=A"'K%4. (2.27)

Itis shown in Ref. 14 that X %is a connected operator and so it
is obvious from (2.27) that K ? is connected as well. Thus
(2.24) constitute a set of connected-kernel equations, and
they represent the generalization of the Rosenberg equations
to include arbitrary multiparticle forces.

It is easy to recover the standard results when there are
only pair interactions. First, we note the identity [Ref. 17,

Eq. (3.61a)]
A'Q,CAP,_, =P, AP, _,, (2.28)

where P, _, is the projector on the pair partitions. Then if
[V1, =0except for [V, ], =V, we obtain

T, =3 [V:(1+GV)],

bH#1

+ Y [V:(1+GV)], 4,,GT;, (2.29)
vy

where the sums in the kernel of (2.29) are over all pairs j’ and

all two-cluster partitions y. In that we begin with (2.20), the

result {2.29) represents still another derivation of the Rosen-

berg equations.

The passage from the interaction-set equations (2.24) to
the BRS equations or other sets of channel-labeled equations
depends entirely on the properties of the matrix 4 and its
various submatrices square or nonsquare.”'® The matrix 4,
which was introduced in Ref. 22, and its various restrictions,
suchas P,APy _ ,,% possess a host of remarkable properties,
particularly in regard to inversion. Some of these properties
have been explored in Ref. 17. A more extensive analysis of
the inversions of the restrictions of 4 is undertaken in Ref.
10.

lil. WATSON EQUATIONS

As we pointed out in Sec. I, the Watson'® multiple scat-
tering equations are the prototype interaction-set equations.
They provided some of the motivation for Rosenberg’s origi-
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nal work. In this section we show how the techniques of Ref.
14 and Sec. II can be adapted to the problem of obtaining the
generalization to arbitrary multibody interactions of the
connected-kernel multiple scattering equations of Ref. 9.

The Watson formalism is specifically designed to deal
with the elastic multiple scattering of a particle from a bound
target. The generalization to the case of two complex frag-
ments is straightforward.'® A significant aspect of this for-
malism is that it singles out the two-cluster partition «,
which corresponds to the relevant asymptotic channel. With
this in mind, we introduce the a-biased counterparts of the
transition operators T %% :

T @)=V ** + V**GV>=, (3.1)
where
Va,b = Zza,c Z1.'7,c [V]c . (32)

The only operator among (3.1) which {in general) corre-
sponds to a physical transition operator is

T *¥a)=T *°, (3.3)
which is the object of primary interest. We note that

T%)= S 4,, T,la), (3.4)
where

Tyl@)= [V *],(1 + GV 9 (3.5)
and

[Va]bEZa,b Vi, . (3-6)

Itis shown in Ref. 14 that the 7, (@) satisfy the (Watson-type)
multiple scattering equations

T,(@)=t,(a) {1+ G, 3 8, T,la)|, (3.7)
where

tLia)=1V"7], + [V °].,G.t,la). (3.8)
We note that

tla)=[V*], +[V*].G,lallV “],, (3.9
where

G lal ={G; = [V=1,}". (3.10)

Our strategy for deriving connected-kernel interaction-
set equations for T, (a) is the same as in Sec. II. Namely, we
use the BRS-type equations for the operators T “°(a), which
are derived in Appendix A, and the inversion formulae
(2.17)2.19). The repetition of that same procedure, as well
as Eqgs. (3.1)~3.10), suggests a further generalization which
makes the structural similarity of the Rosenberg and Wat-
son equations far less mysterious. It should be clear that both
equations are merely extreme cases of an entire class of inter-
action-set equations which are biased with respect to an arbi-
trary partition b. The relevant interaction-set operators are
then

T,b6)=[V*],1+GV?). (3.11)
We obtain Rosenberg-type operators for b = 0 and Watson-
type operators when b = a is a two-cluster partition. Since
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[V'], =0, thecaseb = 1istrivial. The generalization (3.11)
may prove useful, for example, in few-body treatments of
breakup and rearrangement scattering, that single out cer-
tain multicluster asymptotic channels for special considera-
tion.

We now return to the specific example of the Watson-
type operators, although all of our analysis will carry over to
the operators (3.11). The full Green’s functions in (3.1) and
(3.5) are handled in an a-biased fashion. We note that

H=H, + V&4 Ve,

where

(3.12)

Vf=2b‘,4a,b [vels, . (3.13)

Thus, if we call G, (@)= (G ;' — V)~ ! = G,(a), then
G=G,la)+ G, @ V*G. (3.14)

Equations (3.1)3.14) make evident the fact that the
analysis of Sec. IV of Ref. 14 and Sec. II of the present paper
carries over to the Watson case with the replacements

G,—G, = G, (0) = Gya), (3.15)
G,—G,(a) = G,(a), (3.16)
Vi.—[v-l.. (3.17)

Specifically, it is shown in Appendix A that one then finds as
the counterpart of (2.20):

Q\T(e) Q=3B (2)Q,G, {¥ Gla)' @,
+ P+ T)QT@) Q1) . (3.18)
We have again employed a matrix notation in the partition
indices [e.g., (G (@)),, = G,(a) 8, ,] and, in this notation,
Bla)=([V"1{Gl@}) G.'Q

+P V), 0 {6} Gt (3.19)
Here, corresponding to (2.23), we have
(¥ “1-{G(@))as @
=815 3 Bpar [V 71, {Gla)]., (3.20)
where )
(Glal)s =3 (4 s Gule) (3.21)

is the counterpart of [G ], , the b-connected part of G, and
({G (@)})as = {G(a)], 8,,. We discuss the connectivity
properties of { G ()], shortly. From (3.18) and the inversion
formulae (2.17)~2.19), we obtain the generalization of the
multiple scattering equations of Ref. 9 [cf. (2.24) and (2.25)]:

T,la)= ;Ba,b(a)+ ; { Kil@)} op Tyla),

(3.22)
where
{Kil@)}op = Y Bacla)
cd #1 R
X6y 20ca+Tca) G, Ay, . (3.23)

The connectedness structure of { G (@)}, is of crucial
importance in determining whether (3.18) and (3.22) are con-
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nected-kernel equations or not. First we note that

Gila)= Y 4., [Gla)}, (3.24)
b
so that, in particular,
G=G,a)= 3 (Gla)}, (3.25)
b
and
G, = Gola)= {G(a)], - (3.26)
From the resolvent identity
G,la)=G, + G, VZG,la), (3.27)

(3.24) and the inversion properties of 4., ,” it is easy to
show that

{Gla)la =640 G, + G, ;5,,,:” Vi {Glalj. »
- (3.28)

which can be compared with
[Gla=208,0Go+Go Y bon [V1, [G]. . (3.29)
b,

It is shown in Appendix B that { G (@)}, consists of a sum of
operators of connectivity ¢, cDa:

(Gla)l.= ¥ 4., [{Gla).].-

We also note that since [A ], is a-connected, then

41, {Gla)}, = ZAc,b 4], [{Gla)},].

(3.30)

(3.31)

consists of a sum of operators of connectivity auc, where
auc D aub.

Equations (3.24)—{3.31) show that, in the terminology of
Ref. 17, we can define an a-biased connectivity structure,
% .- This is the analog of the usual structural conception of
connectivity in scattering theory which is called string con-
nectivity and is identical with € , except that the role of G is
now taken over by G, [in going from (3.29) to (3.28), for
example).?* The substantiation of this observation, as well as
some of the comments to follow, is provided in Appendix B.

As suggested by (3.26), G, is completely disconnected
in € . Also, as illustrated by (3.28), the product rules for the
% 4, 0r { }, connectivity structure are the same as for the
usual string connectivity. Thus the product of {4 }, and
{B}, has &, -connectivity aub. By definition, the €, pro-
perties of an operator are determined solely by the interac-
tions external to the partition « (cf. Appendix B).>** In parti-
cular, {4 }, is that part of 4 which has &, connectivity a
when the interactions internal to partition « are treated as if
they were completely disconnected operators. For example,

(Vals =Vabho (3.32)
and
Ve, =1[vel,. (3.33)

Since the product rules in 7', for operators of different
connectivities are the same as in %, the same proof (given in
Appendix A of Ref. 14) that (2.5) is a connected-kernel equa-
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tion establishes (3.18) as a connected-kernel equation in %,
and, most importantly, in &, [cf. Eq. (B13)]. Clearly (3.22)
shares these properties with {3.18), and we note that (3.19)
and (3.20) can be expressed as

(B(a))a,b = [Sl.a {{Va}a GGc;-l}b
+6.. V1 {GG},] 6.5 - (3.34)

Equation (3.34) is to be compared with (2.21). In the case of
only pair interactions, it is straightforward to combine (3.34)
with (3.22) and (3.23) to obtain the analog of (2.29):

Tia)= Y ({V*}: GG '}

b#1
+3{{V*}:.66;.},4,, G, T;@).
v.J

(3.35)

This provides an alternative derivation of the result of Ref. 9.
The development of this section is a consequence of the
fact that the unperturbed Green’s function G, plays no role
in the connectivity analysis of Sec. IT and of Ref. 14. Thus, if
we deal with equations with the same formal structure ex-
cept for the replacements (3.15)—(3.17), then it is obvious that
analogous connected-kernel properties will realize for the
new equations. The same considerations apply to (3.11). For
example, if we take as the counterparts of (3.15)(3.17)

G,—G, = G,(0}, (3.36)
G,—G,la)=G,(b)=(G; ' - Vi)', (3.37)
[V]a—»[Vb]a =Zb,a [V]a b4 (3'38)

then the relevant connectivity structure is % ,, where the
role of G, in string connectivity is taken over by G, (cf. Ap-
pendix B). The counterparts of (3.18) and (3.22) are obvious,
as is the fact that they constitute connected-kernel equations
in ¢, and ¥ ,. Since nothing we have done is predicated
upon a being a two-cluster partition, all that is required is
the identification a—b, € ,—% .
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APPENDIX A

Here we sketch the derivation of (3.18). With the use of
(2.9), (3.13), and the sum rules

E C.4. Sa,l = Sb,l (A1)

and
SC b, =1, (A2)

it is easy to show that

yes= z,," C, (Ve +4,, [V°])8,,
=3 (Pla).s - (Aa3)

288 J. Math. Phys., Vol. 24, No. 2, February 1983

With (A3) and the resolvent identities (B5) we find that (3.1)
can be placed in the form

T**(a)= ¥ (¥(a)),. G.la) [G,l@)* + T**(a)] .

(Ad)
In a matrix notation (A4) can be written as
T(a)=7(a) G(a) [#G (@) + T(a)], (AS3)

where, e.g., (fi (@) = G.la)b,,. Wenote that 7 (o) can be
expressed alternatively as

7la)= (Vula) + 4P, [V, £Q,) CQ, = ¥, (a) CQ, ,
(A6)
where
Vi@ = V525, , (A7)
so that (A5) becomes
T(a)= V(@) CQ Gla) [#Gla) + Ta)]. (A8)
It is useful to express ¥,,(a) Q, as (note [Q,,C] = 0)
Vila) Q=4 ([V =] + P,[V], #P,) 4' @,
=AV°A* o, (A9)
where the matrix [V *] is
([V Ny =80y [V =1, 8, - (Al0)
In obtaining {A9) we have used (2.3), (3.13), and the identity

FP A =7,

Now from (3.21)

(Gla),=3 (4 . Gale), (All)
so that a

Ga(a)=§b‘,4a,b {Gla)}, - (A12)

Then, if we employ (A12), (A9), and the identity 4,, 4,,.
=4, 4., We can show that

V@ Q,Gla)=4 [V~ {G)}] 0,40,
where ({G (@)}),,={G (@)}, 8,,, and

[V *{G (@)} s = DI (V %a (Gla)). . (A14)

(A13)

Thus (A8) may be written as
Tia)=4 [V *{G@)}] ¢, 4'QC1F Gla)™ + T,
(A15)
or, upon noting that 4 * Q,C.%¥ = Q,.%, as

Tia)=4 [V ~{G(a)}] Q, [£Gla) '+ (P, + ) T,
(A16)

where we have made use of the identity 4 'CQ, =P, + I
and I" = Q,4° CQ,. Equations (3.18)+3.20) follow immedi-
ately upon noting that

[V {G@}] g =1V {G@)] e

+PV], £ (G}, (A1)
while (2.5~2.7) follow analogously by setting a = 0, in
which case {G (a)]—[G].
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APPENDIX B

In this appendix we explicate the basis of the <, con-
nectivity structure and, in particular, establish Eq. (3.30).
We define

A=Y (412, (B1)

where [4 14 is defined to be that part of 4 which has €,
connectivity a in the interactions external to partition a. That
is, in the assignment of connectivities with respect to the
cluster decomposition (B1), the interactions internal to parti-
tion a are treated, for the purpose of classification of terms,
as if they were completely disconnected operators. This de-
fines a connectivity structure % ,."”

The sum over a in {B1) may be restricted further de-
pending upon the structure of 4. An example of this which is
of particular importance is the Green’s function G, (a) in
which the interactions external to a are also internal to b;
thus

Gyla)= zAb,a [G.l)]s - (B2)

The resolvent identity

G,la) = G,la) + G,la) ¥, Gsla), (B3)
holds if a C b. It follows from (B3) that

[Gsla)] = [G.la)]Z, aCb. (B4)
In a similar manner one infers from

G=0G,la)+ G,la) V** G, (BS)
which holds for arbitrary a, that

[G1Z =[G.la))s - (B6)
We conclude from (B2}{B6) that

Gb(a)=2Ab,a (GIZ, (B7)
and therefore

[GI= 3 (4 s Gola). (B8)

b

The comparison of (B7) and (B8) with (3.24) and (3.21), re-
spectively, yields the identification

(G}, =[G]2. (B9)
Since it is evident from the definition of [4 ]& that

[[4]12]. =0, adc, (B10)
we infer, in the case of the Green’s function, the string con-
nectivity content for { G (@)}, indicated in (3.30).

None of the preceding discussion depends upon the
two-cluster nature of @. Consequently, all of our arguments
generalize in an obvious fashion to a connectivity structure
% , defined with respect to an arbitrary partition 4. In this

context we encounter connectivity brackets [ 12. We note
that the usual string connectivity corresponds to

[1=I[1. (B11)

The counterpart of (B10) is
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[[A ]Z]c =0’ aCIc,

restricting the string connectivity content of operators
which are defined in terms of other connectivity structures.
We note, in particular, that if [4 1% #0, then

[[417].:#0. (B13)

Finally, we remark that in the text we have chosen, for
the sake of contrast and emphasis, to use the { } rather than
the [ ]“ notation, where the connection is provided by (B9),
for example. In general, however, the [4 ]2 designation of
the a-connected part of an operator in &, is perhaps the
more consistent notation.

(B12)

APPENDIX C

The interaction-set equations (2.24),

T,=B,+Y (Ki)op T» (C1)
b
where
B, = z B,, (C2)
b

and where B,, and (K, ), , are given by (2.21) and (2.25),
respectively, possess a deceptively compact appearance. In
order to illustrate the detailed substructure of these equa-
tions, we consider the case of N = 4 with pairwise, three-
body, and four-body forces.

It will be necessary to classify the partitions a,b,--- only
on the basis of the number of clusters which they contain. As
in the text, the one-, two-, three-, and four-cluster partitions
are denoted as 1, a, i, and 0, respectively.

The full interaction for N = 4 is

Ve 3 Vi + XVl + V] (C3)

We stress that, for the two-cluster partitions & which have
two particles in each cluster, the a-connected operators [V],,
do not correspond to any of the usual microscopic interac-
tions. Such seemingly unphysical operators do appear very
naturally in truncated nuclear reaction theories.'>'*

We recall that the full Green’s function G possesses the
cluster decomposition

G=Gps + (G, (C4)
where
Gpis = Go + Z (Gl + Y [G], (C5)

and where we denote the disconnected part of an operator &
as & p1s - The following linear combinations of the variously
connected components of G are also of interest:

8 =G, + [G]; + Zaa,rui (G,
+ 3 40 G, (C6)

ga EG0+ZAa,f [G]r + [G]a . (C7)

It will suffice to tabulate the nonzero components of B,
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and (K} ), ,- One finds, for the Born terms,

B, =V, 8 G5'=(V:Gos G5 ' (C8a)
B,=[V),8.G5'=[lV]1.Gl.Gqs ", (C8b)
B, ={V], Gps ol (C8¢)
The nine components of the kernel are

Ky = S [V G, 4,,, (C9a)
(Ky )i’,ﬂ =(V: Glpis

— A5 ([V: Glg+[V:Gi)s (C9b)
Ky)iy =V: & =Vs Glpis » (C9¢)
(Kidas = [V )a 8a Bap s (C9d)
Kooy = [V e 8a ay » (C9e)
(Ki)oy =1[V]a 8a s (C91)
(Ki)y = V], Gpis » (C9%)
(Ki),p = [V 11{Gois —8&s}> (C9h)
K, =V, 3G, 4,;. (C9i)
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Extension of the Froissart-Martin bound for complex scattering angles is improved using the
solution of the Dirichlet boundary value problem for doubly connected domains. The Froissart—
Martin bound for physical scattering angles is used as input value on one of the two boundaries.
The obtained bound is valid in an ellipse smaller than the Lehmann—Martin one. Possibilities for
further improvements and applications are discussed.

PACS numbers: 03.80. +r

1. INTRODUCTION

In a previous paper,' we obtained an extension of the
two Froissart-Martin high-energy bounds on the elastic
scattering amplitude f(s,cos &),

| fls,cos 8)] < Cis*"*In®/%s [ |sin 6 |'/2, for 0#£0#7 (1.1)
and
| f(s,cos 8)| < CypsIn*s, for@=0or7 (1.2)

to unphysical scattering angles. Here, s is the center-of-mass
(c.m.) total energy squared and @ is the c.m. scattering angle.
The extended bound is valid in a complex neighborhood of
the physical interval — 1<cos €<1 inside the Lehmann—
Martin ellipse, whose semimajor axis p is equal to 1 + a/s
with some @ >0 and whose fociare atcos = + 1. If we
represent a general point z of the complex plane in the form

z=ycos @ +i(y>—1)"?sin @ (1.3)

(with 0<8 < 27 and /> 1) and if we introduce the following
two functions of s,

5= (24)1/2 S_l/2 ln—l s,

A=14+1/Ins, (1.4)
we can write the new bound! in the form
o—-(y—1
| fls ] <C r—1)2 (1.5)

1
B—(* — P26y~ — AP

where y* = ¥ + (> — 1).!2 The bound is valid for all @ in-
side an ellipse with ¥ = ¥,, where

Y2=1+4+as 'In"%s (1.6)
for any positive @' < a. Comparing (1.6) with the Lehmann-
Martin ellipse, 7, = 1 + as™ !, we see that the validity do-
main of (1.5) shrinks faster than it by In” s with increasing
energy.

Setting ¥ = 1 on the right-hand side of (1.5), we easily
check that the formula {1.5) reproduces the original Frois-
sart—Martin bound (1.2) for forward and backward scatter-
ing, but it does not reduce to (1.1) for the other scattering
angles, giving a bound that rises faster with increasing ener-
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gy than the right-hand side of (1.1) at fixed 8. This suggests
that an improvement of (1.5) should be possible.

In the present paper we show that such an improvement
of (1.5) is indeed possible, by solving the Dirichlet boundary
value problem for a ring. As boundary values of the solution
on the inner and the outer circles of the ring, we take the
right-hand side of (1.1) and the right-hand side of (1.5), re-
spectively. As a result, we obtain an improvement of the
asymptotic bound (1.5) everywhere inside the ellipse (1.6),
which is a conformal map of the ring, with the exception of
some neighborhoods of the foci. After a brief survey of meth-
ods and results of Ref. 1 in Sec. 2, we find in Sec. 3 the explicit
form of the solution to the Dirichlet problem for a ring
(Theorem 1) and show that the solution yields a new bound
on f(s,z) that is lower than (1.5) (Theorem 2). Proofs are de-
ferred to Appendix A. Then, in Sec. 4, we use the general
formula (3.2) to derive the bound. As the solution (3.2) has
the form of an infinite series, we show in Appendix B that the
order of the summation and of the high-energy limit s—
can be interchanged. This allows us to express the result in
terms of hypergeometric functions [see formula (4.19)]. In
Sec. 5, we consider various possibilities leading to a further
improvement of the bound obtained. Concluding remarks
are given and possible applications of the result are discussed
in Sec. 6.

2. BOUNDS ON SCATTERING AMPLITUDE FOR
PHYSICAL AND UNPHYSICAL ANGLES

The amplitude f(s,z) describing the scattering of two
spinless particles can be expanded in the Legendre series

_ (S)I/Z o0
flsz) = ey IZO (21 + 1)a,(s)P;(2), (2.1)

where k is the c.m. momentum of the particle. The unitarity
condition implies that
la,(s)| <1 (2.2)

at all energies and / =0,1,2,... .
Further, we consider the auxiliary function g{s,w) de-
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fined in terms of the partial amplitudes g, s),

1/2 o

(s S (@ + (s, (2.3)
2k <o

Using the well-known representation of the general Le-
gendre polynomial P,(z),

8ls,w) =

P,(z)=—l—_f w'w? — 2wz + )72 qu,
mJr

where I' is a curve connecting the points
z— (-1 =y e “andz+ (2 — 1)"/? = y* e, we
can relate f(s,z) to g(s,w) by the formula

_1 dw
Sl =— frg(s’w) @ — 20z + 1)

where I"is chosen so that the points ¥ * ¢ * ® and the curve I"
connecting them lie inside the convergence circle Cz of (2.3)
with R>R = p + (p* — 1)"/2 Then, following the approach
of Kinoshita, Loeffel, and Martin,> we made in Ref. 1 the
additional assumption that f{s,z) is bounded, at sufficiently
high energies, by a polynomial in energy everywhere inside
the Lehmann-Martin ellipse,

(2.4)

| f1s,2)] <", 5> s, (2.5)
and obtained' the following high-energy bound on g(s,w):
|8ts,w)| <4(2a’)~VAg— 123N+ VYR — |w|)~? (2.6)

for any ¢’ <@ and |w| < R.

Besides the polynomial bound (2.6), an s-independent
upper bound on g{s,w) holds inside the unit circle. It follows
from the unitarity condition (2.2) and from the Taylor ex-
pansion (2.3), and has the form

lgls,w)| <Cy(l — lw|)~?% for |w| < 1. 2.7)

While (2.7) cannot be used at |w| » 1, its influence never-
theless extends to the ring 1< |w| < R thanks to the bound
(2.6). This is shown in Ref. 1 with the help of the three-arc
theorem. The result is

1gl5,0)| <cz(1 ~ wl +5{;'s—“") 1<|w|<F, 2.8

where

172
Fel—1 (-%‘L) .
l1+Ins\ s

As the first step, we derived in Ref. 1 a bound that uni-

Imw
A
B
-~
ol.~1%8 Re w
~ ;
~
™D

FIG. 1. Integration curve ABCD for the estimate of the right-hand side of
Eq. (2.4} in the case of physical scattering angles 8. The resulting bound is
2.11).
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w

N

FIG. 2. In the case of complex scattering angles, the integration curve I
connecting the points y*¢* and ¥ ~e ~ “*is chosen to be the straight line. The
resulting bound is (1.5).

fies(1.1) and (1.2) in one compact formula. To this end, intro-
ducing the notation

K=w —2wz+1 (2.9)
and expressing K as

K=w—7*e®Yw—y e ), y*=y+( -1
we estimate K from below
K>y — |w]| [y~ — |wl, (2.10)

while the integration curve I is chosen according to Fig. 1.
The resulting bound is

|f(s,cos0)|<—c—3( 1

2 \6?|sin@|"?
Isin 6 ]1/2 1 )
X arcta .
e TS Y S w o))
2.11)

One can easily check that it reproduces, apart from constant
factors, the bound (1.1) and (1.2) for 8»& and 6«56,
respectively.

Both the bound (2.8) on g(s,) and the formula (2.4) can
be used outside the unit circle in th w plane, i.e., in a complex
neighborhood, ¥ > 1, of the interval [ — 1,1] in the z plane.
This means that, replacing g(s,w) in (2.4) by its bound (2.8),
we obtain a bound on the amplitude f(s,z) for unphysical
scattering angles. Its form depends on the choice of the curve
I in the w plane. In Ref. 1, we obtained the bound (1.5) by
choosing I" to be the straight line connecting the fixed end
points ¥y "¢~ “ and y*e” (see Fig. 2).

3. THE BOUNDARY VALUE PROBLEM FOR HARMONIC
FUNCTIONS IN A RING

We shall need in the next section the solution of the
Dirichlet boundary value problem for a ring. Theorems on
the existence and uniqueness of the solution to this problem
are well known (see e.g., Ref. 4), as well as the explicit form of
the solution’ (see, e.g., Ref. 6). We nevertheless derive in
Theorem 1 the solution in a different form, one that is more
appropriate for our purpose. A sketch of the proofiis given in
Appendix A. In Remark 2, we generalize the result to the
case of unbounded integrable functions g,(¢) and g,(@). For
the case of a general doubly connected domain, the solution
can be obtained from (3.2) by the conformal mapping trans-
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FIG. 3. The domain G: a ring in the complex { plane, { =r ¢,

forming the ring to the domain considered.

Let C be the set of all complex numbers £. Denote by G
the domain {{eC:r, < |§ | <r,}, where r, and r, are positive
real numbers (see Fig. 3). If a function u({ ) is defined in G we
shall use the notation u(r,@ ) for it where u(r,¢p ) = u{{ ) for

= re'?.
g Definition I: A real continuous function (¢ ) defined on
G is called harmonic if it has continuous partial derivatives
of the second order and satisfies Laplace’s equation.

Theorem 1: Let g,(¢) and g,(@) be real continuous func-
tions given for 0<@ <2, and let g,(0) = g,(27) and
8,(0) = g,(27). Then there exists a harmonic function u(r,@ )
on G continuous on the closure G and such that

ur,@)=glp) and ulr@)=glp) foralle.(3.1)
The function u is unique and is given by
1

ulrp) = Zain(ra/r)

x| 2 [ " g0 dg +In - f v a4

+ —:;L [gl(rl')Q (r—r‘ , r—rz P — 'ﬁ)

+ 8,0 (ri Do) av 32)
where
Qabp)= il @b — 1)@ " — 1] 'cosnp.  (3.3)

Proof of the theorem is given in Appendix A.

Remark I:Certainly Q (a,b,¢ ) = Q(1/a,1/b,p ) foras£0,
b #0,and |Q (a,b,@ )| < oo for|a| < 1,|ab ?| < 1.Thelaststate-
ment follows from theinequality |ab | = (|a|)!/*(|ab ?|)!/?* < 1.

Remark 2: Assume that the functiong, (@ ) is not contin-
uous at @ = 0 but is integrable. Then u(r,@ ) given by the
formula (3.2) is a harmonic function fulfilling u(r,p ) = g,()
for 0. Define £, (¢ ) = g,(p ) for |g,(@ )|<n, £, (@) = n for
&ilp)>nandf, (@)= —nforgp)< —n,and u,(rp) the
corresponding solutions given by the formula (3.2). Then
u(rp)=1lm,_  u,(re@)with the exception of the point
r=r,p=0.

Let C again denote the set of all complex numbers, and
B a bounded region in C. Denote by B, ({ ) the domain
fweC:|w — £ |<r}, i.e., the disk of radius 7 around ¢.
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Definition 2: A real continuous function (¢ ) defined on
Bis called subharmonic if 4(£ )<(1/27)§3u(& + re) dep for
{eB and r> 0 such that B, (£ )B.

We remind the reader that if /(£ ) is a holomorphic func-
tion on B then | f{¢)| is a subharmonic function in CB.

Lemma (Principle of the maximum): Let %(¢ ) be a sub-
harmonic function in B. If a point §,€B exists such that
u(lo) = max {u(l): £eB } then u is a constant, u(¢ ) = u(&,).

This theorem can be found in standard textbooks; we
therefore give only a brief sketch of the proof. Let {,eB be
such a point. Then there exists 7, > 0 such that B, (£,)CB.
Assume that a point §,€B, (£,) exists such that u(Z) < u(£,).
The continuity implies that a d > O exists such that
u(§) <3[ulG) + ulSo)l for §€B,(S,). Setting ry = |5, — &5 we
have u(¢ )<u(&o) for §eB and u(L) < 3[u(g,) + u(So)] for
&eB,(£,). This implies that

1 2 i@
L f u(Co+ rie®) do <ullo),

which contradicts u(,)<(1/27)§Zulé, + r,€'?) de. Thus, it
follows that u(¢ ) is constant on B, ({,). Repeating this proce-
dure, we successively prove that  is constant on the whole B.

Theorem 2: Let the function ¥ be subharmonic in the
ring G and continuous on the closure G. Let v be harmonic in
G and continuous on G. If «(¢ )<v(¢ ) on the boundary of G,
then u({ )<v({)in G.

As in Theorem 1, we defer the proof to Appendix A.

This is the mathematical background of our approach.
In the following section, we use it to improve the bound (1.5)
everywhere inside the ellipse given by (1.6). Theorem 2 is
used to show that the new bound, which is a harmonic func-
tion in a doubly connected domain, is better than the old one,
(1.5). Theorem 1 gives the explicit form of the harmonic
function.

4. DERIVATION OF THE BOUND

The solution (3.2) to the Dirichlet boundary value prob-
lem for the ring G can be applied to any doubly connected
domain D, provided that the corresponding conformal map-
ping between G and D has been carried out. In our case, the
domain D which the interval of the ellipse
y,¢08 @ + i(y3 — 1)"/%sin @ from which theinterval[ — 1,1]
has been removed. We denote this domain by E; it is the set of
points that is parametrized by ({1.3) with 0<8 <27 and
1 <¥ <y,. Its inner and outer boundaries, (1.3) with ¥ = 1
and (1.3) with y = y,, aredenoted by E, and E, , respectively
(see Fig. 4).

The ellipse E is mapped onto the ring G in the complex £
plane, { = | e, 1 <|{ | <7, (see Fig. 3) so that

=g,
r=§gI+1517Y (4.1)

On E |, the boundary value of the harmonic function is equal
to the right-hand side of (1.1), i.e.,

gilp)=4,/|sinp|'"?, (4.2)
where
A, =C,;s**1n*2s, (4.3)
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FIG. 4. The domain E: the set of points of the form z = y cos 8

+ i{y? — 1) sin @ with 1 < < 7,. E is obtained from G (see Fig. 3) by the
conformal mapping (4.1).

Re z

On E, , the function g,(g) is the right-hand side of (1.5), i.e.,
&lp)=M(y,), (4.4)
where
§—(r,—1)4
Miy,)=C
) B AT Bt A T
(4.5)

is independent of @.

Sincef(s,z) is bounded, at sufficiently high s, by g,(@) and
g:(p)on E, and E_ , respectively, it must be bounded, being a
subharmonic function, by the harmonic function (/¢ |, )
everywhere in the domain E. This is the content of Theorem
2. It applies to our situation at s— 0. Indeed, g,(@) = M ()
onE, andg,(p)<M (1) =C(2a)"" s In’s on E, except for
asymptotically smail neighborhoods of the foci. Thus,
u(|¢ | @ ) < M (y,) holds everywhere except these neighbor-
hoods. This proves that the new bound is asymptotically
better than the original one.

Let us turn now to technical aspects of the derivation of
the bound. The right-hand side of (3.2) is a linear combina-
tion of four integrals, which we denote by 7,, I,, J,, and J,,
respectively. Three of them can be easily calculated:

= A4,2/m)' [ QP
I, =2mM (y,),
J,=0. (4.6)
The integral J, has the form of an infinite series
Jilp)=4, Y a"B* —1)[(aBf"—1]7"
n=1
2 d
xf cos[n(p — ¢)] |—¢—|1—5 ; (4.7)
(o]

wherea = 1/rand B = r/r,.
In this notation, the new bound on | f(s,z)| can be writ-
ten in the form

| fls,2)| < u(rp), (4.8)
where
1 1
R [(ln : )11 +(In AL, + 27p )] 4.9)

where zis given by (1.3), 7 = | |, while y and 7, are related to
r and r,, respectively, by the conformal mapping (4.1). The
bound (4.8) is valid at all 1<y<y,, where y, is given by (1.6).
Thus, 7, tends to 1 with increasing energy and, as a conse-
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quence, ¥,, #,, and r also tend to 1. In other words, the ellipse
E shrinks to E, and the ring G shrinks to the unit circle with
increasing energy.

Thus, the main aim of this paper has been achieved. We
have found a new bound, (4.8), which is better than the pre-
vious one, (1.5). On the other hand, one should spend some
effort to simplify the expression (4.7) for J,, in order to make
the bound more transparent. The remaining part of this sec-
tion is devoted to this task.

Evaluating the integrals on the right-hand side of (4.7)
and performing some elementary operations, we can give
Eq. (4.7) the form

= (1 —B*) m

Jiig) = 4m24, 2kg)] 2k
(@) = 4m2 [r(3)12 P 1—(3)“[ 2kl ),
(4.10)

where we adopt the notation
(@ =TI(a+k)/T(a)

In order to simplify further the expression for J,, let us
consider only its high-energy dominant part. Denoting

bi(s) = (1 =B*)/[1 —(aB)*], (4.11)

we notice that lim,_, , b, (s) is independent of k. Indeed, tak-
ingintoaccount thatlim_ ,  a(s) = lim B (s) = 1and us-
ing the PHopital rule, we obtain

b: = lim b, (s)

lim =p'(s)/ [alsiB(s) + a'(s)B (5)].

The infinite sum in (4.10) can now be simplified as follows.
Introducing the notation

§—> a0

(4.12)

a = o
by = b, (s), (4.13)
and
(3
= 2kp)] =—,
[cos(2ke )] e
we write (4.10) as
Jilp) =4m24, —— Z ,biCr- (4.14)

[F (3) 17 &
Then, we use the following relations, which are proved
in detail in Appendix B;

lim {i abec, —6% akck} —0 (4.15)
>0 (k=1 k=1

for @ #0, 7, and
lim [i akbkck/(l;i akck)] =1 (4.16)
s k=1 k=1

forb=1and ¢ =Oor .

This allows us to express the high-energy approxima-
tion to J, in terms of the hypergeometric function ,F,. Intro-
ducing the symbol o = (r, — r)ir, — 1),

)

1 [I,G)]z [2F1( ’4)4aX2)+2F1(194)4; 2)],

(4.17)

where y = (1/r)e’* =ae'® and y * denotes the complex conju-
gate to y. We take @ to be an arbitrary fixed, s-independent
real number. As s tends to o, v approaches the unit circle

Jilp)=
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from inside. The functions ,F,(1,};};) for @ = y * and
o = y ** have singularities on the circle, as can be seen from
the following well-known formula’

FiLgo) = (1 — o) 72 F\( = Lijo). (4.18)

Note that the series ,F,( — },4;3;w) converges in the whole
disk including the boundary circle and, in particular, also
the point ® = 1.

Using (4.18) in (4.17) and inserting J, into (4.9), we ob-

tain as s— o

ulrp) = = 11" {ir— 1M (1)

+%2—§)’3T[1+F(n¢)1<r2—rm ,

where F(r,p ) is shorthand notation for
F(rp)=F(— LE3€%)1 —a’e?)7/?

4 2Fl( _ éré;g;e_ 2i¢p)(1 _ a2e— 2i¢:)—l/2
and is finite at 7 = 1. The original bounds (1.1) and (4.4) are
obtained from (4.19) by setting » = 1and r = r,, respectively,
in which case the first and the second terms in (4.19) vanish,
respectively.

We have already mentioned that both ¥, and r, ap-
proach 1 from above with increasing s. As a consequence, ¥
and r must also tend to 1. Let us now consider this problem
quantitatively; this will give us the high-energy behavior of
the new bound u(r,¢ ).

The high-energy behavior of ¥, is given by (1.6). Using
(4.1), we get the behavior of 7,:

rye=1 4 (22')%~ 2 In" ' s. (4.20)

The high-energy behavior of u(r,@ } is determined by rand y.
These two quantities, being smaller than r, and 7,,
respectively,

1<r<r,,
1<Y<Ya (4.21)

cannot approach unity slower than r, and ¥,, respectively,
but may do so faster. This is up to our choice, and we can use
this fact to make the bound u(r,¢ ) asymptotically lower than
the original M (y) given by formula (1.5). It is clear that » — 1
must vanish faster than », — 1 at s—e0; indeed, if 7 — 1 be-
havesliker, — 1 thenit follows from (4.19) that u(r,e ) has the
same behavior as M () and represents no improvement.
Thus, assuming now that 7 — 1 vanishes faster than r, — 1,

(4.19)

TABLE I. Survey of ellipses in the complex z plane.

(4.22)

withx > §, 4 > 1, we obtain the following asymptotic form of
u(re):

r—l=ps *In~*s,

ulr,p)=Ans**~*In*~*s + B(p)s*’* In*? 5, (4.23)
where, for ¢ #0 or 7,
A= %01/201—1/2(0 — ),
Bip)=[Cy12~"2r (1 + F(Lp)IC,,  (4.24)

and 7 is an arbitrary positive constant.

For k = A = 0, (4.23) represents no improvement in
comparison with (1.5). For 0 <« <3 and 0 <4 <3, the first
term in (4.23) is dominant and u(r,@ ) gets asymptotically
lower with increasing x and/or A. At the same time, howeyv-
er, the ellipse of validity of the improved bound (4.23)
shrinks faster with increasing « and/or 4, because of {4.22).
The corresponding ¥ which determines the semimajor axis
of the ellipse is obtained from (4.22) and (4.1)

=1+ 1p%s~ ¥In" s (4.25)
14 n

Consequently, by choosing the values of x, 4, and 7, we
choose either a tight bound (4.23) with a narrow ellipse of
validity (k = 3,4 = 3), or aloose bound with a wider ellipse of
validity (x and A close to zero). The slowest increase of the
new bound (4.8), (4.23) is reached for k = 3 and A = 3. Then
the bound has the form

| fis,2)] <[4n + B(8)]s*“In®%, 6 #£0,m, (4.26)
with 4 and B (@) given by (4.24). Its energy dependence is the
same as that of (1.1); thus, the bound (4.26) represents an
extension of the Froissart bound (1.1) to complex scattering

angles.
The ellipse of validity of (4.26) shrinks as

y=1+4n*—5s7n"s. (4.27)

For a comparison see Table I.

5. DISCUSSION OF PERSPECTIVES FOR FURTHER
IMPROVEMENT OF THE BOUND

Our bound (4.26) can be further improved by lowering
the boundary value functions g,(¢) and g,(¢). Concerning
€.(®), let us note that we have used the right-hand side of (1.1)
[call it B,(@); note that & = 0 according to (4.1)] for g,(g),

Semimajor Radius of the

axis circle according to (4.1)
Lehmann—Martin ellipse
[validity don.mn of partial =1+ a =1+ (2a)"%s
wave expansion (2.1)] s
Interior of E,,

[validity domain of (1.5)]

Interior of £,
[validity domain of (4.26]]

y=1+as"'In"%s

y=1+1ps"3In3s

rp=1+2a)"% "?n"'s

r=149s"¥*In"32;
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although for any given energy s'/? there is a small interval of

angles, €(s), around the forward and backward directions
(sin 8 = 0) for which the right-hand side of (1.2), B,, becomes
smaller than B,(6). One should therefore take for g,(p) the
function

Bi\(p)O (B, — By(¢)) + B,O (B\lp) — B,), (5.1)

where @ is the step function. As (5.1) is always smaller than
or equal to B,(p), we reach by this an improvement of the
bound (4.26) for every s.

The function g,(g), which is the right-hand side of (4.4),
offers several possibilities of improvement. To see this, let us
notice that, in deriving (1.5), Egs. (2.1)~(2.4) play the decisive
role. Formally, we can derive a bound on f(s,z) immediately
from (2.4):

fsal<t [ gl w2 — 2wz 1~ 2w, (52)
mT Jr

This suggests that the value of the right-hand side depends
on three factors: on the estimate of |g(s,w)|, on that of

|w?* — 2wz 4+ 1]~ '/2 and on the choice of the integration
curve I, which has only its end points fixed. We discuss
these three possibilities.

Let us start with the estimate of g(s,w). Following the
approach of Ref. 3, we derived' a bound on g(s,w) by making
only the assumption of the polynomial boundedness (2.5) for
[fs,2) in the Lehmann—Martin ellipse. Our result (2.6) is to be
compared with |g(s,w)] < Cs¥** of Ref. 3.

Then, by using (2.6), we transform the right-hand side
of (5.2) to

/2
E—Z—f [b — A (b, + b, sin x + b, sin® x)/2] ~2 dx, (5.3)
T —w/2

where
b=1+R/Ins,
b, = y*> —sin* @
by =29y’ — 1),
b,=y*—cos* 6,

and where the integration curve I was chosen to be the
straight line as depicted in Fig. 2. Finally, we majorize (5.3)
by another integral,

/2
& (b — A (by + (7% — 1)"/%sin x)] ~%dx. (5.4)

T J—n/2
This integral, being evaluated analytically, leads to formula
(1.5), on which our final result (4.26) is based.

As we have already pointed out there are two other
ways leading to an improvement of our bound (4.26): to
choose a more approriate integration curve 7, and to make a
better estimate of the integrand. The former method leads to
a variational problem of choosing the optimal curve I,
lying in a domain and having its end points fixed. We do not
have much to say concerning this problem, although we be-
lieve that, if solved, it may lead to a considerable improve-
ment of the result.

Finally, we want to show how a better estimate of the
integral (5.3) can be found, assuming that the curve I" has
been chosen to be the straight line (Fig. 2). It can be proved
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(by exploiting the properties of a second order polynomial)
that the expression

A + Bsinx + Csin’ x, (5.5)
with

A=0b—-Ay)’+d,

B= —2A(b— ANy — '3

C=AY? —1)—d,
where

0<d<b(y~ — A)sin® 6,

is bounded from above and from below by the denominator
of the integrand of (5.3) and (5.4), respectively. As a conse-
quence, the integral

C T/2

—2f (A + Bsinx + Csin®x)~ ' dx (5.6)
T J—nr2

leads to a better bound than (5.4). Explicit calculation leads

to the expression

| f(s.2)] <M (y2)1 + plsin 6 ]) 772, (5.7)
with

p=8/[6—(y  —14]
Thanks to positivity of p, (5.7) represents a lower bound than
(4.5) and, consequently, would also lead to a better estimate
than (4.26). Needless to say, a further improvement can be
achieved by means of explicit numerical evaluation of (5.3)
and then invoking the Dirichlet problem according to Sec. 3.

The case of particles with spin can be analogously treat-
ed and the same improvement by use of the Dirichlet prob-

lem, as performed in the present paper, can be carried our for
each helicity amplitude as described in Ref. 1.

6. CONCLUDING REMARKS

Rigorous bounds on scattering amplitude have been im-
portant as general, model-independent consequences of the
principles of local field theory. From the practical point of
view, they have served as guidance for model building, not to
be violated in different calculational schemes, and the like.
They can be also used to stabilize the extrapolation of experi-
mental information to regions which are not experimentally
accessible.

The fixed-angle Froissart bound (1.1) is rather low com-
pared with other rigorous bounds. It is therefore interesting
that its extension (4.26) to the ellipse (4.27), although smaller
than the original one, around the physical interval [ — 1.1],
is at all possible. Of course, we obtained this result thanks to
the assumption (2.5) that the scattering amplitude is polyno-
mially bounded at high energies everywhere in the Leh-
mann—-Martin ellipse, a feature that has not been proved
from axiomatic field theory. Similar assumptions, however,
have been frequently made in the past, to obtain results that
were later proved on a more rigorous basis.

Let us also mention that, on the other hand, it is not
excluded that an iteration procedure might help in finding
better and better bounds.

A serious obstacle to applications might be the rather
fast shrinkage, (4.27), of the ellipse of validity of our bound.
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Indeed, as it is seen from Table I, it is only the Lehmann-
Martin ellipse E,, that shrinks to E, at the same rate as do
the singularities (poles and cuts) in the ¢-plane. It is therefore
desirable to try to obtain a bound valid in a larger domain
than E,, which is given by (4.27).

The authors are convinced that, using the methods dis-
cussed in Sec. 5, it is possible to obtain a still better bound
8,(@) at the points of E, and, thereby, to achieve further
improvement of the bound (4.26) as well as an extension of its
ellipse of validity (4.27).
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APPENDIX A: PROOFS OF THEOREMS 1 AND 2 OF
SEC.3

Proof of Theorem 1: The functions g, () and g,(¢) can be
expressed, in the sense of convergence in L,, in the form

gilp)= i (U cosnp + v\ sinng ), i=12.
n=0

We seek the solution in the form

ulre) = 2 Uy (r@)

n=0

where 4, (r,@ ) are harmonic functions in G fulfilling

u,(r;,@)=ul" cos ng + v sinngp, i=12, (A1)
for n =0,1,2-...

Using the fact that the real part of a holomorphic func-
tion is harmonic we put

uo(r:@ ) = Relao + by In z),

u,(re)=Rela,z"+b,z7"), nxl (A2)
The relations (A1) imply a set of linear equations for a, and
b, that allow us to give (A2) the form

u (r ) = ._1_ 1
e 27 In(ry/r,)

2 2
r r
X (ln— glp) dp + In"2 f glp)dep )
r, Jo r

0

o = [ () [(2) -]

x [(ﬁ)z" — 1] " cos nip — ) d

r,

w5 [ oG -]

r 2n —1
X [(-—') - 1] cos n(g — ¢) d.
r

First we prove that 2°_,u, (r,@ ) exists and fulfills our
assumptions under the condition that the functions g,(¢) and
22(@) have continuous derivatives. In this case, nu!",...,nv{"
are the Fourier coefficients of the derivatives g} (¢ ) and
g5 (@) and, because of the Parseval identity
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-+ f leitp) P dp= 3 [P + ),

+ f eI dp= $ w(WfP+ )

We can show now that the functions Y_ ,u, (r,,@ ) and
3N_ou,(r,@ ) converge, respectively, for N— o« to g, (@) and
to g,(@) uniformly with respect to @. The convergence is

proved with the help of the following inequalities:
N

Z u, (@) —8ile)

0

<Y |u”cosng + v} sinng |

n=0 N+1
< T (R + O = S () + e L
N+1 N+1 n
«© 172 @ 1 172
<(z nz[(uﬁ"’)2+(v‘.-"’)2]) (2 —2) i=12,
N+1 Ny1 R

where the last expression converges to zero with N— 0.
The principle of the maximum for harmonic functions
implies that =Y_,u, (r,¢ ) converges to u(r,p )
= 2_,u,(r,@ )uniformly on Gsothat u(r,p )is the harmon-
ic function in G continuous on G and fulfilling the given
boundary conditions.
In the general case we can approximate the continuous
functions g,(@) and g,(@) by a sequence of functions g\(¢) and
5@ ), respectively, such that

lim sup |g,(p)—8¥@)| =0, i=12, (A3)
§—+c0 @

where g¥(@) and g5'(@ ) have continuous derivatives. Denote
by u"(r,@ ) the corresponding solution of the boundary value
problem. The principle of the maximum together with the
relation (A3) implies again that 4"(r,p ) converges to a har-
monic function u(r,@ ) fulfilling the boundary conditions
with g,(¢) and g,(¢). Relation (A3) and Remark 1 yield that

fo " 189) — g,(8)] dg—0

and

fo 85%) — &) 1Q (@b — )] dymr0

fors— oo if |a| < 1, |b | < 1. This implies that formula (3.2) is
valid in the general case, too. This completes the proof of
Theorem 1.

Proof of Theorem 2: The function w(z) = u(z) — v(z) is
subharmonic in G, continuous on G, and satisfies

w(z)<0 (A4)
on the boundary of G. Assume there exists a point z, such
that w(z,) > 0. Then, max{w(z):zeG } >0, and a point z,eG
exists such that w(z,) = max{w(z):xeG }. Because of (A4) the
point z, certainly cannot be on the boundary of G such that
z,€G. We can apply the principle of the maximum and obtain
a constant w(z), w{z) = w(z,) > 0, which contradicts (1).

APPENDIX B: PROOF OF RELATIONS (4.15) AND (4.16)

Let a(s) and B (s) be functions defined for s > 0 and hav-
ing continuous derivatives. Assume that
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lim B'(s)/[e'(s) + B'(s)] = b
is finite, and that

0<als)k1,
0B 51k,

[ (s) is nondecreasing, and

lim a(s) = llm Bisj=1

Theorem 3: For a(s) and 3 (s) defined above, the relation
(4.15) holds for sin ¥ #0, where a, b, , and ¢, are defined by
(4.13).

Proaf: First of all, we notice the following asymptotic
formula for k- c0:

1)k, _i 1 _k—5/2 Bl
B T0 il e (B1)

(see Ref. 8). This formula indicates that the series =
not absolutely convergent.

In the following, we shall need the following three state-
ments on infinite series:

Statement 1.

F_oCxk is

—1
z AB,=S.,B, — Z S;(B;., — B,),
i=k =k
where S, = 3! _,4,.

Statement 2: Let 2} _ | A; be uniformly bounded and
{B;} a monotonic sequence with lim, . B, = 0. Then
32 ,A.B, is convergent.

Statement 3: Let % | A, be convergent and {B;} a
monotonic sequence with a finite lim, ,_ B,. Then
3 ,A.B, is also convergent.

Lemma I: The series Z7_ ¢, and 27_ ,a,c, are con-
vergent if sin ¥#0.

Proof: Certainly,

(4)k

i— 00

C. = cos(2ky)=H, + L,,
where
@ _re 1t ]
Hk - [ G)k F(l) (k)l/Z S( k'/J)

L, =L8
rg (k)”2

L, cos(2ky).

The sum 2;°_ , H, is absolutely convergent because of (B1).
The sum =7_, L, is a convergent series because k ~'/2isa
monotonic sequence and

i cos(2ky) = [sin(2n + 1) — sin ¢](2 sin ¢) !

are bounded for sin ¥#0. So, using Statement 2 we obtain
that 3% =!¢, is convergent. Then, using Statement 3 we ob-
tain that £7_ ,a, ¢, is convergent since [a, } is a monotonic
sequence [see (4.13)].
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Define

Zal i

f=1
S=3 ac,.
i=1
Lemma 2: There exist four constants d,, d,, d,, and d,
such that

2k +2
S, — S, |< =% 07 gor 1<k<n, (B2)
k+1  (k+1)"?sin ¢|
and
|Si|<ds + d,/|sin ¢|. (B3)
Proof:
S, — S
z 2 @4, re 1 } _
= a; - cos(2/y)
,-=;:+1 j 2+1 [(3), rg ()" /
rg < 9
—4 cos (2f
F(i)j=k2+1 (N V)

Using relation (B1) we can estimate the first term on the right
hand side of (B2) by 27_ , a¥¢j ~*’%. Denote

= i cos (2j1) = (sin[(2k + 1)] — sin ¢)/(2 sin ¥).

/=1

Applying Statement 1 we obtain

‘ ;Hajj"“COS(Zﬂﬁ) Z, —Z)—77 n ),,2
"o 41 q;
— A *)(( +1)'72 (j)‘“)
_sin[(2n + )¢ —sin[(2k + 1)y] @
B 2sin g (n)'/2
_ S sinl(yj + 1) — sinl(2k + 1)
% 2sin¢

)
G+ ()
Since the sequence {a,/(j)'/?} is monotonic we obtain

n

Z (1)”2 —L_ cos(2ji)| <ca® *+*{k + 1)~ (sin )~ .

By this, the inequality (B2) is proved. The inequality (B3) is
proved analogously. We have

Lo [@ g ] .
S, = — 2
25w, " Tag] @
+[sin[(2k+l)l//]—sin1/l a
2sin ¢ Jk
kot sin[(2j 4 1)Y] —siny
j=1 ZSinlﬁ

) (G 2 )] ry .
(1-+ 1)1/2 (]-)1/2 r(i)
Since |a;| = |a¥|<1, relation (B3) is proved, too.
Lemma 3: The sequence {b,(s)} is monotonically in-
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creasing in k for any s. Further, we have

;}En be(s)=1 (B4)
and )

lim b, (s) = b. (BS)

Proof: Relations (B4) follows from the fact that
0<B (s)< 1. (BS) follows from the 'Hopital rule. The fact that
b, {s) is monotonic,

by (s)<by 1 (s) (B6)
is equivalent to

(1 _B4k)(1 _B4k+4)—1

<[1—(@B)*][1 —(eB)*+*]~"
AsO<a <1, it is sufficient to prove that

h(x)=(1—x*)/(1 —x**+)
is decreasing in x for all x€(0.1). To prove this, it is sufficient
to notice that

h'x)=x"11—x**1)"%1 —x)

X{x + x2 + - + x* — k)<0.

Thus, (B6) holds. Lemma 3 is proved.
We are now in a position to prove Theorem 3. Because
of Statement 1, we can write

3 aycilb, — b)

k=1

=5,[b,9) = 61— S Sul[bi, 1) — bulsl)

This equality can be rewritten in the following way:

S apcilb, —8)=S,5)[b,(s) — 6]

k=1

_ "g' Se(5) (b 4 1(5) — bi(9)]

- ; [Siis) ~ S, (5)1 (s, 1 (5) — bils)]
~ 85, (5)[Bals) = b4, ()],

where 1<ny,<n — 1. Finally,
z axcilby — b)

k=1

=S, 5)[bn(s) — 5] — "Es () [Be.s +5) — bils)]
- Z [Sils) —

k=n,

S, ()] [bx 1 1(5) — by ls)]-

Because of Lemma 2, the values of S (s) are uniformly
bounded for sin ¥£0. We have

i 8By — 5)|<(d3 +d,/|sin 9])|b ) B |

k=1

e LS

dl dya*+?
no+1  (no+ 1)”2|Sin ¥

k=1

+ 3
k=n,

iy () = Bels)|.
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Since {b,(s)} is a monotonic sequence we obtain

’2 el _5)‘<("3 * ‘¢|)Ibn,(s) — 5]
+(d3+ sin ) [5,,{5) — b(s)]
+ (nod_:_ 1 + ™ :zil)j’;‘;rsin ¢|) [b,(s) — b, (5)]-

Applying the Statements 2 and 3 we see that
3p_,a,c.(b, — b)is aconvergent series. We have

o . d,
2, oxeulbe =5 )‘ <(d3 T sin gl )
b | +b,(s)— bys)]

IR
d, d,a*™ _
(s ) -,

no+1 + 1)V2|sin |
Let s— oo and n, be fixed; then

lim sup 2 ayci b, —b)
dl d (12"“+2 ) .
+ —b).
<(no F1 7 (mo+ 1'fsin g

Since the number 1, can be arbitrary, the relation (4.15) is
proved. By this, the first part of the Theorem 3 is proved.

It is now easy to prove also the second part, i.e., relation
(4.16). Because of Lemma 3, we have

0 < b,(s)<by(s)<1
and

biis)< ki azkbk(i)k/(%)k][kzl a2k(%)k/(%)k]_1<l.

Since lim, . b,(s) = b = 1, relation (4.16) is proved. This
completes the proof of the Theorem 3.
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We study the integrability of the Einstein equations for a class of empty homogeneous space-times
(Bianchi class A), once the self-duality constraints are imposed on the space-time itself. This
system is integrable in the case of Bianchi type I and is a subset of Bianchi types VI, and VII,,.
Bianchi type II space-times do not admit self-dual solutions and for the case of Bianchi VIII and
IX we were unable to find a general integrability condition.

PACS numbers: 04.20.Jb

Until very recently relatively little work has been done
in vacuum homogeneous anisotropic solutions of the Ein-
stein equations. Although we know that these solutions exist
for any Bianchi types,' they were regarded for their math-
ematical significance only. The interest in the field has been
raised in connection with the Euclidean approach to quan-
tum gravity’ where, analogous to the Yang-Mills case, the
main contribution to the vacuum-to-vacuum transition am-
plitudes is supposed to come from the vacuum field configu-
rations which are stationary phase points for the classical
action. The analogy with Yang-Muills instantons is then car-
ried further and brings special importance to metrics whose
curvature is self-dual. As a matter of fact it has been shown
that self-dual (or anti-self-dual) metrics are local minima in
the action amongst vacuum metrics.

The aim of this paper is to study the constraints im-
posed by the self-duality conditions over the vacuum Bian-
chi class A solutions of the Einstein equations. To this pur-
pose we write down the field equations and the self-duality
conditions separately and we investigate the integrability of
the Einstein equations under these particular constraints.

In what follows we start with a pseudo-Riemann space-
time which admits a simply transitive, three-parameter
group of motion G, acting on spacelike hypersurfaces. There
exists an orthonormal tetrad {e, }, where e,, which is normal
to the spacelike hypersurface, can be identified with the four
velocity U. We can therefore define the “electric” and “mag-
netic” parts of the Weyl tensor C} 4, E,,, and H,,, respec-
tively, according to

Eac EC‘mbcd(jb(]d! Eab = Eba’

E:=0, E,U’=0, (1a)
HacE*CabchbUd’ Hab =Hba’

*Copea = — 8€usim Coa™
Hr°=0, H,U’=0, {1b)
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Cade = ZU(aEb)(cUd’ + 5=2EZ)' — v = &l€amn UrH™ U
+ €U, H,,U,),

where g is the metric and ( ) denotes antisymmetrization. We
can perform a dual transformation on the structure con-
stants of the group of motion C§_, obtaining the quantities
C? defined by C¢, = €,,,C %, where €,,, is the three-di-
mensional Levi—-Civita tensor.

We can also profit from the “tensor” properties of C %%,
dividing it in its symmetric and antisymmetric parts:
C* = n° 4+ €%, The following canonical choices are al-
ways allowed:

(a) to take the vector fe, } as eigenvectors of the sym-
metric tensor 71,5;

(b) to reduce #°? to the principal axes, i.e., diag(n*?)

= {n,,n,,n,) and to assume a. = (a,0,0), with an, = 0. The

Bianchi solutions in which a = 0 are known as Bianchi-Behr
class A solutions and in the following discussion we shall
restrict ourselves to this case. (There are the Bianchi types I,
II, VI, VII,, VIII, and IX.)

At this point we make use of the following relation,
valid for pseudo-Riemannian manifolds:

(C -+ i*C)abcd = (gabpq + inabpq )(gcdrs + incdrs)

X UPU'E + iH )%, (2)
where
Naved =V — 8 €abed>
8abea =\8uc&a» — 8aalbvc)- 3)

The Weyl tensor is self-dual, i.e., — C=*C,ifE= —/H.
On Euclidean section this condition therefore becomes

E = H. We point out that in the following these equations
are to be regarded as integrability conditions on the existence
of the Euclidean solution of the field equations which are
taken in the same form of the pseudo-Riemannian case. For
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present purposes, we will not investigate the problem of the
existence and form of such solutions.

The Einstein equations for vacuum Bianchi class A
space-times,” when written in the orthonormal basis, read*
(here and henceforth we use geometrical units and we set the
cosmological constant A = 0)

ny= —(0,+06;—0,)n,

ny= — (6, + 65— Ojn,, (4)
ny= — (0, + 6, ~ O3)ns,

91 = — 06, —ini + yny, — ny),

92 = —06,— %n% + %(”1 - ns)z’ {5)
93 = — 66, —in5 + Yny — ny),

where the dot represents differentiation with respect to the
Euclidean time; 6, is the expansion, & = 6,° and diag(d,,)
= (6,,6,,0;). We shall search for the integrability conditions
of Eqgs. (4) and (5) under the following constraints.

The first one is the condition
6,6, + 0,6, + 6,6,

= {n? +n3 +n3 —2nn, — 2nyny — 23y, (6)

which represents the Hamiltonian constraint.

The Euclidean self-duality constraints read

—ini + Yny, — ns)’ — 66, + 6}

= — 3o, + in, — n;3)(0, — 6), (7a)
—in3 +4(n; —n))* — 66, + 63

= — Moy, + in; —n))6; — 6)), (7b)
— 43 + 4(ny — ny)* — 60, + 03

= — n3033 + §(n; — n,)(0, —- 6), (7c)

where o, denotes the shear tensor. Equations (7) are an ex-
plicit writing of the conditions £,, = H,,. Since the tetrad
vectors satisfying the condition n*%a, == 0 can be chosen as
eigenvectors of the shear tensor o,,, we obtaino,, =0
whenever a#b, and o, = 6, — 16. We observe also that
H,, = E,, = 0whenever a#b and, since both H and E are
trace-free tensors, only two out of the three constraints (7)
are independent [e.g., (7a) and{7b)].

To study the integrability conditions of the system con-
sisting of Eqs. (4)~(7) we were unable to find a general algo-
rithm and the following discussion considers separately all
the different cases.

TYPEI

The eigenvectors n, are n, = n, = n, = 0.
The self-duality conditions read

0,(6, + 6;) =0, (8a)

0:(6; + 6,} =0, (8b)
Notice that in this simple case the Hamiltonian constraint (6)
coincides with the sum of Egs. (8). In order to prove the

integrability of the system consisting of Eqs. (4), (5), {6), and
(8), we differentiate Eq. (8) with respect to time and we obtain
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61(02 —+ 93) + 91@2 + 03) =0,
026 + 6,) + 6565 + 6,) =0, 9)

Using the field equations (5) which now read

01 = — 091,
92 = — 002,

and substituting into Egs. (9) we reproduce the self-duality

constraints (8). The self-dual solutions are then found as the
solution of the system formed by Eqgs. (8) together with the

first integral (6) and they are

8,40, 6, =6, =0, (10)

so that there is only one of the expansion factors different
from zero. The nonzero expansion factor is found by direct
integration of the corresponding equation (5).

TYPE Il

The eigenvectors are n,#0, n, = ny = 0. The indepen-
dent self-duality conditions read

- %”% —0,(0, + 63) = —n0, +iny(6, + 65), (11a)

%n% —0,(60; + 6,) = —iny(6, — 6,). (11b)
Let us define a as

0,0, + 6,05 + 6,0, =a = In}. {12)
Using Eq. (12) we can eliminate n? from Eqgs. (11a)and (11b),
obtaining

2a+91(62+93)=”1[61_%(624‘93)], (13a)

2a — 60,(0, + 05) = 4n,(6, — 0,). (13b)
We can demonstrate that, in order for Egs. (13) to be compa-
tible with the field equations (4) and (5), the matrix of the
coefficients of n, (formally considered as unknown) has to be
of rank 1. In particular,

(6, — 8;)#0

or otherwise we would get a <0.

The conditions to be satisfied in order for Egs. (13) to be
solved are given by equating to zero the matrix of the coeffi-
cients and the known terms; that is, after some manipula-
tions

(6, — 6:)6T +a) =0,
which implies (8, — ;) = 0;
that is,

a=20,6,+863. (14a)
Putting Eq. (14) into Egs. (13), we obtain

_ 236,60, + 63)

(6, — 65) (140}

ny

At this juncture, asin the former Bianchi type I case, in order
to prove integrability differentiate the constraints (14b) with
respect to time and use the field equations (4) and (5). We thus
get the new constraints
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(6, + 65) =0, (15)
and substituting Eq. (14a) we arrive at the expression

a= —62%<0,
which contradicts Eq. (12). This incompatibility implies that
there are no self-dual type II solutions.
TYPE Vi, AND VI,

The eigenvectors n, are n; = 0, n,, n,7#0. The indepen-
dent self-duality constraints are

—in? +4n2 — 66, 4 03

= —3n 0, +4in,0 + iny(6, — 63), (16a)
—In} + I} — 66, + 03

= —3n,6, + in,0 + in,(6, — 0,). {16b)
Let us define  as

6,0, + 6,05 + 6;60,=a = }n, — ny). (17)
Adding together Egs. (16a) and (16b), we get

a+6,0,= %(92 —8))(n, —ny) (18)

and squaring, we obtain an algebraic constraint that depends
on 6, only and reads

(@ + 6,6,)° = a(6, — 6,). (19)

By use of Eq. (18) and the field equation (4) it is possible to
notice that the following properties are valid:

pl)a=0&6,=6,=0,

(P2) a#0< (6, — 0,)7#0 or (@ + 6,6,)#0.
Moreover, in the (pl) case the Hamiltonian constraint (17)
reads n, = n,#0 and in the (p2) case (n, — n,)#0.

The existence of these two properties provides a natural
way to classify the several possibilities.

Case (pl): ny = n, #0; 8, = 8, = 0. These last condi-
tions satisfy identically the self-duality constraints (16).

The integrability conditions are obtained again by time
differentiation of Eqs. (16), substitution by Egs. (4) and (5),
together with the new constraint &, = 6, = 0. We find that
the system so obtained is completely integrable, by imposi-
tion of the new Hamiltonian constraint which under the
property (p1) reads n, = n,. In this case both the Hamilton-
ian constraints n, = n,#0and 6§, = 6, = 0 and the self-dua-
lity conditions are first integrals of Eqs. (4) and (5) and define
a family of self-dual solutions. These solutions are explicitly
obtainable by integration of the equation for n,, n,, and 6,.

Case ( p2): n, — n,#0, (6, ~ 6,)50, a> 0. From Eq.
(18) we get
2a + 6,6,)

6,—06,

Substituting this expression for n, into Eq. (16a) we get

m[2(a + 6,6,) — (60, — 6,1 = (@ + 83)(6, — 65). (20)
By time differentiation of Eq. (18) we get

2n,(6, — 0)F= —2la + 6,0,)F — 646, + 02)2(62 - 0),
(21)

n,=mn, +
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where F is defined by
F=2a + 6,6,) + 2a — }(6, — 6,)".

By use of Eq. (19) it is possible to show that 2{(a + 6,6,)
— {8, — 8,)*#0. Therefore, we can express #,, with the help
of Eq. (20), as
__ (@+63)8,—6)
2a +6,6;) — (6, — 6,

From the explicit expressions for n, and n, and from the
hypothesis (p2), we derive that all the terms (8, — 6,),
(8, + 0,), etc., are different from zero.

Substituting the last expression for 7, into Eq. (21) we
get
2F(6,6, —03) = — 6,6, + 6,)[2(a + 6,6,) — (6, — 6,)°].

(22)

Comparing Eq. (22) with Eq. (19) we observe that the new
constraint is given by

403 —(a + 6,6,) =0. (23)
Now, the integrability condition should be given by differen-
tiation of Eq. (23) and use of Eqs. (4), (5), (18), and (19). If we
do so we obtain a = 0, which contradicts the hypothesis

a > 0. This incongruence shows that there are no self-dual
solutions in the (p2) case.

1

TYPE Vill AND IX

The eigenvectors are n,, n,, n;7%0. The self-duality con-
ditions are the complete Egs. (7).

Our purpose here, to find the integrability conditions of
the system (4)—(7), could not be attained by any of the mani-
pulations we tried. The manipulations of this work allowed
us to identify all of the self-dual solutions and only those for
any of the empty homogeneous space times here considered.
In the Bianchi type VIII and IX case we could not find such
an existence theorem. Our procedure was of an essentially
algebraic nature. However, in this last case our failure to find
the integrability does not mean that such solutions do not
exist. As a matter of fact we know of a self-dual Bianchi type
IX class of solutions by Belinsky et al.,” whose existence,
however, has been demonstrated by direct construction.
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The Riemann geometry of a space with conformal symmetries is written in terms of intrinsic
objects defined from the action of the symmetries. Its application in the study of generalized

Kaluza—Klein theories is discussed.
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1. INTRODUCTION

Sixty one years ago Kaluza suggested the unification of
gravitation and electromagnetism by means of considering a
five-dimensional Riemannian space.' The idea of eliminat-
ing the dependence of the fifth dimension by imposing a sym-
metry on it was of considerable interest in the following
years.”

If one extends the Kaluza—Klein theories to spaces of
higher dimensions, then one naturally incorporates nonabe-
lian gauge fields.*

One starts with a Riemannian manifold of 4 + g dimen-
sions which is assumed to be the cross product of the four-
dimensional space-time with a g-dimensional compact
manifold. A Lie Group acts on the last space transitively
usually as a group of actual symmetries. In general, the di-
mension of the Lie group has been considered to be the same
as that of the compact manifold, but lately the suggestion of
having a group of greater dimension has been raised.*

The introduction of extra dimensions has caught much
attention among the supersymmetry theorist, as for example
in the construction of the N = 8 supergravity theory by
Cremmer, Julia, and Scherk.’

With these sort of ideas in mind one was led to look for
suitable expressions related to the geometrical ideas just
mentioned. More concretely the expressions of the Riemann
tensor for a space with conformal symmetries will be dis-
cussed below, where linear dependence of the conformal
Killing vectors will be allowed.

In spite of the somewhat specialized motivations of this
work, all the expressions are of a geometrical character only,
in particular they are developed around the skeleton of the
Riemann geometry. So for example the expressions of the
Ricci tensor calculated here, offer a useful tool for the study
of space-times with symmetries in general relativity.

In Sec. 2 the action of the conformal Lie group G on the
manifold P with metric g is used to separate the tangent
bundle of P as a direct sum of two vector bundles, one (usual-
ly called vertical) is spanned by the fundamental vector
fields® corresponding to the symmetries, and the other
(called horizontal) is the orthogonal complement of the for-
mer. This split of the tangent space could be thought of as
providing a generalized connection, analogous to the Yang-

* On leave of absence from Instituto de Matematicas Astronomia y Fisica,
Universidad Nacional de Cérdoba, (5000) Cérdoba, Argentina.

303 J. Math. Phys. 24 (2), February 1983

0022-2488/83/020303-08$02.50

Mills connection. And correspondingly the “generalized”
curvature is introduced here (the abstract index notation’ is
extensively used in the horizontal space).

In Sec. 3 the definition of objects introduced before is
extended. Also a linear connection is presented mainly with
the purpose of abbreviating the subsequent expressions.

The Riemann connection, Riemann and Ricci tensors,
and the Ricci scalar are expressed in Sec. 4 in terms of the
intrinsic geometrical language presented before.

An extensive list of appendices is added mainly for the
purpose of completeness for future reference, and to give also
a more “coordinate approach” of the notation used in this
work.

2. LIE TRANSFORMATION GROUP ON A MANIFOLD
WITH METRIC

This section is intended mainly to describe the nota-
tions that are going to be used in this work. Let Pbe a C ~-
differentiable manifold of dimension p, G be a Lie transfor-
mation group on P; denote by £ its ¢’-dimensional Lie
algebra, and by V. the elements of a base of §. Use V. to
represent the fundamental vector field on Pcorresponding to
V.’ . Assume that the space V spanned by the V,,. at the
point ucP has dimension ¢, YueP. Then the assignment
u—V,, is an involutive distribution® denoted by G,,.

The local Frobenius theorem? tells us that we can find
an open set UC Pisomorphic to4 X B, where 4 is an integral
manifold of G,; that is given u = (u,u,)eU, u,€4, u,€B we
have ¥V, =T, (4),and Bis a ( p — g)-dimensional submani-
fold of P.

Define 7: U—B by 7{u) = u,.

Let g be a nondegenerate metric on P, with g, g
=g(V,s ,V, ) being a matrix of rank ¢, VueP; then

Theorem 1: Given a vector field v at 7{u)eB, feC *(B); 3
a unique V €T, (P) such that

(a) V, (r*f) = w*(v(f)) ,

(b)g(V,r, V,)=0.

One calls V, the lift of v.

Proof: in Appendix A.

In this way, for the case in which G is a conformal Lie
group, one is providing a “generalized” connection in the
sense that for any ucU C P one has defined a subspace
H,CT,(P)such that

@T,P)=V,eH,.
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(b} If & is an element of the component of G connected to
theidentity H,, = (R, ), H,, where R, is the transformation
of P induced by heG, R, u = uh,

(c) H, depends differentiably on «.

Later {b) will be shown to be obvious.

In particular, if G were acting freely on P, there would
be cases in which P is a principal fiber bundle over B and
where one would have defined a connection in P.

If veT, (P ) one can write

V=vp +Ug =0y +V, . (2.1

Let a,b,c,... be abstract indices in B. Define v* by

v=m.{v), (2.2)
then it is natural to define V, by

v, =V, . (2.3)

Similarly if o is a 1-form in B, define *:
T3 (B)}>TE(P) by

0,0°=0, =r*0). (2.4)

In general, any tensor in B will be denoted by T; that is,
v’eT (B), w,€T *B), fcC ~(B). See Appendix B for more
discussion involving this notation.

Note that

0=Yy mo)=0,2Ly,0° Vo,,
S0

Ly, 0°=0, (2.5)

where .Z denoted Lie derivative.
Now consider G to be a Lie group of conformal trans-
formation; that is,

[Vor Vg ] =Carpr " Vo (2.6)
Lo, 8=Aug. (2.7)
Then

0= fva:g(vﬂ’ !vv) =g(vﬂ' 1“gva, Vv)

E)
Ly, V, =uV, for some w*,
but
0= Ly, (V,(m*)
= (L, V,)r*) = w'V, (7)), Vi
so w® =0,
and
0=Y, .V,
=V,vV, -vV,V, =v[V,.,V,] V¥
SO

[V...V,]=0. (2.8)

This is equivalent to last property (b).
By taking UC P small enough it is possible to express

V., =b,°V,, (2.9a)
b f=6,F, a=12,.4. (2.9b)

Given the vector fields v° and w” at #(u), define at u the
“curvature”

a' =12,..q4
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R,w=[V,V\] - Vi - (2.10)
From the discussion in Appendix C, one gets that R, ,, is of
the form

R,, =vW'R,V,, . {2.11)

3. EXTENDED DEFINITION OF v/,

In this section the action of V, is defined to act on quan-
tities with lower case latin indices.

One requires the following properties:

(@) v'w’ [V,.V, (/) =R, . (f)

where v and w are vector fields in B, feC~ (P).

{b) V.8 =0,
where

8o:=8(V,,V,).

Theorem 2: There exist a unique V, satisfying (a) and
(b).

Proof: Here one uses a construction that is going to be
useful later.

Let a torsion-free connection D, be given on B. Then if
x is a vector field and T a tensor in B, one denotes the covar-
iant derivative of T with respect to x by

D, T,
where
D,=xD, .

Now define B,, such that if v is a vector field in P and
feC ""(P)\ one has R

() D (f)=v"D,(f} ="V, (f),

(II) Da (Udem.a’ ) = Da (vb )wb + vb Da (mb ) b
where & , % ,% denote abstract indices in P. Note that us-
ing the notation of Appendix B one can easily calculate
D, (v). Now define 7, °, by

Va(0*)=D, (v*) + 7 0" (3.1)

From Appendix D one can see that with this definition
one has

Rou )=V [Vas Vo] + 7 — 15V} (S),
so from condition (a) one gets

;/azb = ;’bca . (3'2)

And condition (b) gives

Vagbc =0.8p. — ;’aebgec - )A/aecgbe =0.

Defining ;A/abc E’;’a ¢.8., One can easily see that the solu-
tion is

’;/acb = %(Dagbc + Dbgac - chab) . (3'3)

Similarly one extends the definition of the V ., to act on
quantities with latin small indices by requiring

Lo 0V,) = V)V, . (3.4

Let the indices 4,B,C,--- = a,B,0,...; a,b,c; that is, if
veT, (P),

v=vV, =0V, 40V, . (3.5)

Now define the linear connection D’ by

D(Vp)=0, (3.6a)

DL(v*)=V,07), (3.6b)
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DL(f)=V4f), feC=(P). (3.6c)

Note that up to now the index that denote the tensor
character of V, has been omitted; that is, if v is a vector field
in P, one would write

v =V, ="V, 7 417V, 7.

From the discussion in Appendix E and G, one gets

[D::D;] =Ry +Ruc”I (3.7a)
[DiD5] =RascI (3.7v)
[P4D3] =CyDs, (3.7
where the derivation I § is defined by
ISWw")=vVp7, I§WF)=6p5C (3.8a)
IS(f)=0 for feC=(P), (3.8b)

and R, sc’ is the curvature of the connection just defined
and

Corpr "=Ciip ¥ bsr . (3.9)
Defining
C,s€=C,° if A,B,C are greek indices, (3.10a)
C,s*=R,° if A and B are latin and C is greek,

(3.10b)
and
C,.s€ =0 otherwise (3.10c)
one can write
[D,'UDJ'B] =CABCD& +BABCDIIC;' (3.11)

4. RIEMANNIAN CONNECTION IN P

In this section a Riemann connection D is introduced.
One first defines & by

0%, Vi =6%, (4.1a)

0%,V¥ =0, (4.1b)
which implies

£ 6°=6°C,°. 4.2)

Now one can write
§=8,50°060°+g,0°00°=g,,0406°". (4.3)

As usual one uses g to raise and lower indices. It can easily be
found that

Vo880 = Aa880 + Cap’8s0 + Cau’8og » (4.4a)
Vagab =A'agab ’ (44b)
V.g,=0. (4.4c)

These and other relations are discussed in Appendix F.
Let v and w be vector fields in P, then one will express
the covariant derivative of w respect to v by

Dw=vDw.

In particular, one wants to extend the definition of D,
to act on quantities with small latin index. This is done by
defining

D,=D, +v,°1I%, (4.5)

where 7, % is uniquely determined by the requirement of
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D, to be a Riemann connection.
The equations to be satisfied are (see Appendix G)

Y48 — 75 = Cis, (4.6a)
8pa¥c’s + 808Yc"4 = Vc8un s (4.6b)
with solution
Yacs =YV .u8ac + Vag4c
— Ve8ap + Cupc + Ccpa + Ceup) - (4.7)
Explicitly one has
Ya’s = WCap” + €% + G
+ 4,657+ 58,7 — 18,5), (4.8a)
Ya's = — @ /2)V:80p (4.8b)
Ya"s =& /2)V 805 » (4.8¢)
Ya'a = E%/2)V.800 » (4.8d)
Yo" =¥ —4%a + R0, (4.8¢)
Yo'y =3Aa8% + R%,), (4.8)
Ya'a = 3Aa8."— R,"), (4.8g)
v, =0. {4.8h)

Let u, v, and w be vector fields in P. Then one expresses
the curvature tensor by

R (upw={[D,,D,] — D,,,)w = R, 5c°u*v"wV, ,

(4.9)
where (see Appendix G),
RApcD =V, (¥5"c) ~ Valva Peo)+ VBECT’A Pe
—~Ya"c¥se — 8 Ve c + BABCD . (4.10)

Explicitly, one has

Raﬂ06 = igebgpsvega[a V851,
+ &('1 5,1‘55[ ﬁgala + '10'{( B 6a ]5 + A sz'[agﬂla)
+ 55[ 8 Vako — 8ot Ve ](/1,,)g“"s
+{(Ap/2)g, 5 C, ]p‘s + (Ap/2)g,; 5 C, ]5”
— (Ap/2C .85, + (Ap/2)8,°Cs),"
+ (Ap/2)6¢, 6C5 o +(Ap/2)C,° 56, 15
+ icvl B8 Eca]e‘s - écal B eCa]w
= C,%" Cor g ) + 1€, *Cope
+3C; 5 *Cajoe — 4Coei 5 Ca)®
+3C% 5 Car's — 1€ 5 Cpey %
—1Cig1e01 Ca)® +4C.2 (0 Cp ¢

—1CeiaCs 1%, {4.11a)

Rp,% = (6,°/2)V, A, — €°/2)85, V. A,
afo B8 Bo

+ (A </4)g°%gg, V.8, — (A /486,%V 8.,
+(Co%/2)V 8o + (C/4)5%V 8.,

— (C/4)5°,8%V .8, + (C/4)5°V 8.,

— (C/4)5,8°°V .8, + (C35/4)V 8.,
—(C/4),°687°V .8,

+ (R, /48°V .86 — (R,%°/4V. .8, ,  (4.11b)
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Rop’ =©@%/2V, V85 — (€7/487°V,(8,,)V.(8e5)
+ (8,./218°V pAo + (A /480 85°
— (8uc/HApA°
+ (8ac /A C° + (82 /A C%%

+ (R.5/MR 5 — (R, /4C4°, , (4.11c)
Ro =1(8,%/2)V Ay — (85 /28%V. A,

+ (8o /M8 A Voo — (6,7 /A VY Lo

+ (€9 /280 Vs (R ) + (R “/4)V £

— (R, 48"V g + (RI/2V,80e,  (4.11d)

R = (A /84 808" — (A /48,8
+ (8o /R, “ A, — (8,7 /4R, A,
+ (8.7 /4R A — (8ac /MR, A + (Ru /4R,
— (R4/R, .+ (R, /2R,
— (87 /2R A + Rope® - (4.11e)
One is usually interested also in the components of the
Ricci tensor, R ;=R 5 °.
One has
Ruo =872V, V1800 — (8°/208°Vu8ap Vi 8oe
+ (8 /487 4 (8o )V 8e)
+((p = 2V/4A A8y — Aats)
+{(p—2/2)(Vi,do + A4, C0)
+ (840 /2P VA + A,C5°)
+ Ce’B(a Ca;ﬁel + %Casﬂcaﬂe
+ Cp €%, € + 1C,PC .
+ Cia 0 Cae” — 1Cpea €7,
. ‘%RabaR aba ,
R =((p—2)/2)(VoA, — (A /2)V,8c)
+(CP /Y ope + (o728,
+ (/2080 Vo (Rac) + (R, 5/ 487V .85
+ (R;*/2)V. 8o »
R, = &%/ Vo8 — 8%/48""V 80y V. 8pe
+ (82 /2087 Ve + (P — 2)/4A A 8ec
+ (8ac /24 C57 + (R /2R + Rigyy -
The Ricci scalar R = R ,g** is

R =gabgaﬂvavbgaﬂ + %gabva (gaB)Vb(gaﬁ)
+ (€ /48™V . (845)87°V 5 (805)
+((p=2p—1 A +(p—1)
X (gV Ap + A,C%5P)

+ C, P C, p* —1C,5°C",°
+ 1C,p, € + C,,,“Cs”
+}‘RabaRaba+13 .

5. COMMENTS

One could think of other possibilities of organizing
these ideas, but the splitting of the tangent space introduced
in Sec. 1 seems to be very convenient for calculations. In
particular, the use of abstract indices for the horizontal space
produces very compact expressions.

The “components” written in Sec. 3 generalize the tra-
ditional expressions of the Kaluza—~Klein theories'® in sever-

(4.12a)

(4.12b)

(4.12¢)

(4.13)
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al ways; by allowing conformal symmetries in contrast to
actual symmetries, by considering linear dependence among
the fundamental vector fields corresponding to the symme-
tries, or by not demanding from the beginning the structure
of a principal fiber bundle.

The expressions derived are trivially reduced for the
case of Killing symmetries (4, —0) and/or for the linear in-
dependent symmetries case (C,z"—C,4°).

It is particularly interesting to observe the form of the
Ricci scalar in which the Yang-Mills term, a G term, a con-
formal term, and a dynamical term can be clearly separated.

From the discussion of Appendix H one also notes that
the cross terms of the metric can be thought of as been given
by the Yang—Mills gauge potentials'’ of the Yang-Mills
fields R;;* [see also Eqgs. (F4) and (F5)].

From another perspective the expressions given here
seem to offer a useful tool for the study of solutions of the
field equations in general relativity; in particular, as a sort of
check the metrics for a highly symmetric low-dimensional
manifold and for a well-known solution of the Einstein vacu-
um field equation were derived using the expressions of this
work.

APPENDIX A

Proof of Theorem 1: Consider first the case in which
8.+ = 0 for some a'. The question is, can g,z =0,
VB '#a'? Because if it were so, and

gV ,V,)=0 VB,
then
V.=V, +fV, , feC=(P)
will also satisfy
8(Vp,V))=0 VB'.
By carefully choosing U it is possible to express
Vo =b,°V
baB —

a

.y a'=12,.4q,
a=12,..4q,
$O

O =galBI :>O =galB:>bal agaﬁ - O y
but g, is a nondegenerate matrix so the only solution to
byr “8ep = 0is b, * = 0. So there is no V. such that
8up =0VB #a.

By the local Frobenius theorem it is possible to choose
UC P with a coordinate system (y;,...,7;,X1,...,X, _ q) With
w1l <& x| <, £€R, s0 that

V. a0 for vV, eT,(U).
'

By condition (a), V, must be of the form
v,=vL v,
ax! '

where 7*(V ) is identified with v .
Let

sl ). m=e(Z ). s=e(Z L)
TNy gy TV \ay axt)” Y T axt axd)
Then condition (b) gives
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0=2g(V,,V,) =gy8. V +gya,,V Vo',

SO

V= —gig,v.

APPENDIX B

This Appendix contains comments on the notation.

If the vector fields e;, i = 1,...,p — g form a basis of
T, (B) Vuel,thenatu V,=efV, form a basis of a sub-
space H, C T, (P); in particular, any vector veT, (P) can be
expressed by

v =01V, + V'V, =v°V, +1°V,,
where v° = v'e? and so V, = v°V, = v'V,. Actually one
should write V, = 7*()V,, but all the 7* and 77« are deliber-
ately omitted for the sake of simplicity in the notation.

Similarly, let d ‘€T *(B) be such that d‘,e°, = §';; then
one defines

f'=d',0°.

Denote with &7 , & , € , --- abstract indices in P, then
8,V =1%0) 07 = 0,70 =0, VeeT*B),
S0

6°,v,“ =0,

0,9, =6%, 6',V,"=65.

If w is a one-form in P, define

o=0,V", 0,=0,97,
then one easily gets the following relations

6°=e% 00", ow,=d w0,

0'=d',0°, o,=¢a,,

V,=d',eV,, v*=1uve,

JE— i__ ,ai
Vi=e%V,, VvVV=04d",.

APPENDIX C
Using the notation of Appendix B, one writes
[vsw] = [v(w) — w(vi)]e, + v'W/[e, e, ] .
Let f€C*~ (P), then
V.V, f=vV,(wV,(f))
= vivi(u),)vj(f) + vlevivj(f) ’
o
R, = vw)V; — w¥)V, + v'w
X [Vi,Vy] — [viw!) — w(v) ]V,
— v'w e e |V,
=vw([V,,V;] — [e.e;]“Vi) -
If feC* (B ) one easily observes that
R,.f)=0
so that it must be that
R,, =v'WR,°V, = v"wR,,V, .
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APPENDIX D

Rv,w(f)E([Vv ’Vw] - V[v,W])(f)

=vV,wV, f—wV, vV . f— [vw]°V_ f
=v(D, %" + 7,2 WIV, f+ VWV, V, f
~ WD,V + 7,°. V)V, f
— WY, Y, f— VW]V, (f)
= [D,(w) — D, (") — [v,w]*]V, f
VW ([ VoV, ] + (7% — 77V} ()
=vW {[VoVs] + 7% — 75V (),

because D, is a torsion-free connection.

APPENDIX E
Let z be a vector field in P; then
Vo(2) = V,(2'e%) = V. (2)ef + 2V, (¢f)
= V. (&) +2(va + 7.5
= Va2 + (vas + 752"
Vo Val2) = V,(V,(2))e; + V. (2,5
+ Vb(Zaci)zl + Zacivb(zi) ,
where
D,(e) =v.5 >
and
Yo' =Va"e + Voo »
(VaVe =V, Vo )2) = (V. V, — V,V,)(2)e;
+2(V,V, — V,V,)e5
=RV, (2" + Rupa2?,
where
R “=V.(1%) = Voltu) + 1% 1"
~ Vo ela e — W’y — Vo ulve’e
also
Babdc =Ry + ﬁabdc ’
where R, € is the curvature of the connection D and
ﬁabchﬁa (;’ocd) - Db(;/a a) + ;/bed;/ace - 7A’a ed;/bce )
SO
[VeV, 12" =Ry Vo (2%) + Ry 2
[Va’vb ](wdzd) =RV, (a)dzd)
=R,V l0,)2 + @4R %Y, (2%)
= [Va’vb ](wd)zd + o, [Va!vb ](zd)
=[V,,V,] (@q)2” + 4RV, (27)
+ wdl_zabcdzc ’
S0
[Va WV ](a)c) =R, V,(0,)— Bamdwd .
Let the derivation I °; be defined by
I%z) =2V,
I f)=0 if feC=(P).
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Then
0= ch(a’xzd) = ch(a’d)zﬂ + “’dch(zd)
=10 27 + 0,2V,
=10 )27 + w2
=140 )V, 7 + 2V, ") + 0,7,

ch(wd)vad =0,

ch(wd)vad = —w,6,= Yo, )= —0° 0, .
With this definition, one writes

[D:.D;](0°V.) = (Rep°D % + RopeI,)0°V,).
Now
(VoVp — VaV, ) = V,V,(2) — V(Do + 7,52°)

=D, V() + 7.5 Vs(2") — V,D, ()
— V.52 — 7% V(")

= - Vﬁ(;/acb)zb’
S0
[DoD;](2) = Rop“2Vy = Rop.“I°4(2)
and

[VarVe] =Cus® Vs = Cpg® b °V,, .
Defining C,z°=C,,* bs ° one has

[VaVs] =CosV,
and

[DoDp] =CoD; .

APPENDIX F
0= gvu(gﬁdvad) = -fva(aﬁx)vda + gﬁJCaaavad

SO

-Yv,(eﬁd) = = odacaaﬂ_'- %’apaoad ’
but

6, V, ¥ =0=%,% =0.
One has

L5.8=V,(84,)0780° +85,C5,°0°00°
+85,C5.70%00° + V,(g,,)0°®60° = .8,

SO

Vagﬁa = ’{‘agﬁa + Caﬂsgsa + Caasgéﬂ (Fl)
and

vagab =A’agab . (Fz)
[D..D;]g

= [VarV51(825)0° 867 = R,V ,(8,5)0“ ® 6°

=R,;V,.8 — Babcdgdeece 0°— Babedgcdo ‘®f°

= Rabava(gaﬂ)aasoﬂ + Rabo'va(gcd)ocs od

- (Babce + I_zab«')oc® o

SO

R,,°A.8.4 = 2R 1 ca) - (F3)
From
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{[Vas[VesVe]1 + [Ver [VesVa]]
+ [Ves [VaiVs 111 (F) =0,
one gets
V. Ry =0. (F4)
0=Ly (VW [V,,V,])
=Ly (Ryu)=VWLy (RyV,)
$O
VaRp") = Ry Cou” - (F3)
[D.D;)g=D.(Vs(g,5)60°® 6° +258,0°® 8°)
—D}(V.(g5)0°©0° + A,8.,6°©0°)
= [V..Y,](8.5)0°®6°
+(Vads — VA, )g.,0°06°
=CopV(8,5)0°®60°+ C,5°4,8,0°®6°
$O
Veds — Vi, =C4, . (F6)
0=y Y, =V (WV, = V (b IV, + b V[V, Y, ]

SO

V, (b % =0
or
V,(Cs?) =0. (F7)
Lo Var =Volbyr PV + by P [V, V5]
= (Valbar ) + bor °Co,, ")V
=Cow ¥ Vs =Cope PV .
So
V(b Py =Coo?+ b, °C,°
or
ValCos®) = Cps® Coar 4 Cos°Co” . (F8)

Lo, Vg =by "V, (bg °)Vg
— b PVg(bor IV + by ®bpe P [V, V5]
= [bar (Capr ® + bp °C,. %)
— byt P(Cpar ® + bar “Cog®) ] Vs
+ b, ®bg PCLp°V 5
= (bgr *Cppr ® + b PCr g° — by “bgr PC6° Vs
=Cop® Ve =Cpp®Vs,

SO
Ca’p’ 5 — ba' aCaB' s -+ bBl BCa'BG — bal abﬂr BCaﬂs .
(F9)
Va’ 8ap = '{a’ 8 = ba' avagab = ba’ a/i'agab 4
Ay =bA,, (F10)

[Var:Vg 1805 = Carpr & Vs 805
=Corp % (Ao 805 + Cs o 8ps + Csr5°8)
= Ca’ﬂ' e—('1'€g¢76 + Ceapng + Ceépga'p) ’

s0
Corp < Coriony = Car g2 “Ciop) - (F11)

The Jacobi identity gives
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€ 34 ‘ 8
0= Ca'ﬁ' Car € s + Cﬂ’o' Ca'e' s + Co'a' € Cﬁ' PR
(F12)

APPENDIX G

Evaluation of 7,5, R 43¢, R4, R. Let vand w be
vector fields in P, then the torsion is given by

T (v,w)=D,w - D, v — [vw]
=v"D,(wPV ) — w’Dy(v*V ) — 'V, (wF)V,
+ WPV ("), —v'w®[V,, V5]
= UADA(WB)VB - wBDB(UA V.4
— 'V, (WP )V + WPV (v')V,
+v'w?{D,Vy — DV, —[V4,95]]}
=v'wP (¥, — 54 — Cas“)Ve;
so torsion-free means
¥4 — 784 = Cus®.
One also has
0=D.g=Dc(g3)0*®0% +g,5Dc(0")2 0"
+g,50"®D 6%
= (Ve(8az) — 8o8Yc4 — 8un¥c 510" @07
SO
Ve84s =8ap¥c's +8ps¥c a s
Yacs=}[Vasc + Yacs + YBac +VBca — Ycan — Ycpa
+ Yace — YBca + Ycap — VBac + YcBa — Yasc)
=4[V.8rc + Vs84c — Vc&us
+ Cusc + Ccpa +Ceusl -
Then
Yaos = YHCago + Cacs + Cpoa
+ A28po + Ap8ac — Ao8ag) »
Yasg = — svagaﬁ ’
Viag = 3Va8ug 5
YaBa = ivagaﬂ ’
Yaab = Y — Aa8as + Rapa)
Yaas = 4Aa8ab + Rapa)
Yava = 4Aa8ab — Rapa)
Vare =0.
Let u, v, and w be vector fields in P, then
R (upw={[D,,D,] — Dy, }w
= {u*D w®Dy — v®Dyu*D, — (uw]“Dc}w
= {u"D,(v®)Dy — v’Dy(u’)D,
+ u'y® [DasDs] — u*V 4 (v°)Dc¢
+ VPV g (u€)D — u'v®C 3D jw
= u"v?{D,Dyw — DyD,w — C,5°D w}
= uv? (DD z(w)Ve + wPys % Ve)
— Dy(D ;(wC)Ve +w?r,pVc
— C D cw®)Vp + wFy e V,))
= “AUB{ [D,’DDA'? ](wD)VD + D;J(wc)TADCVD
— D (w )y cVp + D WPy p Ve
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- Dé(wD)YA CDVC + w® [D;(VBCD)
— D3y, CD)]VC + wCVBEc?’ADEVD
—wY,EcvseVp — CD c(wP)Vp

—wC, "7V}

= w'uPwC Dy (ys°c) — D 5(¥4"c) + ¥55c ¥4k
—Ya Vs e — Capve’c + ISABCD }Vp

=R 5 Pu WV, .

Note that the only nontrivial components of R 5" are R ,,,.*
and R, " = — Rpo”.

APPENDIX H

Let the vector fields ¢;, i = 1,...,p — ¢ be now a coordi-
nate basis, and define 4;“ by

a a
Vi=E+Ai V.. (H1)
Then one sees that

[Vi.Vy] =Ry*V,

and so

Ru"=i(Aj“)—i(Ai“) + A,P4,°Cg,* . (H2)

ax' ax}

And from

[Va Vi ] =0,
one gets

V,.(4,%)=4,°C,.”°. (H3)

It is also easy to see that

A= —gug%;", where %— =a;°V, (H4a)
or

8ix = _Aiaaajgjk . (H4b)
And defining

8i.=8(V:,Va),
one has

A= — gwgﬂa (H5a)
or

8ic = — AiBgBa . (H5b)
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Convergence of multitime correlation functions in the weak and singular

coupling limits®
R. Dimcke

Fachbereich Physik, Universitdt Miinchen, Munich, Federal Republic of Germany

(Received 18 August 1981; accepted for publication 11 December 1981)

For a system coupled to a thermal bath we prove the convergence of the multitime correlation

functions of system observables in the weak and singular coupling limits. The limiting correlation
functions are given by the quantum regression law. Therefore, our result implies that in the limit
the dynamics of the system are governed by a quantum stochastic process in the sense of Lindblad.

PACS numbers: 05.30. — d, 02.50. + s

1. INTRODUCTION

We consider a quantum mechanical system coupled to a
quasifree heat bath. The total Hamiltonian is given by

H=Hs +HB +H1- (1)

The system Hamiltonian Hj is a self-adjoint operator on
#s, the system Hilbert space. The bath Hamiltonian, acting
on the bath Hilbert space 5%, is formally given by

Hy = fdk w(k)a™ (k )a(k)and theinteractionis H, = Q@ F,
where Q is bounded and self-adjoint on #°5 and

F=ygdk A (k){a*(k)+ alk)). Wedenoteby 7 (7#°) the Ban-
ach space of trace class operators with the trace norm |||},
and by % (#°) the Banach space of bounded operators on 5%,
The initial state of the system is specified by the state opera-
tor W=powze7 (# 5 ® 7 3), where pe7 (7 5)is an arbi-
trary state operator of the system and w;, is the thermal equi-
librium state of the reservoir at temperature 8 ~'. The time
evolution of density operators of the joint system is given by
U(t)W = e~ H'We'™ Weareinterested in the reduced dyna-
mics of the system defined by

T(th =Tr, [Ulthsw,], @
where Tr, denotes the partial trace over the bath Hilbert
space.

The reduced dynamics is governed by the Nakajima—
Zwanzig generalized master equation.'* This equation con-
tains memory terms which make the evolution non-Marko-
vian. But if the decay time of the reservoir time correlation
function g(t ) = Tr[e"” Fe ~ "™ Fw, ] becomes short com-
pared to the typical relaxation time of the system, then T'(¢)
may be approximated by a dynamical semigroup. There are
two different approximation procedures. In the weak cou-
pling limit H, becomes weak of order €. To obtain a nontri-
vial effect one has to observe the system up to times of order
€% In this case Davies* proved that T'(¢) converges to a
dynamical semigroup. In the singular coupling limit g(z j con-
verges to a delta function. This may be achieved by scaling
the interaction as €~ ' and speeding up the free reservoir mo-
tion as € 2 {Ref. 5). The convergence of the reduced dynam-
ics in this limit was first proved by Hepp and Lieb® for quasi-
free systems and studied in more detail in Refs. 7 and 8.

It was pointed out by Lindblad® that a semigroup law is

“This work is part of the author’s doctoral dissertation submitted to Fakul-
tit fiir Physik, Universitit Miinchen.
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not sufficient for the system dynamics to be Markovian. As
in the classical case the Markov character can be established
only by considering all higher order time correlation func-
tions. The purpose of this paper is to show that in the weak
and singular coupling limits the dynamics of the system is
indeed governed by a Markovian quantum stochastic pro-
cess in the sense of Lindblad.'® Technically we prove the
convergence of all multitime correlation functions and show
that in the limit the structure is given by the quantum regres-
sion law.''-'¢

We briefly indicate the precise result and its physical
interpretation.

Let X,,Y,€# (7 ) be system operators and define the
map

EW=Xe1WY, 9l (3)
Furthermore, we define
T(E, t,;..;E t)p

=TrE, U(t, —t, | )E,_,~E Ut )pow, (4)

as a map on .J (#’s). Tracing over the system results in the
multitime correlation function for the system in the form

TrsT(E, b, ;. E Lt
= Tr[(Y, @ 1)(z))}{Y, @ 1)(z,)(X, ® 1)(t,)
X, el)tpews], (5)
where (A @ 1)(t) = e#'A @ 1e ~ ",

In Secs. 2 and 3 we prove the convergence of
T(E,,t,;..;E\,t,)p in the weak and singular coupling limits,
respectively. If 7(f ) denotes the asymptotic semigroup, then
T(E,,t,;..;E,t o converges to

E,Toft, —t,_1)E, _,~E\ Ttip, (6)
where Ep = X,pY,. Equation (6) is a quantum mechanical
analog of the formula for the finite dimensional probability
distributions for classical Markov processes.

T(E,t,;..;E\t)p has the following physical interpre-
tation. Let 4, = X,c!/P ) be observables of the system, ¢!/
being the real eigenvalues and P/ the corresponding eigen-
projections. Weset X; = ¥, = P\". Then T'(E, t,;..;E vlilp
is the reduced state of the system at time ¢, subjected to
measurements of 4, attime ¢,,...,4,, attime ¢,. At time ¢; the

value ¢! is observed and at each measurement the state is
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reduced according to the von Neumann projection
postulate.

2. THE WEAK COUPLING LIMIT

The Hamiltonian is scaled as

H =¢*H;+ e ?Hy + € 'H,. (7
This Hamiltonian describes the time evolution on the re-
scaled time scale. On the original time scale the Hamiltonian
reads Hy + Hy + €H,, where the interaction is weak of or-
dere.

The bath is assumed to be an infinite quasifree fermion
system. It is well known that thermal equilibrium states of
infinite systems cannot be represented by state operators on
Fock space, in general. In the algebraical framework of
quantum statistical mechanics the GNS construction associ-
ates to each state a Hilbert space, and the state is represented
by a state vector.!” Let #°, be the Hilbert space associated
with the initial state w; of the bath. The representation of the
algebra of field operators in 5%, satisfies the canonical anti-
commutation relations in the form

¢ (f)o(8) + 4 (8)é (/) = 2Re(fg)- (8)

The initial state w, of the bath is completely specified by the
two point function

“)B(¢(f)¢ ) =gl + eﬁ("~m)—1f)

+ (£l +eFr-m)~lg), &)

where A is the one particle Hamiltonian, f is the inverse
temperature, and g is the chemical potential. Bath correla-
tion functions of odd order vanish and even order correlation
functions are given by

wpl(@ (f1)¢ (f2n))
= z Sgnpkﬁl wﬁ(¢(fp(2kwlj)¢(fp(2k]))! (10)

pePi2n)
where the sum is over all ordered pairings of 1,...,2n.
WeputF (1) = ¢ Fe ™ ™# = ¢ (¢ ), where A isafixed
test function. On g(¢) = wg-(F (¢ )F) we impose the condition

18

Jm dr |g(t)| < . (11)

This condition is satisfied for # = — 4 on L? (R*) and v>3.
We define the Liouville operators
LiW= —i[Hg,W ), Ly W= —i[Hs,W],
L,W= —i[H,,W] andput U¢)
—exple ?Lg + € 2Ly + €7 'Ly}, Uglt)
= exple " Lg + € 2Lg)t.
Furthermore, we define the semigroup
T§(r) =exple 2Ls + K ), (12)

where
Kp = J' dt Trge ™ LS L pew,.  (13)
0

TYE,,t,;..;E 1) is obtained from (4) with U (¢ ) replaced by
U<t).
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Theorem 1: Assume (11). Then for all £>0 and all
peT (Hs)

lim sup
€—0 0 <<t <t

—E,T§(t, —t,_)E,_,~ET§lt)p|, =0.

|TE, tns. s Ertilp

Proof: We prove the case n = 2. The proof for arbitrary
n is analogous. The steps of the proof are as follows. Consid-
ering L, as a perturbation U “(¢) is expanded in a Dyson
series,

Ut) = k}:joe~kf()

dsk '"dSIU(e)(t —_ tk )L["‘Ll U(E)(tl)'

<5y <K< !

(14)

This expansion is inserted in T “(E,,2,;E),¢,)o. The resulting
series is majorized by an absolutely convergent series uni-
formly in €. Finally, we show that most of the terms in the
series vanish in the limit and that the remaining terms con-
verge to corresponding terms in the series expansion of
E,T5(t; — t)E,T§(t)p.
In the proof we rely on technical results by Davies.*
To simplify the notation of the integrations we intro-
duce 4 (£,,k,ty) = {(s1,...,5 JER |1, <5, < <8, <15} and
A (k5 85) = {(815meeSisSk 4 15005k 4 1) ER |
1< < <8 KOS Sy < <Sp 41 <)

(1) The uniform estimate

Using (14) we obtain
TYEntsEvtio= Y 2 Ry.p, (15)
k=01=0
where

Rap = *+0[  dsTey [EUsle: = 5.
4 (0,k,t,,1.1,)

L UGk 1 — HE,

XU§(ty — s )Ly +LUGlsJo@wg]. (16)
We have
LW= —i[CBW—-CBW], (17)

where
CW=0c1W, CW=W@el,
BW=19FW, BW=WI1gF.

Let /7 (n) denote the set of functions {1,...,n}—{r,/}. For
well (n) we define sgn 7 = ( — 1)2™ U,
Using (17), we obtain from (16)

Ryp = (ie) =~ I’f ds
4 (0,k,t,,L,t;)

Taell(k+ 1)

sgn 7

XEzeeist‘ZCﬂ(k +1) 5k + 1)"‘Cn1k +1) (k4 1) s
XEleeqLShCﬂk)(sk ) Crny (S0
XTr{ B 4 1y(Sic DBk 4 1)k 1 1)
XBmk)(sk)"‘Bﬂu)(sl)a)B]’ (18)
where
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C,(t)= e.‘e*’uszcie— ie'zﬂst’
B,(t)=¢ HFBe = e j=pl

Now we estimate

[T > A D > & D AN 7] o

x > [ g
memk + 1) JA (0,k,t,.0,t:)

'"Bﬂ(l)(sl)wﬁ}' (19)

Tan(k+1)(sk+1)

To each mell (n) we associate a permutation 7
{1,..,n}—{1,...,n} defined in the following way. Set
Jo=card |[m~Y({1})|. We put #(1) = min{ jim{j) =1},
mjo + 1) = max{ jlm{j) = r}, i) = max{ j < i — )|
m{j) = r}, i =ju + 2,...,n. Using this definition we write

Tr B 4 1) Sk 4 1By 5:1)005

=Tr F(ts"zs,;(,c+ ”)...F(e_zs,;(l))w,;,

where all field operators are commuted to the left of wg.
Forodd k +! R, vanishes. For even k + / = 2n we
obtain from (10)

Tr F €7 %S ;00 )+F (€ s 0

= z Sgnplf[l &Sor2) — Sozj— 1)) (20)

pEeP(2n)

witho = 1}°p and g5(t ) = g(e~*t). To estimate the time inte-
gral of the correlation function in (19) the domain of integra-
tion is enlarged,

|
A4 (0,k,1,,1,1) A(0,2m,t)

and with the estimates from the proof of Theorem 3.4 of Ref.
4 and the symmetrization trick of Lemma 3.3 of Ref. 4 one
obtains

f ‘!_{ITr B, 1) (520 JooB o) (51)0g |
A4 (0,2m,¢)

cen gy
n2"

This proves that the series (15) is majorized by

$ 3 IRy sl
pu=0v=0
ARNANCANIANTIR
x $ 2 ojg, iy,
u=0 fb

which is absolutely convergent for all  and independent of €.

(2) Term by term estimates: vanishing terms
Inserting (20) into (18) one gets
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Ryp = (ie) =" Y sgnmw

mell (2n)

X Y sgn pf ds
peP(2n) A(0,k,t,,4,t5)
i~ e«}L >

X E,e s C-n'(an (52,)

...E‘l...cﬂm(sllp

X H gE(SG(Zj) — Sor2j — 1))
i=1

= 3 3 Rup, ey

mwell (2n) peP(2n)
where R {, is defined by the last equation.
First we show that in the limit é—0 all R §, vanish for
which there is j, with o, = min(o{(2j, — 1), o(2j,))<k and
o, = max(o(2j, — 1), o{2jo))»k. We estimate

n
f ds| [1 &% — Sotzi— 1))
A (0,k,1,,L,t,) j

ji=1

t, t, t, t,
<J' dsy, | dse, ,f dsk--of ds,
t L, (4] 0

<=2 glr-! f ds,, ds,, |g(50, —5o,)]

0<0,<,<0,< 1,

=emt"" l"g”’ll - IG(G’tlrtz)’

where G (6,,,t)) = €% S 40,1411, 45)85(52 — 5,)|. In Lemma
Al(i) of the Appendix we show lim,_,G (€,¢,,t,) = 0.

For the remaining terms the integrals § ., ds and
54,11, 45 factorize. Therefore, it is sufficient to discuss one
of them, say the first one. We show that in the limit all R £,
vanish for which there is j, such that
|o{2jy — 1) — 0(2j,)| > 1. With 0,0, defined as in the preced-
ing paragraph we get

k/2
L ds [] |8(soan = Soy— )]

Oke) j=1

t t
!
<J- ds, ds, . ,ds, f oo | dspeeeds,
0<55,<5,, 4 1<55, <!t 0 (1]

k/2
X H, |&(502) — Soy— )|
P

n
g‘(sqz_n — So12j — 1))‘
=1

SOCTYEL TS f ds Glest),
0

where ds,--'-ds, indicates that the variables s, , s, . i, S,,
are lacking. According to Lemma Al(ii) f;ds G (€,s,¢) con-
verges to zero for e—0. So only terms with
|o(2j — 1) — 012j)| = 1 contribute in the limit.
(3) Term by term estimates: contributing terms

For the terms contributing in the limit we obtain the
series

5: i f dsEZeE_IL.s«z—Sk+li
k=0i=0JAOkK L) T

XK, (t, — 5, I)ef_st(SkH—-‘kw_n)
€ +

XK Sk 1 —Skp1-1)

X ee_’Ls{:k i t,)Elee_’Ls{t, — s

XK, (t, — 5 )K.(5; — s,))¢° p,
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where
P
K. (tp= J; dse " TrpLe™* " Lpew,.

On the other hand we have
E,T§(t, — 1)E\T§(t)p

00 3

- Sl
k=01=0J4(0,kt,L,t)

XK---KeEiZLdSk*' =)

S By s W g E
Applying the inequality | K, (¢) — K ||<4||@ ||?
X SRa[ - e-2re-2 15]8(5)| completes the proof of the
theorem. |

The semigroup 7'§ does not preserve positivity, in gen-

eral,'® and consequently the quantities ETS(t, —t,_,)
E,_ —E,T§ (t, — t,)E 1 T§ (t,)p do not define a quantum
stochastlc process. To obtain a quantum dynamical semi-
group T should be replaced by T, (z)
= exple "2Lg + K #)t constructed from the averaged gen-
erator
T

K*=1lim - [ dre ke (22)

T« 2T J_7r
We assume that H has a purely discrete spectrum. Then the
limit exists in the strong sense and T'5,(¢) is a completely
positive dynamical semigroup. Under assumption (11) Da-
vies?° proves for all p.7(7#5) and all £ >0
lim sup ||

ot —=T5(t =0.
lim sup ||T's(t)p — T, bl =0

This result can be extended to prove the convergence of all
multitime correlation functions.

Theorem 2: If H has a purely discrete spectrum and if
(11) holds

lim sup ||TYE,t

n "";Elltly)
0 0K < <1, <t

—E,Tg(t, —t,_)E,_~ET5t)pll, =0
for all ¢> 0 and all pe.7 (Fs).
To prove the theorem we need
Lemma 3: For every n and every 8 > 0 there exists a
compact set K5 and a decomposition E',, T, —t,_,)
wE TS (100 = P (L1seest ) + PS5 (E1sent, ) satisfying
95 (11t K,

o3 (#1521 <6,
for all >0 and all (¢,,...,2, jd (O,n,2 ).

Proof: The proof is by induction over n.

(1) Let Hg = 2,w, P, be the spectral decomposition of
Hg and put Q, = 3%_, P,. Define & .7 (I s> (Hs)s
p—Q,pQ,. Clearly s-lim,_,_ #, =1. [¢"P,p|teR]} is
compact for keN. As L and K # commute T5,(t) = 5 **
" <. From the continuity of (¢,py—>¢* *ip we conclude that

{E\T (1) 2 p|0<t,<t,€ >0} is also compact. The esti-

mate

1B, TS (8,1 —

Ziplh<IENIN— Z el
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shows that for some k = k, the right-hand side is less than 4.
Choose K5 = {E,\T(1))7  p|0<t,<t,€>0} and pf(z,)

—ETL002 . piie) = BT - 2.

{2) Suppose the lemma holds for n = n,,. Then there is a

decomposition E, T5, (¢, —t, _,)E, TS (t)p

= piltisty,) + 510,01, ) satisfying the assumptions of
the lemma. As (1 — Z7,) converges to zero for k— o uni-
formly on compact sets there is a k, such that ||(1 — Z, )
pf(tp ’tno)”l <5 We pUt

,.+1T‘w(t,.o+1

~12,)Z 1 P (15 est,),
Piltyty o) =E, (T o(t, o1 — £ )1 — 2 Pttty )
B Tty 1 — L 05 (E1enty,)
We obtain the estimate |55 (¢,,....t,, . ,)||;<2||E o+ 1]/0- We
puthuE 6= (En 1 TL)Z, p|O<S<t6>0,p€K5}.
K2||E , is 18 compact and g5 (¢,,...,¢, . )EKZHE s- Asdis
arbitrary the lemma is proved.

(tl’ ’tn,,+ 1 )

na + il

Proof of Theorem 2: 1t is sufficient to prove

lim sup |E,T§(t, —t,_,)

e—0 0<1, < <<t
BTt — E,T5(t, —1,_,)
"'EITw(tllo”l =0.
The proof is by induction over n. For n = 1 Davies’s result

applies. Suppose the theorem holds for » = n,,. Then we
estimate

IE,, + 1 T&tn, 41 — tuy B, E T E(t1)p
En.,+ N LA tno)En,,"’ElT;(th||l
<IE, Tt o1 — )
X [E, E\T§(t)o — E, ~ET5(t)p]ll,
FNE, o [TEltny s = tn) = Tty 41 — )]
X5 (trsevosta M+ 2+ 1 105 (Eiresti M

where we used the decomposition of Lemma 3. By appropri-
ately choosing & the last term becomes abritrarily small. For
€—0 the first term converges to zero by assumption and the
fact that En 1 I5(t,, o« —t,)isbounded. The second term
converges to zero because pf (¢,...,Z, ) belongs to a compact
set. This concludes the proof of the theorem.

The result may also be formulated in the interaction
picture. There one considers the dynamics relative to the free
motion of the system. Using the commutativity of Ly and
K * we obtain s-lim__ge < " T5(t) = 5™ Instead of (4)
we consider

TrBEn(_tn)Us(tn n—l) n——l(_—tn—l)
E\(— t,)U(t,)p ® wg,

where

E ()W

— (eie'ZHSJXke —ie" Hg ® 1) W(eie*’Hstyke — i Hgt ® 1).
Slightly modifying the proof of Theorem 1 one obtains
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lim sup IlTrBEn( - tn)UE(tn - tn— 1 )

€0 0K, <K 1, <
- #, _ ~
wE\(— ) Ut )powy — E e """ E,_,
- 3
~E e "p|, =0.

Let H = 2,0, P, be the spectral decomposition of the
system Hamiltonian. For simplicity we assume that all ei-
genvalues are nondegenerate. 7%, (¢ ) leaves invariant the set
of density matrices commuting with Hg. T5,(¢) induces a
classical Markov process X (¢) on the state space I with the
initial distribution P (X (0) = /) = Tr P,p and the transition
probability

PX(t;) =i|X(t,)=))

=Tr P, T (t, —t,)P,.
The joint probabilities are given by

PX(t,) =iy, X (1)) = 1))
=YPIX{t,)=i,|X(t, \)=i,_,)

P(Xo(tn—l)=in—-1 |X(tn—2) =in‘2)
~P(X (1)) = §,|X (0) = io)P (X (0) = i)

=TrE, T5(t, —t,_,)E, T (t)p,
where

E.' =PpP,.
However, only in the limit a classical stochastic process is
imbedded. The corresponding quantities

PX(t,) =iy, X () =1)
=TrE U, —1,_,)
-E, Ut))p e wg

for finite € do not form a consistent set of probability mea-
sures, in general.

3. THE SINGULAR COUPLING LIMIT

According to Palmer” the singular coupling problem
can be transformed to a weak coupling problem. One scales
the Hamiltonian as

H,=Hs;+e¢ *Hy +€ 'H,.
Weput UL (t\W=¢e" HiWe™ % In this case the dynamics

of the system and the dissipation are on the same time scale.
The generator does not depend on Hy,

K. p= f ds TraL,e""Lp ® wg.
0

The semigroup 7T (t) = exp(Ls + K, )¢ is already a com-
pletely positive dynamical semigroup and no averaging is
necessary.

Theorem 4: If (11) holds

lim sup
€0 0Kt < <1, <t

XE" —1 "'E1U§g(tlp 8&)5
_E;nng(tn - tn‘l)E;n—l
'"E'Ing(tlla“l =0

IlTrBEn U:g(tn - tn — 1)
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for all £>0 and all peJ (H#7s).

The proof is similar to the proof of Theorem 1. Only
minor changes are necessary to account for the different
scaling of the system Hamiltonian.

ACKNOWLEDGMENT

The author would like to thank H. Spohn for suggesting
the problem.

APPENDIX

Lemma A 1: Put G (€,t1,t;) = € 7 fois 1 cs,cr, @52 A5
|g%(s, — s,)| for 0<t,<t,. Then

(i) lim G(e,t,,t,) =0 fort, <t,
€—0

and
(ii) lim fds Glest)=0.
e—0 Jo

Proof:(i)Setf(x) = S dy lg(y)|. Then | f{x)| </gll forall
x and lim,__ _ f(x) = 0. Using the substitution
s} = € s, — 5,) in the definition of G and extending the
upper bound of the resulting integral to infinity one obtains

G (e,t.,r2)<f’ds2f(e‘2(s2 — 1), (A1)

The conclusion follows by dominated convergence.

(ii) G (e,s,¢ ) converges pointwise for s < ¢t and from (A1)
followsthebound |G (€,s,¢ )| < ||g]| ;. Application of the Lebes-
gue theorem completes the proof.
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A rational von Neumann lattice is defined as a lattice in phase space with the constants @ and b in
the x and p directions given by a ratio of integers. Zeros of harmonic oscillator functions in the kg
representation on such lattices are found. It is shown that the number of zeros of the kg function
determines the number of states by which a set on a von Neumann lattice is overcomplete.

Interesting relations between theta functions are derived on the basis of their connection with the

harmonic oscillator states in the kg representation.
PACS numbers: 05.30.Ch
I. INTRODUCTION

The concept of a set of states on a lattice in phase space
was first introduced by von Neumann in the early thirties.’
This lattice has an underlying unit cell of area 4, the Planck
constant, which shows that the fundamental commutation
relation of x and p is explicitly contained in its construction.
Because of this striking feature such a lattice in phase space
becomes physically very attractive. Thus, von Neumann
stated' that a set of coherent states™ on this lattice is com-
plete. Later this statement was proved independently by Per-
elomov* and by Bargmann ez al.® It was turned out that
completeness also holds for general sets of square integrable
states on a von Neumann lattice® (phase space lattice with a
unit cell of area /4 ). This leads one to a very elegant way of
constructing complete sets of states in quantum mechanics.
There remains, however, a very intriguing feature of sets of
states on a von Neumann lattice which is connected with
their nonorthogonality. It was first noticed by Perelomov*
that a set of coherent states on a von Neumann lattice is
overcomplete by exactly one state. This is a rather strange
feature whose physical meaning is not clear. It turns out that
the overcompleteness by one state is connected with the fact
that coherent states in the kq representation have exactly one
zero in each unit cell of the von Neumann lattice.® The exis-
tence of this zero influences strongly the nature of the expan-
sion in the discrete set of coherent sets.” In particular, if a kg
function C (k,q) has any zeros, the von Neumann set built out
of C (k,q) cannot be orthogonal on different sites of the lattice,
because orthogonality requires |C (k,q)| = 1.° This feature of
von Neumann sets was recently used in proving what is
called the strong uncertainty principle in quantum mechan-
ics.®

In this paper we show that the von Neumann set built
out of the wave function C (kg) is overcomplete to an extent
that depends on the zeros of C (kg) in number and kind. Nota-
bly, if C (kg) has r isolated simple zeros (zeros of order one)
then overcompleteness is by exactly r states. It was recently
proved that any continuous wave function C (k,g) has at least
one zero.® This means that the von Neumann set built out of
any continuous C (k,q) will be overcomplete by at least one
state. In particular, we investigate zeros of the harmonic os-

* On leave from Department of Physics, University of Surrey, Guildford,
England.
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cillator states Cy(k,q) in the kg representation. As is well
known, the harmonic oscillator state depends on the param-
eter 4 (A > = #i/mw) while the kq representation is defined by
using a lattice'® (we put the constant g of this lattice as a
superscript on the function)

CYk,g) = (za_,r)m ] i explikan)ylg — na), (1)

where /(x) is the wave function in the x representation. The
constants A and @ appear also in the definition of the von
Neumann lattice’

1 . 27
Ay =——=(na +imb), b=""2A472 2
v, ( ) , (2)
In the particular case, when
b/a=s/l (3)

where s and / are integers we shall say that the set of points in
Eq. (2) forms a rational von Neumann lattice. Thus, a special
case of arational von Neumann lattice is a square lattice with
b = a. In this paper we find sets of zeros of harmonic oscilla-
tor states for rational von Neumann lattices. In particular,
we consider the lattices b = sa with s = 1,2,3, and 4. For
these particular rational lattices we find zeros for infinite sets
of harmonic oscillator states in the kg representation. These
zeros are located at symmetric positions in the unit cell of the
von Neumann lattice. For finding the zeros we use a relation
connecting kg functions for a lattice with a constant @ and a
superlattice with a constant sa, s being any integer. This rela-
tion together with a canonical transformation gives zeros of
harmonic oscillator states on rational von Neumann lattices.
Although it is at present uncertain whether there are more
zeros than the ones we have found, we gain a great deal of
insight into the properties of harmonic oscillator lattices.
These results are contained in Secs. I-III. In Sec. IV we
discuss the relationship between the zeros and the degree of
overcompleteness of the von Neumann lattice set. Finally,
Sec. V presents some interesting relations between theta
functions that come out as a by-product of the search for
zeros of harmonic oscillator states. That there is a connec-
tion between coherent states on a von Neumann lattice and
theta functions has been known for some time.*'" It turns
out that this connection is a very far reaching one and it is
extended in this paper to higher harmonic oscillator states.
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Il. RATIONAL VON NEUMANN LATTICES

The Hamiltonian of a harmonic oscillator
=L (ﬁz + 2) (4)
2m Al

with A 2 = #i/maw, is invariant under the following canonical
transformation:

. AT, . A

In the x representation the transformation 7" assumes the
following form:

o) = | exp( 7 ooy

#'/2 #ix )
= F —_— 6
A ( A? @
where F( p) is the Fourier transform of #{x)
1 * i
P = Gy f . we"p( #P x)'/’(x)dx' 7

When y{x) is the N th harmonic oscillator state ¥ (x) its
Fourier transform Fy( p) is well known'?

where H  (x) are the Hermite polynomials. From Egs. (6) and
(8), and from the explicit form for ¢ (x) [see Ref. (12)] we find

Ty lx) = iy (x). 9
This means that the canonical transformation (5) when ap-
plied to the harmonic oscillator states multiplies the latter by
i". Such a behavior of the states | N ) is in agreement with the
fact that they are nondegenerate.

Let us now find Eq. (6) (the first half of it) in the kg
representation. For defining the kq function C (k,q) one can
also use the Fourier transform F( p) of the wave function'®

Clhg) = (2) explig

X Z exp(zq—z—n) (ﬁk—{—n%ﬁ-ﬁ). {10)

n= — oo

Fy(p)

From Egs. (1), (6), and (10) it follows that
TC"k,q) = explikq)C® '< — 7{%, A%k ); b= —/l 2, (11)

where as in Eq. (1) the superscripts denote the lattlce con-
stant. Note that the same relationship between b and a oc-
curs as in Eq. (2). Equation (11) expresses the canonical
transformation (5} in the kg representation: a kq function
C “(k,q) is transformed by T'into a kg function C"*!( — ¢/ 2,
A %k ) for the constant b, multiplied by the phase exp(ikq). It is
interesting that while in the x representation the canonical
transformation (5) is given by an integral [Eq. (6)], in the kg
representation one just has to replace in the function

k— — g/A %, g—A %k, multiply it by the phase exp(ikg) and
change the constant from a to b. This replacement corre-
sponds to the orignal transformation (5) if one remembers
that in the kg representation p is replaced by #ik and x by ¢.

For rational von Neumann lattices [see the definition
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(3)] the right hand side of Eq. (11) can be expressed as a linear
combination of kg functions for the constant a. This can be
achieved by using formulas expressing kq functions C **(k,g)
for constant sa (s an integer) via C “{k,g), and vice versa.
Such formulas are very easy to obtain and a short derivation
of them is given in the Appendix. [Formulas (A4) and (A5)].
By using these formulas, the canonical transformation (11)
can be written in terms of kg functions for the constant a.
Thus, when b = sa we have

TC ¥l g) = e"l’)(l’/’zq) > cw( L ri k).
(12)

For a general rational von Neumann lattice b = sa/!
[Eq. (3)], we can combine the formulas (A4) and (AS5) in the
Appendix and express C "*)(k,g) as a combination of the func-
tions C “(k,q). We have

c® ’(kﬂ) )1/2 2 C(a/”(k + r‘2l’q)

s—1171-—1 217_ a
(s/)”2 ,zo 20 ( (a/l)’q N ’7)

X explikr'a/l). (13)

It is easy to see that for / = 1 {b = sa) this formula goes over
into (A4), while for s = 1 (b = a/1) it is equivalent to (AS).
Correspondingly, the formula (13) can be used in order to
express the canonical transformation (11} in terms of kg
functions for the parameter a only.

It is interesting that in the general case the canonical
transformation (11) connects the function C '“(k,q) for the
constant a with the kg function for the constant b. These two
constants ¢ and b are related to one another by Eq. (2) and
they appear in the definition of a von Neumann lattice. That
is, the canonical transformation (11) connects functions for
the particular constants a and 4 belonging to a von Neumann
lattice, which therefore appears quite naturally in this con-
text. Other lattices, where ab #2774 2 (cell area # A ) lead ei-
ther to incompleteness (ab > 274 ?) or to infinite overcomple-
teness (ab < 274 2).*° The von Neumann lattice, on the other
hand, will permit exact completeness or overcompleteness
by a finite number of states, depending on the function
Ck,q).

For harmonic oscillator states Cy(k,g) we can use Eq.
{9) and obtain an interesting formula from the canonical
transformation (11j

INCl9k,q) = explikg)C ) — g/A A%k ), b=2T 42 (14)
a

This formula connects harmonic oscillator functions for the
constants @ and b on a von Neumann lattice. As we show in
Sec. V it is equivalent to the Jacobi imaginary transforma-
tion of elliptic functions'? or a derivative thereof. When
combined with Eq. (13} for a rational von Neumann lattice
formula (14) leads to the following results [for b = (s/])a]:
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s—11—
iNC I k,q) = SPIXG) explikq) D 2 c@

(1)”2 r=0r=0

q 27T 2 Ia)
x( - L A% —r 2
( FERETTY "7

X exp(ikr’ T) {15)

This formula connects harmonic oscillator functions at dif-
ferent points in the unit cell of the rational von Neumann

lattice with b = (s/1 )a. Since 2774 2 = ab [from (14)] we also
have
@’ !

The unit cell in formula (15) is therefore givenbya = A (271 /
5)'2andb = A (2ms/1)"/%. Formula (15) has anumber of inter-
esting consequences, which are discussed in the Secs. III and
V of this paper.

lll. ZEROS OF HARMONIC OSCILLATOR STATES IN
THE kg REPRESENTATION

As was mentioned in the Introduction, every contin-
uous kg function has at least one zero in the unit cell of the
von Neumann lattice.® From some general considerations it
is easy to show that any C',  (k,q) which is built from an

even
even function ¢,,., (x) in the x representation, ¢,,.,( — x)

= Yeven (X) has a zero at k = 7/a, ¢ = a/2
ctu(Z.2) -0 (1)
a 2
Similarly, one can show that C !}, (k,q) which is built from an
odd function ¥ 44 ( — X) = — ¥,44(x), has zeros at the fol-

lowing three points in the unit cell of the von Neumann lat-
tice:

C24(0,0) = C94(0,a/2) = C'%y(m/a,0) = 0. (18)
For showing this we use the boundary conditions satisfied by
any kq function'®

CYk + 27/a,q) = C“k,q), (19)

C“k,q + a) = explika)C“(k.g), (20)
and the fact which follows from the definition (1) that
C(ven( k _q) ven(k’q) and Cg‘c{d(_k _q)
= — C'9,(k,q). Thus, for an even function C%,  (k,q) we
have from the boundary conditions (19) and (20)

Cc@ (m/aa’2) =C9, (—7n/a,—a/2)

= - C(e‘i"en (W/a,a/Z). (21)

From here the zero in (17) follows. In a similar way we verify
the zeros of an odd function C %), (k,q) as given in Eq. (18). It

immediately follows that for harmonic oscillator states for
any M we have

C (r/a,a/2) =0 (22)
CH1(00)=C8,, 1(0,/2)=CYy, 1(m/a0)=0
(23)

These zeros appear for an arbitrary constant a and are con-
nected with the fact that harmonic oscillator states are even
for N = 2M and odd for N =2M + 1.

From Eq. (14) we can also obtain for the harmonic oscil-
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lator states the following general results about their zeros.

Let us assume that there is a zero of C {{(k,q) at k = @7/a and
q = fa/2 with |a|<1 and |{# |<1. From Eq. (14) it then fol-
lows that C'%! ( — Bn/b, ab /2) = 0. Since the harmonic os-
cillator functlons ¥y (x) are real, it is easy to see that C %(k,q)

= Cy( — k,gq). We arrive therefore at the following general
results if
o ';y(a LY —"-) =0
a 2
then
C‘;J'( ta-, J_rﬁi) =0,
a 2
(24)

where the constants a and b are connected by Eq. (2). Equa-
tion (24) does not tell us, however, where the zeros actually
are. In order to look for them we now use the results of the
previous section for rational von Neumann lattices.

Let us start with the simplest case of a square von Neu-
mann lattice, b = a. In this case, Eq. (14) becomes (4 * = a*/
27),

2mq a* )
=5k (25)
From this it follows that for N #4n (n is any integer),
C'@0,0) = 0. For an odd N this is not a new result and it is
contained in Eq. (18). However, when N =2 + 4n, thisis a
new zero and we have

CY, 4,(00)=0, Ar=a*/2m. (26

This relation shows that the even harmonic oscillator func-
tions in the series N = 2 + 4n have a zero in the kg represen-
tation at the origin of the square von Neumann lattice unit
cell.

From Eq. (25) we find also the following new zero for
odd harmonic oscillator states. It is easy to check that

(a) T ay_
ct,u (Z.L) =0,
It is to be remarked from (17) that for general von Neumann
lattices the point k = 7/a,q = a/2 is a zero only for even
harmonic oscillator states. It is therefore interesting that for
square lattices Eq. (27) holds for the odd states of the series
N = 3 + 4n (we shall see in Sec. IV that (26) and (27) are
actually zeros of order two).

Next we consider the rational case b = 24. By using Eq.
(15)fors = 2,1 = 1(or Eq. (A4}in the Appendix fors = 2) we
have (A ? = a*/n),

aZ
2 ’_— k)

g = SR [ — 8

C'9k,g) = explikg)C ‘;;’( -

n arbitrary,

2
n arbitrary, 12=-2_. (27)
27

a’ T
2
+c‘;’(—12—+1,"—k)]. (28)
a a m
Consider Eq. (28) at the point k = 7/2a, ¢ = a/2. We have
NC (a) ( ) - exp(i1r/4) [C (:)( _ L’ _a_)
2a°2 2a 2
c«a»( 2] 29
+ 2a’ 2 29)
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However, since

K- 53)-1- en{ -1 5)(5-3)

( )
2(1 2

a 7 a a
( (@) (_, _) = ( (3 )
n arbitrar Y, Af="

=0, (30)
This shows that the point k = 7/2a, ¢ = a/2 is a new zero
for both the above series of even and odd states when b = 2a.

In a similar way, one can carry out the zero-searching
process for a rational von Neumann lattice with & = 3a. In
this case the zeros for the functions CY", ,, are at k = 7/3a,
g = a/2 while for the functions C¥{, ,, they are at k = 27/
3a,g =0. We have

Ce. . (7/3a,a/2) = C¥, ,.(27/3a,0)
=0, n arbitrary, 42 = 3a*/2m.
(31)

We have also looked for the zeros in the case of b = 4a.
We found no new zeros for the kq functions of even harmon-
ic oscillator states. For odd states we have

CO. . (7/28,0) =0, 22%/m.  (32)

The results of the zeros for harmonic oscillator states in
the kq representations are summarized in Table I and Fig. 1.
In Table I we list the zeros of the functions CY, ,,(k,g) and
@, 4n(k,q) [correspondingly, for C¥), ,,(k.q) and
‘3"1 (k,q); see Eq. (24)] for rational lattices b = sa,
s = 1,2,3,4. In this Table we summarize also the zeros for
even C,,,(k,q)and odd C,,, , , (k,q) harmonic oscillator func-
tions. Figure 1 shows the zeros in the unit cell of the rational
von Neumann lattices for the series N = 2 + 4n and
N=13+4n.
Knowledge about the zeros of the harmonic oscillator
functions is pertinent for an examination of the completeness

n arbitrary, 12 =

la) la) Ib} Ib)
cZ#Ln c3olan c2¢l.n c:!#l.n
T
-4 94—
L -
b=AV2m
T T T
9oe| $o-i-e

b=en'§

FIG. 1. Zeros of harmonic oscillator functions in the kg representation for
rational von Neumann Lattices. @ and b are the constants of the rational
lattice, b = sa. The g-coordinate is on the horizontal axis and & is on the
vertical one. The numerical values for the zeros are given in Table I. Filled
circles show zeros derived from the rationality condition; open circles show
zeros present for arbitrary a.

of the corresponding von Neumann lattice sets. This is dis-
cussed in the next Section. It also turns out that the new
zeros [Eqs. (26), (27), and (30}~(32)] lead to some interesting
relations for theta functions. This is described in Sec. V.

IV.ZEROS AND COMPLETENESS

Zeros of the kg wave function C (k,q) play an important
role for the completeness properties of the set of states gener-

TABLE 1. Zeros of harmonic oscillator functions. In the upper part zeros are listed for rational von Neumann lattices. The lower part contains the zeros of
even and odd functions for an arbitrary constant a. n and M are arbitrary nonnegative integers.

1o VP CY an CP\an ¥
s=la=A37 (b=A27) (0,0) (—’i,i) ©,0) (i,i)
a2 b2
s=2ia=4 7 (0=2447) (+33) (%3 (G=5)  ($=3)
smsami [ (omn [7) (55) (+59  (F=5) (=3)
s=4:a=i\/§(b=4ﬁ\/§) (i-—;?,o) (O,j;—i—)
Cth Clley
(=:2)
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ated from C“(k,q) on the von Neumann lattice. It was
shown in Ref. 9 that this set has the simple form

CY (k,q) = exp(i —2-T—r-qm — iakn)C‘“)(k,q) (33)
a

in the kq representation. Physically, this corresponds to a set
of functions generated by shifts in position and momentum
corresponding to the points a,,, of the lattice (2). The set is
complete when

j:" dk f dq f*(kg)C'. (kig) = 0 (34)

for all pairs (m,n) implies that f (k,q)=0 (the zero function) for
any square-integrable state /' (k,q)."* It follows® from (33) and
Fourier-sum theory that completeness holds if and only if

S (kg)C “k,q)=0=>f (k,q)=0.
In the case of the harmonic oscillator state C{(k,q) com-
pleteness certainly holds because C /(k,g) does not vanish on
a finite area of kg coordinates. In fact, the C'¢(k,q) are ana-

lytic functions of k and ¢. To begin with, C {l(k,q) has been
shown® to be related to a theta function'?

Colk )_(2 ,1(1)”2>VZCXP(*2322)

.2
X6 (——i—qf— -i‘?—) 35
*\ 2 242 | 2747 33)
whereas for the higher functions
_ J d
Clolk,g) = (N '/2[ ( I e )] Skog).
vikg) = (N) v q+tak % (k.q)

(36)
Here the operator in brackets is the creation operator
- 1 ()‘c - ii_z. ﬁ)

Av2 7

in the kg representation.'® We know from the properties of
theta functions'? that C {(k,q) vanishes only at the one point
k =m/a, ¢ =a/2, and it is clear from (35) and (36) that all
C {(k,q) are analytic functions and vanish at most on sets of
Zero measure.

We saw in Sec. III that C ©)(k,q) always has at least one
zero when N is even and at least three when N is odd. This
holds for the general case, i.e., arbitrary a. For values of a
corresponding to rational von Neumann lattices we disco-
vered further series of zeros (Table I and Fig. 1) when
N =2+ 4n and N = 3 + 4n. In addition we can show that
these new zeros (indicated by filled circles in Fig. 1) are actu-
ally of order two for the square lattice s = 1, i.e. their first
derivatives also vanish. This is seen from the recurrence rela-
tions

a

J _ ;29

9 _ Celk,
2 (q+ ok 3q ) k.q)

=N+ 1)”ch+ 1 (kog),
1 ( d 2 d )
+i—+2A CWkg) =N'"2CQ_|(k
3 T % Nlksq) = 1(k.q),
obtained by operation with creation and annihilation opera-
tors. Evidently, if C {¢(k,q) has a zero at (k,g) then it is of
order two thereifand only ifboth C'J, | (k,g)and C{_, (k,q)
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have zeros at the same point. A glance at Fig. 1 then shows
that for s = 1 the zero at (0,0) for N = 2 + 4n is of order two,
and the zeroat (7/a,a/2)for N = 3 + 4nisalso of order two,
where we also use (18).

Although we have not yet complete information on the
zeros of CJ(k,q), the discovery of new zeros and of zeros of
order higher than one, prompts the question of the relation
between the completeness properties of the von Neumann
set generated from C ¢! as in (33) and the zeros themselves. It
was pointed out in Ref. (9) that in the N = O case, which gives
the von Neumann set of coherent states, the single zero (of
first order) of C [{k,q) has the consequence that the set is
overcomplete by just one member. We can prove the follow-
ing:

If C'“Yk,q) has r isolated zeros of order one, the corre-
sponding von Neumann set is overcomplete by just r
members. (There is no unique choice of members.) We as-
sume C “(k,g) to be at least differentiable.

Thus we show that we can always find » members whose
removal leaves the set still complete. Let us remove the
members labeled by the » points of the lattice

{(JL,jL")|j=0,1,...,
on a line through the origin and (Z,L ). From (13), (34), and

Fourier theory any f(k,q) orthogonal to the remaining set of
states satisfies
r—1

S*(k,g)C 9 k,g) = z a; Cij(l ~—gL — iakL ’) (37)

for some set of coefﬁCIents a;. Since C “k,g) has zeros of
order one, for f(k,q) to be square integrable it is necessary and
sufficient that the right-hand side of (37) vanish at these ze-
ros. Suppose they are at (k,,q,), / = 1,2,....,r. Then we have
only to choose the lattice point (L,L ') such that the r quanti-
ties

r— 1}, (L,L ' integers)

exp(z’iﬁ—q,L — iak,L ’)j, I=12,.,r
a

are all different, and this is always possible. With such a
(nonunique) choice, Eq. (37) for the arguments (k,,g,) gives a
set of homogeneous linear equations in the ¢; with a nonvan-
ishing determinant. The last assertion holds because the de-
terminant is a simple alternant of different arguments.'”
Consequently, all g; = 0 and thus f(k,q)=0.

To complete the proof we point out that the removal of
any (r + 1) members always leaves an incomplete set. This is
because we will arrive at » homogeneous linear equations in
(r + 1) unknown coefficients with, consequently, a nontri-
vial solution for the a;. There exist then nontrivial (square
integrable) f(k,q) orthogonal to the remaining set.

The extension of the above proposition to the case when
there are zeros of order higher than one goes along similar
lines but is considerably more tedious. For each zero at
which higher derivatives vanish we can remove just so many
members as the number of vanishing derivatives in addition
to the original member, and retain completeness. Thus for
each zero of order two, we can remove three members. We
omit the proof, except to remark that it is similar to the above
but involves so-called confiuent alternants.’”

The above results applied to von Neumann lattices of
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harmonic oscillator states mean that for the general case
(arbitrary a) overcompleteness is by at least one member
when N is even and by at least 3 members when N is odd. (For
N = 0 overcompleteness is by precisely one® from our earlier
discussion, a fact that was originally proved in a totally dif-
ferent manner®.) For rational lattices with s = 1,2,3,4 we
learn from Fig. 1 that for the series N = 2 + 4n overcomple-
teness is by at least 3 and in the square (s = 1) case by at least
4; likewise for the series N = 3 + 4n overcompleteness is by
at least 5 and in the square case by at least 6. (Here we recall
that in the square case one zero is of order two.) The qualifi-
cation “at least™ is, of course, inserted because for N >0 we
are not yet sure to have made an inventory of all the zeros.

V. HARMONIC OSCILLATOR STATES AND THETA
FUNCTION RELATIONS

The results which hold amongst kg representations of
harmonic oscillator states lead to quite a variety of relations
among © functions. Many of these relations appear to be
new. The connection between C {/(k,g) and the G, function is
given in (35). We note that Eq. (14) for N = 0 amounts to the
Jacobi imaginary transformation,'® whereas for N> 0 it
gives derivatives of that transformation. When (35) is put
into the superlattice transformation formula (A4) for N =0
it leads to the following additive decomposition result for O;:

7 9), (38)

s—1
5O,(sz|sT) = Y 93(2 +—
s

r=0

writing z = y(ka — iga/A ?).
A decomposition of 6, (sz|s7) in product form is known,

namely'®
Qolx) °*H
O,(szlsT) = 0 L H (2) ( ) (39)
where Qy(x) = II°(1 — x*") withx = exp(rrrr). (Weuse x and

not the usual g to avoid confusion with the symbol used in
the kq representation.) A product decomposition of @, may
be found from (39) using the result O,(z|7) = B,z + #/a|7).
However, (38) is new to us and we have not found it any-
where. Equation (38) is directly obtainable from the defini-
tion of G, as

i explimn®7)exp(2inz), (40)

— o0

O,z|7) =

for then from (40)

s—1

D 93(2 + T I)

r=0 S

@ s—-1

Z exp t(nn ~—+ 2nz) E exp 1(21r I n)
s

n= — e

S ovi{m s 5 o)
Y exp l(‘ﬂ'n s+ nz S,,,:Ei wan_m

n= -— o

= 3

m= — o

= 5O;(sz|s7).

li

exp i(mm*rs + 2msz)

If instead of using N = 0 in (A4) we use greater values of N
we obtain the derivatives of (38).
Equation (36) can be conveniently expressed in the form

321 J. Math. Phys., Vol. 24, No. 2, February 1983

R

1 dk
(2NN N A
where H is the N th Hermite polynomial. Formula (41) can
be obtained in the following way. In the x representation the
N th harmonic oscillator state is

Bulx) = @—S},)—, o(Z) ol

where i(x) is the ground state. In the kq representation this
will assume the form (41), if we look at H,(x/A } as an opera-
tor applied to the ground state [see Eq. (35)] and remember
that £ = ¢q + id/3k in the kq representation.'® An aiterna-
tive expression of harmonic oscillator states in the kg repre-
sentation was given by Janssen.’

In Sec. I1I zeros of C J(k,q) were found for various s and
(k,q). These, when expressed in terms of @ functions (Table
1), lead to such a plethora of identities as to be almost em-
barrassing. Consider for example the square lattice for

CRlk.q) =

Ck.q), (41)

which C§) _ ,(0,0) = 0. Using T.1 of Table II it is almost
trivial to derive such results as
w0 §(0]) + 65(0]1) =0, (42a)
70 }(0)i) + 15776 (0i) — 300,(0[i) = 0, (42b)

which are the first two members of T.1.

However, a direct proof from properties of @ functions
is by no means obvious, and we sketch one here to show the
difficulties. It is known that'>

O;z|7) (— )’ d
8,27 = flz|7) = rgl sm 2rz. (43)

Forr=i,x=e""; then

flely=23 (- Iyeschirmsin 2rz, f(0]i) =0.

r=1

TABLE II. Some 6-function identities derived from Rels. (35) and (41) and
the new zeros. Here 130 and z = yak — iag/2 7).

s =1(Square) lattice: a = A (2m)'/2 = b

=0 T.1

Cin.200)=0H,,,, (i T )93(2|1‘)
2 0z

T a , ’17' ad
C4n+3( 22 ) _0:H4n+3( 75;)9440 o =0 T2
s=2lattice:a=AJr=5b/2
d i
c., (Li) 0= H,, ( z )9( —) —0T3
RAER N nr2 43 2 N
: ] i
C.. (—”—,-"-)=o:>11n ( 1—)6( -) =0T4
3\ 2’ 2 w3\ 222/ 2 e
s=3latticeca=A4A(27/3)"*=b/3
. F]
C,, (l,-"_)=o H,, (1 re ( ) =0 TS5
w2\ 32 = o2 6 o 223 e s
C.M(z—”,o =0:H.H3(i1/ ) ( i)
3a z=mw/3
s=4dlattice:a=A4 (7/2)'2=b/4
T a
cm:(zo) 03H4,,+,(1 /”az)e,(z %),”/.:0 T.7

Boon, Zak, and Zucker 321



By continuous differentiation with respect to z we have

flizl)=4 i ( — 1Yresch(rmicos 27z,

frzl)= —8 i ( — 1)Pcsch(rm)sin 27z.

It is evident that £27(0i) = O for all n. Now from (43)
O 3(z|i) = O3 (z]i) f(z]i) + Os(zli) f'(zli),

hence

©7(0li) = 6,(0])x4 3 (— 1)'resch(rr). (44)
r=1

The sum £=_,( — 1)rcschirr) has a long history'” and
it was first evaluated by Cauchy’® who showed that it is
equal to — 1/47. Equation {42a) follows immediately from
(44). By further differentiation (42b) may also be proved with
the aid of the unexpected result that in addition to the even
derivatives /2"(0]i) = 0, also f*(0|i) = == ,( — 1)’P°
X esch(rr) = 0. This result also goes back to Cauchy!® and is
part of a general formula, namely

3 (=17 *lesch(rm) =0, n>1. (45)

r=1
The similarity between T.1 of Table I and (45) is evident but
the connection not obvious.

The second result for the square lattice {Table II, T.2)
gives for its first two members

76 7(0)i) + 36 1(0]i) =0, (46a)

76 7%(0]i) + 21770 7(0]i) — 2100 {(0]i) = 0. (46b)
Again, these results may be proved directly with some diffi-
culty in the same manner as for (42) using the result

61(z|7)

2r

=cotz+4 S sin 2rz.
GI(ZIT) rzl 1 - x2’
Equation (46a) can be proved knowing that
& r 1 & 1 1
=— ¥ cschrr)= — — —. 47
,;l ezm —1 4 r;1 ( ) 24 8 ( )

To prove (46b) and higher analogs requires knowing that

An+ 1

e L (48)

e -1 42n+ 1)
where B, is the nth Bernoulli number. Equations (47) and
(48) are closely connected with Ramanujan’s work and are
discussed by Berndt.'® Again there appears a tantalizing
connection between (48) and T.2 of Table II. Direct proofs of
results obtained from the rectangular lattices are even more
difficult to furnish since the © functions concerned and their
derivatives have to be evaluated at finite z. Thus, for exam-
ple, the lattice b = 3a (T.5, Table II) yields with little labor

o™ _i_) 39(l _’;)zo, 49
i 2(6 3)T°N\% 13 49e)
7T39vi(£ _‘_) 4517,29iv(17'_ i)_SIOG(iT- L):O,

2\s)3/) " N6l 3 6l 3
(49b)

for n = 0 and 1. An attempt to prove (49a) directly following
the lines already indicated was successful, but is very long
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and elaborate. Another method, shown here, makes use of
the infinite product representation'> of ©,:

Olzlr) = 2x14Qyx) I (1 + 2x¥cos 22+ x*).  (50)

r=1
We also have for all © functions the relation'?
O "(z|1) = — 4x dO /Ix.Hence, differentiating (50)logarith-
mically with respect to x and multiplying by — 4x we have

O 7z|7) _ < 8rx?
Byz|r) A1 —x¥
rcos 2zx* + rx*

—i-1e r;l 1 + 2x¥cos 2z + x* 1)

Putting z = 7/6 and taking just the last term of (51), by
successive rearrangement we have
g% rx? + 2rx*

I S i

o0 err + rx4r _ 2rx6r
= -8y

r=1 1_x6r
— 3 i rx* +24i rxt"
r=1 l—xzr r=1 l-——x6"
Hence
os(%) -
— = 1Y (52)
6(77 ) r=1 l—x’
2 Z T

If we now put 7 = i/3 and x = e ~ ™3, (52) becomes

6,,(1 L)
N6l 3

r
2mr 1

= —1+243
r=1 €

Then, using (47), Eq. (49a) is proved. No attempt has been
made at a direct proof of (49b) and it would seem a formida-
ble proposition even if it could be carried out.

To summarize, it seems that each zero of a C{(k,q)
function yields a nontrivial relation between @ functions and
their derivatives. For given s, infinite sets of relations are
found. In each case it is comparatively simple to write down
a ©-function relation from the given zero, whereas direct
proofs of these relations from definitions of & functions are
laborious. It is remarkable that these relations are so easily
formulated with the aid of the kg representation.

VI. DISCUSSION

The interest in von Neumann lattices stems in large
measure from the desire to study at a fundamental level the
relationship between classical quantities and their quantum
mechanical counterparts. For this two concepts are basic:
phase space and the elementary area 4. From there it is na-
tural to give particular attention to quantum states whose
properties can also be given an approximate classical inter-
pretation in phase-space terms: coherent states and higher
harmonic-oscillator states as well. The question of the com-
pleteness of lattices of these states, one per Planck cell, is
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essentially a density-of-states question and it is not surpris-
ing that it can be verified that they are indeed complete.*~*
What is surprising is that they are overcomplete, albeit by a
finite number only. This paper carries further the investiga-
tion of overcompleteness, and of its strong relationship with
the zeros of the wave function in the kq representation. The
relationship is mathematically well determined but remains
physically mysterious. The paper also announces the discov-
ery of new zeros for the higher harmonic oscillator states in
the case of certain rational relationships between the sides of
the unit cell of the von Neumann lattice and discusses some
of the extraordinary wealth of mathematical relations which
follow from the existence of these zeros, especially those
among theta functions. Other such relations, involving La-
guerre polynomials, will also automatically follow from for-
mulas derived in Ref. 9 (Sec. IV). Finally it should be men-
tioned that lattices of coherent states have interesting
applications in communications theory®'* and the theory of
a Bloch electron in a magnetic field.?°

In connection with the last example there is a striking
feature of the rational von Neumann lattices. Equation (16)
reminds one very much of the definition of rational magnetic
fields in the problem of the dynamics of a Bloch electron.?"*?
In the Bloch electron system A ? = #ic/eH and (16) then be-

comes
Ha* 1
(he/e) s

This is just the rationality condition for a Bloch electron in a
magnetic field.
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APPENDIX

Let C “(k,g) be a function defined on the constant a and,
correspondingly, C “?(k,q) for the constant sa. We shall be
looking for a transformation connecting these two functions.
We use the definitions!®

a 172
(x|kg) = (Er_) Z explikan)b(x — q — na), (A1)

(x|kq)t? = (;jr) Y expliksan)5(x — g — nsa). (A2)

The transformation matrix is ““(k 'q’|kg)". The latter can
be found from (A1) and (A2)
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(sa)(k 'q’qu)"" —
( sa

1 & , 27
———s)l/z 2 5(k k —n——)

explikam + ik 'sal )

X b6lg' — g — ma — Isa). (A3)
By using the matrix (A3) wefind, for 0<q’ <a;0<k ’ < 27/sa,

Cok ' g') = ﬁwk 'q'|kg)'C (kq) dk dg

- =i 3, €k +r 2g) (a)

integrated over the kq cell for the constant sa. Correspond-
ingly, for the same range of k" and ¢’

Chlk'q) = f Uk g | kg)*C )k, g)dkdg

s—1

2 C"(k'q" — ra)explik ‘ar). (AS)
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Supposef|(r)is an attractive central potential of the form f (r) = =F_ | g( f"(r)), where [/} isaset
of basis potentials (powers, log, Hulthén, sech?) and {g"] is a set of smooth increasing

transformations which, for a given £, are either all convex or all concave. Formulas are derived for
bounds on the energy trajectories E,; = F,,;(v) of the Hamiltonian # = — 4 + yf(r), wherevis a
coupling constant. The transform A ( f) = Fis carried outin twosteps: f—f—F, wheref(s)is called

the kinetic potential of fand is defined by f (s) = infly/,f,¢) subject to .2 C L ¥R 3), where .7 is the

domain of H, ||| = 1, and (), — 4¢) = s. A table is presented of the basis kinetic potentials
{ f%s)}; the general trajectory bounds F, (v) are then shown to be given by a Legendre
transformation of the form (s, , (s)}—(v, F, (v)), where £, (s) = =*_, g f“(s)) and F,, (v)
=min,, o {5 + v £, (s)}. With the aid of this potential construction set (a kind of Schrodinger
Lego), ground-state trajectory bounds are derived for a variety of translation-invariant N-boson
and N-fermion problems together with some excited-state trajectory bounds in the special case
N = 2. This article combines into a single simplified and more general theory the earlier
“potential envelope method” and the “method for linear combinations of elementary potentials.”

PACS numbers: 05.30.Fk, 05.30.Jp, 03.65.Ge

I. INTRODUCTION
We consider Schrédinger Hamiltonians of the form
H= —4 +uf(r), v>0, (1.1)

where fis a central potential (» = |r|) and v is a positive cou-
pling constant. We suppose that f has the form

f=S U ), (12)

i=1
in which the basis potentials { f} are certain well-known
attractive “soluble potentials” [powers sgn ( p)r?, p> — 1,
p#0, log(r), sech’(r), and Hulthén; see Table I in Sec. III],
and the transformation functions {g""} are smooth (C,), in-
creasing, and either all convex or all concave on the ranges of
the corresponding /.

Formula (1.2) therefore generates a large variety of
smooth increasing potentials. The purpose of the present ar-
ticle is to provide recipes for upper and lower bounds on the
eigenvalues of H defined in some suitable domain
2 CLYR?).

Fortunately, the functional analysis of nonrelativistic
quantum mechanics is now readily accessible in text books
(for example, Prugovecki,' Reed and Simon,? and Thirring’);
we refer the reader particularly to Chap. XIII of Ref. 2. Let
us assume that, by appropriate control of the transformation
functions {g'"}, the potentials we generate by Eq. (1.2) also
satisfy

i) >0,
(i) lim|r(r)]| =0,

r>0,

(iii} lim{ f(rlexp( —ar)} =0 forsomea>0. (1.3)

With these restrictions and v sufficiently large, the bottom £
ofthespectrumof H = — A + v f(r) will always be anonde-

324 J. Math. Phys. 24 (2), February 1983

0022-2488/83/020324-12$02.50

generate discrete eigenvalue; assumption (iii) conveniently
allows us to use exponential and Gaussian trial functions.
These assumptions can, of course, be weakened and, more-
over, since we shall only use variational arguments, our re-
sults in any case apply to the bottom of the spectrum of H,
whether or not it it is an eigenvalue. We shall discuss higher
eigenvalues in Sec. VI.

We call the curve which describes how £ depends onv
the energy trajectory of f and write this

F=A(f) and E=F() (1.4)

We know the exact “component” trajectories F') = A ( f1),
and we wish torelate F = A (f) to these for a potential fgener-
ated by Eq. (1.2). In earlier articles,*® which we shall hence-
forth call Papers I, II, and 111, we dealt with convex (or
concave) transformations of soluble potentials {the method
of potential envelopes*®) and with linear combinations of
basis potentials.® In the present paper we combine these re-
sults into a single theory, which is at once simpler and more
general. The principal new idea can be thought of as a factor-
ing of the A transform so that the trajectory F is reached _
from the potential fin two stages: f— f—F. The new curves f
are called kinetic potentials (short for “minimum mean iso-
kinetic potentials”) which, for the bottom of the spectrum,
are defined by

fls)=inf (¢ f¥). (1.5)
ves

Helt =1
(¥ —AY) =

In terms of the kinetic potential we have, for the second
stage of minimization,

F(v) = min(s + v f(s), (1.6)
or

v = —F)
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and

F)y=s5+0vf(s) (1.7)
Equations (1.7) are parametric equations for the energy tra-
jectory in terms of the parameter s > 0 which is equal to the
mean kinetic energy. We note that the 6 function that was
introduced in Paper I11 is related to the corresponding kine-
tic potential by the equation 6 (s) = — { f*(s)} ~"; weshallnot
need to use these & functions in the present article, which is
self-contained.

A quantity like £ will be useful generally when one is
discussing a sum of operators having essentially common
domains. We shall see later that f(s) = F'(v) in the present
problem; in a more general situation, objects like f(s) would
be related to the partial derivatives of the eigenvalue with
respect to the coefficients of the corresponding operator
terms. However, in this paper we are mainly concerned with
describing a constructive approximation theory for a specific
class of Schrodinger operators. We shall first find the kinetic
potentials { £} and { f!} (where ¢ is the shape of a trial
function) corresponding to the basis potentials { f'}. Our
approximation F, to the energy trajectory
F=A (Z*_ 8" f") is then expressed in terms of the { £}
or the §{ £} by general parametric equations having the
form

Eio)=s+v 3 g7"%5),

(1.8)
— 23 17

If the {g""] are all convex and the { £} are all exact, then F,

is a Jlower bound to F; if the {g;} are all concave and

{f) = {7;‘)}, i=1,2,...,k, then F, is an upper bound to F

(see Theorem 4). The table of { £} and { £} and the gen-

eral recipe (1.8) provide us with a potential construction set

for which the in-house name has become “Schrédinger

Lego.”

The main motivation for this work remains our interest
in the N-body problem whose energy is intimately related to
the energy trajectories of the corresponding two-body sys-
tem*’~%; we discuss N-boson system in Sec. V, N-fermion
systems in Sec. V1I, and we present some new examples in
Sec. VIII.

Even for the two-body system itself with, say, a linear
combination of powers and the log potential, it is very useful
to have a recipe [e.g., Sec. IV, Eq. (4.10)] for the energy as a
function of the potential parameters; no computer output
can as yet compete with this is terms of visible information
content. In Sec. VI we extend some of these results to higher
eigenvalues. The purpose of our geometrical theory is to pro-
vide a construction set for potentials whose energy trajector-
ies are then automatically estimated by the bounds (1.8), very
often to within a few percent, as functions of the potential
parameters.

Il. TRAJECTORY FUNCTIONS AND KINETIC
POTENTIALS

In this section we present some fundamental convexity,
monotonicity, scaling, and ordering properties of the trajec-
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tory functions and kinetic potentials. Higher eigenvalues
will be discussed in Sec. VI.

An energy trajectory F (v) tells us how the energy E de-
pends on the coupling constant v. However, our parametric
equations {1.8) for the bounds on the energy trajectories (yet
to be established) suggest that it may be more natural to work
with the quantities £ /v and 1/v. We therefore define forv > 0

u=1/v,
G=H/v= —ud +f(r), (2.1)
G (u)= Fv)/v.
Consequently,
Gu)= inf (,Gi)=uK (u) + P(u), (2.2)
Yez
il =1
where K (1) = (¢, — 4,3¥)>0and P (u) = (¢, f; ¥) are, for a

given value of , the expectation values we get after the mini-
mization. Meanwhile, with the kinetic potential £ (s) given by

fls)= w‘l’f (¥, f), (2.3)
gl =1
W, ~ A =s
we have
Gu)= mig(us +£15)). (2.4)

The properties we need to establish may conveniently be list-
ed together; they are:

Theorem 2:

(a) G (u) is monotone increasing and concave,

(b} F(v) is concave,

(c) f(s) is monotone decreasing and convex,

(d) f{r) = 4 + Bfi(r/b) with B> 0 and b > 0 implies
fls)=4+ Bfi(bs),

() fi < o fi < =G < G=F, < F.

Proof: We use variational arguments based on the pre-
mise that for  sufficiently small the bottom of the spectrum
of G is the discrete eigenvalue. From (2.2) we have

G(u) = uK (u) + Pu) <uK (u*) + P(u*), u*su.

Hence, G (1) < G (u*) + (v — u*)K (u*), u*#u. Since K>0,
Theorem 2(a) follows (See Feller,'® p. 153). Since

G (u) = uF (1/u), Theorem 2(b) immediately follows from
2(a). From (2.4) we have for a given u (sufficiently small)
Gu)= s*#£s.

Hence — f(s)> — f{s*) + (s — s*)u, s*#s5. Since u > 0,
2(c) follows. Theorem 2(d) is derived with the aid of a change
of variables in definition (2.3) and the fact that 5?4, = 4_,.
The ordering Theorem 2(e) follows directly from (2.3) and
(2.4) by simple variational arguments. Of course, it is under-
stood that G, is compared to G, only over the common do-
main, and similarly for F, and F,. ,

A theorem which is essentially Theorem 2(b) may be
found in the book by Thirring (Ref. 3, p. 153). The consisten-
cy of the inequalities in the ordering Theorem 2(e) explains
why we have chosen to work with frather than with — /:
The latter alternative, however, would have allowed us di-

min (ut +f(0)) = us + fls)<us* + fis*),
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TABLE I. Some basis potentials and their ground-state kinetic potentials. The basis potentials have been selected according to their usefulness and the
simplicity of the corresponding kinetic potentials defined by Eqs. (2.3) or (3.8). The subscripts g and e correspond, respectively, to Gaussian and exponential
trial functions ¢ in Eq. (3.8). The coefficients for the power-law and log potentials are given in Table II.

Potential £ 7is) fels) fels)
Power sgn(p)r’, p> — 1, p#£0 2G'P (psP?) ! 2G Plps e 2G Pps#?)~!
Log Inr 1 In(v,/2es) {In(v, /2es) 1 In(v, /2es)
Hulthén — e 17! —1[(1 + 45"~ 1]
sech’ — sech’() —2{[ls 4+ 2 + 51> — (s + 2}}

QA2 1/2y—3
Exponential —e”’ 5> ?S/ 1 6(;; igO )
Gauss —e " — (1437257

§>3/4=E<0

Yukawa —e~"/r s_ ‘:S/J;llE+<2;”2)_z

>
rectly to use the notion of the “Legendre transformation” have
(igj.,al;;f.Gl. 1, p. 71}, which underlies the relation between G (u) = us+ Fis), -

u= —f'ls).
lll. THE BASIS POTENTIALS AND THEIR ASSOCIATED It follows that
KINETIC POTENTIALS s=G'(u) = F(v) — vF'(v)
There are two types of kinetic potential which we shall and (3.2)

need: exact kinetic potentials and kinetic potentials labelled
by the shape ¢ of a trial function. We consider only the lowest
eigenvalue and discuss the exact case first.

Since the basis potentials, by hypothesis, yield soluble
eigenproblems, we do not use the general definition (2.3) to
find f but rather the following procedure. From (2.4) we

TABLE II. Coefficients for power-law and log kinetic potentials. These
coeflicients are required for the kinetic potentials of Table I. The numerical
values have been rounded up or down so as to preserve the validity of the
trajectory bounds. For the power-law potentials, if

E = inf{y,(—4 +sgn(plr? W}, |9 = 1, then G'P = [|pE'P |/

(p + 1)]'#+2”? [see Paper II1, Eq. (5.3)]. The value E* = 3.799 67 was
taken from Hioe and Montroll'” {Eq. (IV.16)] and is the energy of the first
excited state of the problem in one dimension. Similarly, we have obtained
E'” for p = 6 and 8 from Hioe, MacMillen, and Montroll'’ {Egs. (I11.7) and
(II1.8) by using the correspondence E'# =271#7+% ¢ andn = 1.

fir G G, G,

— 1/r 0.5 0.460 659 0.5
r 0.688 041 0.690 988 0.75
r 2.25 2.25 3
r 16.254 17 16.875 45
” 112.11 132.9
” 797.21 1196.1

sgn(pr® Gy = p|372[[((p+ 3)/2/T(3/2)]2 7+

p>—1

p#0 G =|pll(p+32-17*2

Inr Vip=8.07 [n=1and!=0;seeEq.(8.24)]

v, = 3exp(3 — y) = 8.457 92
v, =} exp(4 — 2y) = 8.605 68
y = Euler’s constant
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fl8) =G (u) — uG'(u) = F'{v).
In practice, therefore, we solve Egs. (3.2) for f{s). In Paper III
we used the term “elementary potential” to label the situa-
tions where this is possible. If it is hard to solve for fs) expli-
citly, we can instead use either u or v as the trajectory param-
eter. Since the basis potentials have been discussed already in
Papers I and III, we simply list the results here in Tables I
and II. Itis interesting that all the exact kinetic potentials are
defined for all s> 0 so that the question of the various do-
mains of the G (1) functions is automatically looked after by
the uniform constraint s > 0.

Now we consider real central trial functions ¢ () and
suppose

f¢ ndr=1 (3.3)
and define
K(¢)=J¢(r)(—d)¢ (r)d°r, (3:4)

where the integrations are over all of R 3, Then, for a given ¢,
we consider the domain & ; C & given by

D4 = (YY) = Co(r/0), 0>0, CeR }. (3.5)
It follows that
W, —AY/ Y|P =K(B)/o* ¢eD,. (3.6)

Consequently, we define

L) =W f), ve2, Wl=1 (¢ —AY) =(~; )
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and find

7= [#76 111K 915126 0%, 33)
Therefore, by the variational principle,

G (WI<Gy () = inf (us +7, ) 39)
and

S5)< fol5)- (3.10)

In Tables I and II we list some kinetic potentials la-
belled by the exponential and Gaussian trial functions:

e: ¢(=Ce~ "% K(g) =5

g ¢N=Ce " K@)=3
where C, and C, are normalization constants.

In this way the upper bounds are described in the same
framework as the lower bounds: we simply restrict Z to
9, that is to say, we use f, instead of /.

Of course, it is straightforward to find kinetic potentials
for problems in one dimension (see Papers I and 1II) or to
project the three-dimensional problem into an angular mo-
mentum subspace: The corresponding trajectory bounds
(1.8) remain essentially the same (see Sec. VI).

(3.11)

IV. THE TRAJECTORY BOUNDS

In this section we establish the trajectory bounds which
are a principal result of the paper. These bounds are given in
terms of the kinetic potentials which are functions of the
kinetic-energy parameter s > 0. The kinetic potentials obey
some basic inequalities from which the trajectory bounds
(Theorem 4) quickly follow. The potentials themselves are
smooth increasing potentials which are not too singular at
r =0 [see(1.3)].

Lemma 4:

(@ ( ST +SD)s)> FMs) + fPs).

k

©S= 3 aF), a>0, implies

76> 3 @ 7%

i=1

{c) f(r)=J:° av)fMr)dv, a(¥)>0, implies

f (s)>r a(v) F™s) dv.

(d) Suppose g is increasing; then g convex implies g{f)
>g(f), and g concave implies g(f)<g(f).

Proof of Lemma 4: Lemma 4(a) follows directly from
the definition of the kinetic potential for if

i) =1"r) +f(r), then

Fey=inf (o (f T + T

Il =1
W—ap)=s
and this immediately implies Lemmas 4(b) and 4(c). Lemma
4(d) is a consequence of Jensen’s inequality (for example,
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Ref. 10, p. 153). In the case that the kinetic potentials are
labelled by a trial function ¢, the inequalities in 4(a), (b), (c)
become equalities because in definition (3.7) ¢ is determined
up to a factor of modulus 1; in 4(d) the corresponding in-
equalities follow from Jensen’s inequality provided the
“bar” is understood in terms of definition (3.8) with the same
shape ¢ of the trial wave function on both sides. The integral
mixtures which we have accommodated by Lemma 4(c) al-
low examples like

fir = — f “aper — 1) dv,

which represents a mixture of Hulthén potentials with dif-
ferent ranges. Of course, the weight function (v} will have to
be controlled so that f(r) meets condition (1.3).

We now proceed to our main result. For conciseness we
state the result in terms of sums of potentials; the corre-
sponding result for integral mixtures is, of course, exactly
similar. Positive weights like the {«; } in Lemma 4(b) are now
omitted because they are allowed for by the scaling Theorem
2(d).

Theorem 4: Suppose the functions g are all increasing
and

fli= ; g% fr), (4.1)

fuls)= ; & F%s)),s (4.2)

Gu)= mig (us + f1s)), (4.3)
and

G lu)= mig (us + £, (5)) (4.4)
then

(a) If the { £} are all exact and the {g'"} are all convex,
G (u)<G (u).

(b)IfF =7$’, i = 1,2,....k,and the {g'?} areall concave,
G, (4)>G,(u)>G (u).

(c) If there is only one term in (4.1) so that
flr) =g M) and if £ is exact and g'" is concave, then
G,(u)>G (u).

Proof of Theorem 4: For 4{a) we apply Lemmas 4(b}, (d)
to give £, (s)< £ (5); the ordering Theorem 2(e) then yields the
required result. For the upper bound via the trial function ¢
we have by the definition (3.8) of £, (s):

Gu)< klgf; (¥, { —ud +£}9),

el =1
ie.,

G (u)< inf (su + £, 5)). (4.5)
But by definition (3.7) and Lemma 4(d) we have

Lis)<Fals) = 3 gAF ) (4.6)

i=1

Hence

G (u)< inf (su +£465) = G, (s). (4.7)
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This establishes Theorem 4{b). Similarly, Theorem 4(c) im-
mediately follows from Lemma 4(d); this upper bound is dis-
tinct from Theorem 4(b) and does not require a trial function
.

Since, for the potentials we are considering, the minima
always exist for u sufficiently small and the £, (s) are smooth,
we may use the following recipe for the trajectory bounds:

G (u) = us + f,(s),
d —
u= — EfA (s), (4.8)

where
k

Lis =3 g F%s)).

i=1
Hence (v, G, (v)) is a Legendre transformation"' of (s,

—fals))-
In the special case of linear combinations of powers and
the log potential, for example, we find that, for the potential

fin=3 a,sgn(p)r’ +alnr, a,>0, a>0, — 1< p+0,
p

(4.9)
the trajectory bounds provided by Eq. (4.8) become
G )= a,[2+p)/p1G t? + JaInv,1?/2)
14
(4.10)
u=Y a,G\Pt? 2+ lar? >0,
p
where we have reparameterized in terms of ¢ = s~ /2, and

simplified. For a lower bound, G = G'” and v, = v,,; for
upper bounds, G ') = G P and v, = v, with¢ =g ore, cor-
responding to Gaussian or exponential trial functions; the
coeflicients are listed in Table II.

- V. THE N-BOSON PROBLEM

Consider N identical bosons each of mass m interacting
via a central pair potential of the form

Vi= VOf(rxj/a)’ (5.1)

where ¥ is a positive coupling constant, a is a positive range
parameter, and fis a potential shape of the type we have been
studying in this paper. The Hamiltonian H for the relative
motion of this system may be written*

N o[ —np)
2mN

H= + V,«,—]. (5.2)

1I<i< j

In terms of a set { p,, p3, ..., px} Of Jacobi orthogonal rela-
tive coordinates* with p, = (r, — r,)/v2 we have for expecta-
tions with respect to boson functions of these variables

(H) = (F), (5.3)
where
vl - NVo o(102lv2
H =(N-1 2m4p2+ 5 f( : )] (5.4)

We now define the dimensionless variables
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v=NVa’m/2# = 1/u,

E=mE,a*/(N — 1)#°,
(5.5)
G=—ud, +fIr, r=1r

r = p,v2/a,

where E), is the lowest energy of the N-boson problem. It
then follows (see Paper I and the references therein) that

E, -
G(u)<uE=7(]2v) <G, (u}, (5.6)

0
where G (1) is the lowest eigenvalue of G and G, (u) is the
minimum of (G ) with respect to Gaussian trial functions
g = ¢inr;itisknown that G (u) = G, (u)ifff(r) = kr* (see Ref.
12).

Equation (5.6) makes the principal results of this paper
much more interesting and explains why we have worked to
obtain bounds on G () and G, (1) having the same mathemat-
ical form: we are interested in general recipes for estimating
the binding energy per pair interaction of the N-boson prob-
lem.

The special case where

flr) =yl (r)), y concave, (5.7)
yields an upper bound tOJ_’g(s) via the inequality
fo )<k, (s)), (5.8)

where the suffix g indicates the Gaussian trial function ¢ = g
in Eq. (3.8); Eq. (5.8) follows from Theorem 4(b). Thus we
have the useful special case [see (3.8) and (3.11)]

SN =yP= f)< o) <p974s) = f(3/25'%). (5.9)

That is to say, the approximation to fis given directly in
terms of fitself.

VI. HIGHER EIGENVALUES

We now return to the one (or two}-body problem. If we
restrict the problem to an angular momentum or symmetry
subspace, then the theory of Sec. IV immediately applies to
the bottom of the spectrum of H in this subspace. However,
we do not yet have a satisfactory theory for the higher eigen-
values within such a subspace when the potential is repre-
sented as a sum of basis potentials. Therefore, in this section
we restrict the discussion to central potentials of the form

Slr) = glh (r), (6.1)

where 4 (r) is a basis potential, g is increasing and either con-
vex or concave on the range of A, and f(r) satisfies the restric-
tions (1.3). We suppose in addition that for a sufficiently
large coupling constant » the operator H = — A + v f(r) has
more than one discrete eigenvalue below the essential spec-
trum: general conditions sufficient to guarantee this may be
found in Reed and Simon?; for example, if we add to (1.3) the
condition f(r)t o with 7, then the entire spectrum is discrete.
In place of the domain 2 we use the subset &, C & defined
by the projector onto angular momentum states (etgenfunc-
tions of L ?) corresponding to the spherical harmonic
Yd®, ¢),!=0,1,2,... We are interested in the eigenvalues
E,, of Hin & ,, where n is the radial quantum number and
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the eigenvalues are ordered according to E,,, >E,,, n' >n,

n = 1,2,3,.... Each of the eigenvalues so labelled will have a
degeneracy of exactly (2/ + 1). In Paper II we mentioned
briefly the problem of higher eigenvalues and indicated the
proof of an approximation method based on the “potential
envelope” concept. We now state and prove this result using
the integral inequality approach characteristic of the present
article.

Each eigenvalue of H in &, will have an energy trajec-
tory F,, and a corresponding kinetic potential f,, (s). The
variational definition of £, (s) is a little cumbersome but
reads, for fixed / and n, as follows:

fils)=inf sup (¥, f¥), (6.2)
2P gD}
g =1
(¥, —Aay)=s

where 2" is a finite n-dimensional subspace of L *(R *) and
Z'\"C & ,. With this definition we prove

Theorem 6: Suppose that g is monotone increasing.
Then

(a) g convex=> 7, (s)>g(h,(s),
(b) g concave=> f,,(s)<glh,,(s))-

Proof: Suppose that g is convex. Then by Jensen’s in-
equality, we have

(¥, glh W)>8l(¥, hY)). (6:4)

Let C (nls) denote all three conditions {¢eZ{", ||¢|| = 1, (¢,
— Ay) = s} for a given & then by (6.4),

sup (¢, gk )¥)> sup g((¢, hy)). (6.5)
C(nlis) C(nls)
Since g is monotone increasing, we have
sup g((1, hy)) = g (sup (¥, hy))>g(h,(5))-
C(nls) C(nls)
Consequently, (6.5) becomes

sup (¥ 8lh 1) >8(h ). (6.6)

If we now use the fact that the right-hand side of (6.6) is
independent of the particular subspace 2" of fixed dimen-
sion n, it follows that

(6.3)

inf sup (¥, glh }§)>g(h,.(s),

gsn) C(nls)

which result establishes Theorem 6(a). We now suppose that
g is concave and obtain, again by Jensen’s inequality and the
monotonicity of g,

sup (4, glk W)<g (sup (ts k) (67

Now
inf g(sup (¥, hy)) = glinf sup (¥, hy))
2 Cinly D\ Clnis)

because g is monotone increasing. Consequently, by apply-
ing inf over 2{" to both sides of (6.7), we establish Theorem
6(b).

In order to make use of Theorerg 6, we need to have
some exact higher kinetic potentials £,,,(s). Just as for the
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ground state, we derive &,,,(s) from the known G, (u) by using
Eqgs. (3.2). Rather than giving an extended table of higher
kinetic potentials, we shall illustrate the theory by giving just
two families, those corresponding to the Hydrogenic atom
and the harmonic oscillator; other such families may be
found by using standard handbooks like Fliigge.'> We have
the following kinetic potentials in which the angular-mo-
mentum quantum number / = 0,1,2,.-- and the radial quan-
tum number n = 1,2,3,..:

hiry= —1/r,
(6.8]
hyls)= —s"*/(n+1)
and
h(r)= 7,
(6.9)

Rols) = (2n + 1 — 1)/s.
As a consistency check we can immediately analyze the har-
monic oscillator in terms of the Coulomb potential and ob-
tain

hi= —1/r, hyl)= —s"/(n+1),
and (6.10)

fin=r=glh(r)=(h{n>
Now g in Eq. (6.10) is a convex increasing function of
h(r)= — 1/r <0 so that, by Theorem 6, we have

z:l(s)>g(]-1nl(s)) = (n + I)Z/S’

whereas f,,(s) = (2n + I — 1)*/s by Eq. (6.9). This rather un-
likely approximation is surprisingly good for large /. In

terms of the exact eigenvalues F,,{v) of H = — 4 + vr?, we
have by using (6.11) in the general trajectory equations (4.8):

(6.11)

22n + 1 — W2 =F, () > 2n + 1 w2 (6.12)

We shall give more interesting examples of Theorem 6
in Sec. VIIIL. Our main motivation for the result, however, is
the N-fermion problem, which we discuss in the following
section.

VII. THE N-FERMION PROBLEM

We consider a system of  identical fermions interact-
ing via central pair potentials of the form

Vi=Voflr;/a), V,>0, a>0, (7.1)

where the potential shape f'satisfies (1.3). The lowest energy
E,, of this system is related’® to the energy trajectories of a
two-body problem with Hamiltonian

S )

* 2mi e T VoS ( a /I 72
where { p,, ps, ..., px } isaset of (N — 1) relative coordinates
with “coefficient of orthogonality”’° A>1, p, = (r, — r,)/
V2, and p; = P,; p,, where P,, exchanges r, and r,. We note
that 7 differs from the corresponding two-body Hamilton-
ian used for N-boson systems in Sec. V by the presence of A
and the omission of the overall factor of (N — 1). We now
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define the dimensionless quantities:
v=NVy@*’Aim/2# = 1/u,
E=E,d*Am/#,

?;: —ud, + flr),
and
r= Pz‘/z/a’

If G, (u) are the trajectories of G with G,(u)<G, (u), V' > v,
{(we do not now restrict the problem to an angular momen-
tum subspace and the quantum number v enumerates a//
linearly independent states), then the theorem of Ref. 7 gives
the following lower bound to E,,:
N1

2E—N =Eu> Y G,u). (7.4)
VoN V=1
If, for a given u, only k < (N — 1) discrete eigenvalues exist,
then the sum in (7.4) runs only up to k. We have optimized
this result” with respect to the allowed class of relative co-
ordinates and this yields 4 = 4. The result has been extended
to higher N-body states®* (using different relative coordi-
nates and a different A ), but here one must be very careful
about the Efimov effect'* and other possible complexities
and surprises in the N-body energy spectrum?: In the present
article we restrict our considerations only to the bottom of
the N-body spectrum.

Since we have approximations for the kinetic potentials
£.(s), we now try to express the bound (7.4) in these terms. We
suppose that f'(7) is given by

Slr) =glh(r),

We then use Theorem 6(a) to generate lower bounds G & to
G, via the relations

G (u) = su + g(h, 5)),

r=ir|.

g convex increasing. (7.5)

(7.6)
—_— d 1
u= - glh, (s)).

Since g’ >0, g” >0, and % (s} > 0 [Theorem 2(c)], it follows
that the expression for  in (7.6) is a monotone decreasing

function of s which in principle can be inverted. That is to
say, for each g and A, we can find @, such that

u= — dig(ﬁv(s»@m 0, (). (7.7)
A

Hence the lower trajectory bound for the N-fermion system
becomes

i’j:f —Bu>'S [0, + Q). (78

A class of examples for which the details can easily be
carried out is power-law potentials. Suppose we consider the
basis potential

h(r)=sgn(pyr’, p>—1, p#0
and consider

S(r)=glh (r)) = sgnig)|A (r)|*” = sgn(g)r?, . P<q7ﬁ?- 0
7.

For these problems g is convex and increasing and, by scal-
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ing arguments, we have
h(s)=A,s~ "2, (7.10)

where the coefficients {4, }, which depend on p, are known
in certain cases (completely for p = — 1 and p = 2). Now
from Eq. (7.7) we have

u= — Sgn(q)% 4,525 = Q, (u)

= (|4, |7Pq/2u}¥ @+, (7.11)
Hence Eq. (7.8) becomes in this case
EN>%NVqu/(q + ZI(q/z)Z/(q + 2)(1 + 2/(])
N1
X z 'Avllq/p(q+2)’ (7_12)

v=1

where u = (2#/NVa*Am). We can summarize this collec-
tion of power-law comparison examples as follows: the pair
potential is

V(r) =y sgn(g)r? (7.13)
and the lower bound to E, is given by
Ey>31 + 2/q)(Nyg/3/9+ D#2/m)sa +2
N1
XY A, [, 7,14

v=1

where we haveset ¥y = Ve ““and 4 =4, the {4, } aregiven
by (7.10), and p<g#0, 0#p> — 1. As a partial check on the
algebra we immediately look at the exactly soluble “pseudo-
fermion” case p = g = 2 in one spatial dimension (i.e., the
lowest spatially antisymmetric state). In this case 4, (s)

= (v — 1)*/s,v = 1,2,3,.-, and the lower bound E }, given by
(7.14) becomes E'§, = (6yN)"/3N — 1(#*/m)'/?/4, whereas
the exact energy'>'® of this problem is given by £,

= (2Ny)""3N? — 1)(#*/m)"/?/2. Hence we obtain E §/E
= V3(N — 1)/2(N + 1), or 86% of the exact energy for large
N, as we found in Ref. 7. We shall look at more interesting
examples in Sec. VIII.

Vili. SOME EXAMPLES

We consider potentials given by the formula

k
fin="3 g %)
i=1
If there is only one term, Theorem 4(c) is equivalent to the
“method of potential envelopes” of Paper I. In this special
case one seeks a dual representation for the potential in the
form

f1r)=g"(fr) =g (f ),

where g'" is convex, leading to a lower bound, and g is

concave, leading to an upper bound without the use of a trial
function. If exact trajectories are also known for the excited
statesof(— 4 + vf V) and(— 4 + vf?), the nmutatis mu-
tandis the general trajectory formulas (4.8) yield bounds on
each excited state as we saw in Sec. V1. If there is more than
one term in the sum (6.1) then the theory applies only to the
bottom of the spectrum of H in each angular momentum or
symmetry subspace: the general theory does apply to these
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special excited states. If the {g"} are all identity maps, then
the results of the present paper are equivalent to those of
Paper IIL. One of the results of Paper III is the general for-
mula [Eq. (4.10) here] for linear combinations of powers and
the log potential, which, for example, determines the lowest
eigenvalueof — A4 + v(r* + Ar*)to within 1% for all A >0: It
is possible to establish such error claims independently be-
cause the trajectory formula yields both upper and lower
bounds. In Paper II we explored the situation in which one
knows exact partial trajectories, that is to say, E () for

—4 + af® + f2; onecan then treat potentials of the form
ag(f") + f?, where g is convex or concave. Some of these
various special cases of the present theory have been illus-
trated by the problems considered in the earlier papers: be-
low we present some fresh examples.

If we consider a one-particle problem with central po-

tential

Viry=Voflr/a), V>0, a>0,
particle mass m, and energy E ', then the Schrddinger eigen-

value problem is equivalent to that generated by Eq. (1.1),
ie.,

H= —A+vf(r), v>0
if we let

E =2mE’'d*/#
and

v =2mVya*/#.

Thus various choices of range a are already allowed for in the
trajectories E = F'(v). In considering linear combinations of
potentials we shall usually introduce more parameters than
are logically required; this redundancy allows one to see at a
glance how the eigenvalues depend on the components.
When we consider the N-body problem, the variables E and v
must be interpreted according either to Eqgs. (5.5) or (7.3),
depending on whether the identical particles are bosons or
fermions. In the examples, we consider the problem to have
been solved once the upper or lower kinetic potentials are
determined: The trajectories are then given by substitution
into the general formula (4.8); numerical values are easily
obtained with the aid of a programmable calculator.

A. Dual Coulombic-harmonic transformations

Suppose

S =g"(h V() = g%k X(r)), (8.1)
where

BV = —1/r, APn="r, (8.2)

g'V is convex, g? is concave, and both the functions are in-

creasing. Then by Theorem 6 and Eqgs. (6.7) and (6.8) we have
80— s/ (n + < fuls)<8®(2n + 1 — 1/s).  (8.3)

Butg""(x) = f( — 1/x) and g?(x) = f(/x) so that we have the
following general rule for this class of potentials:

Fln + /5" A< fuls)<f(2n + 1 — 41513, (8.4)

where / = 0,1,2,-- and n = 1,2,3,-.-. This is_fascinating be-
cause the bounds on the kinetic potentials £, are given di-
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rectly in terms of fitself: If f(r) = — 1/r, the lower bound is
exact; if f(r) = r?, the upper bound is exact. The case (n = 1,
{ = 0) was discussed in Paper I, Sec. VB. We now have a
situation (dual power-law representations a/ways lead to
this) where the upper and lower kinetic potentials are scale
transformations of each other. Suppose we consider

fls)=h(s/b), b>0. (8.5)
Then from (4.8) we have
Gylu) =su + h(s/b)

(8.6)
u= —h'(s/b)/b,
that is to say, using ¢t = s/b,
G, (u)=t(ub)+ hit),
Wu)=t(ub)+ht) 8.7)
ub = — h ’(t ).
Hence
G,(u) = G,(ub), (8.8)

and, since, by Theorem 2(a), G is monotone increasing, we
have

G, (u)>G,lu), b'>b. (8.9)
Using this framework, we have from (8.4)

Flin + 1)1/ Fuls)<f ((n + 1)/(bs)' 1), (8.10)
where
b=[(2n+l—§)/(n+l)]2>1. (8.11)

We can therefore summarize our solution to this class of
problems as follows:

G (u) = su+f(n +1)/5'?)

u= — Lf(n+1)57) (8.12)
ds

G o) =G y(u2n+ 1~/ (n+ 1)),
where fis the potential and the superscripts U and L stand
for ““upper” and “lower” (/ = 0,1,2,---, n = 1,2,3,--). The
class of potentials (8.1) includes, for example, the following
combinations:

f0)=3 @ selpr” — B/l + br)+ Byin 7

i=1

+ B [1+ A /(1 +cr), (8.13)
in which the coefficients {e; } and { B;} are nonnegative and
not all zero, 5> 0,¢>0,0<A<3,and — 1< p, <2 withp, #0,
i=1.2,...,k. By Eq. (5.9) we know that, for the ground state
(I =0, n = 1), Eqgs. (8.12) immediately apply to the N-boson
problem. For the excited states of the one-particle problem
this very general result yields vanishing percentage error as /
increases.

B. Power-law potentials

For the special case of power-law interactions which
have recently been of interest,'” the potential is given by

V(r) = sgn(g)V,o(r/a)=sgn(glyr?, — 1<q<2, q#0,
(8.14)

and from (8.12) we immediately obtain the bounds
wlu) = (14 g/2)(|q| /210 + 2+ 2yaa+2) - (g.15)
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withv = (n + /)for thelower bound and v = (2n + I — })for
the upper bound.

For N identical bosons this implies [see Eq. {5.6) and set
I=0,n=1]

7v ={l+g¢ /2)(7,’ ql /4)2/(9 + 2)(ﬁ2 /m)q/iq +2),,24(¢ +2)
X(N — 1)N¥a+2, (8.16)

in which v = 1 for the lower bound and v = 3/2 for the up-
per bound to the ground-state energy. Of course, the lower
bound (for the N-boson system) is also valid for all ¢> — 1,
¢7#0; for an upper bound valid for all g> — 1, we simply use
the Gaussian kinetic potential {see Table II), which yields

v, = @2 (3 + g2/ (3/2)1V% (8.17)

ifg =2, Eq. (8.17) implies v, = } and for — 1<g <2 the
value v = v, yields a better upper bound than v = 3/2 via
Eq. (8.16). A better lower bound can always be found for a
given ¢ by use of the corresponding kinetic potential (s} in
Eq. (8.3).

We now turn to the N-fermion problem. We consider N
identical spin-} fermions, where

(N—1)= ﬁ 272 =k (k + 1)(2k + 1)/3.

v=1

(8.18)

This choice of N allows us to fill exactly & “shells” of the
basis Coulomb problem for which each eigenvalue labelled
by v = (n + /) has degeneracy 2v*. Hence in Eq. (7.14) we set
p= — l,q>p,¢#0, and each distinct value of 4, = —v~!
is repeated 2+ times as we sum over the first (¥ — 1) eigen-
values. With this understanding we can write the sum over v
in Eq. (7.14) in the form
k

z (21,2)1,2q/lq +2)

v=1

so that the lower bound to the ground-state energy of the N-
fermion system becomes

Ey>E Y =31+ 2/q)(Ny|q|/3)* 2 /m)ie+?

k
X 2 Wat Va2 os

(8.19)
v=1
Consequently, for large N we have for allg> — 1
Eyv>ES~N9 Q=5/3+2/(3¢+6), (8.20)

and, therefore, 5/3 < 0<7/3.

C. The Coulomb plus log potential

We have already treated the ground-state energy of the
N-boson system in which the pair potential is a linear combi-
nation of powers sgn( p)r?, p = — 1,1,2,3,6,8, and the log
potential in Paper III [see Eq. (4.10) here]. Now we should
like to look at the excited states, and the N-fermion problem,
with a pair potential of this type. Suppose, for example, that

fin= —a/r+BInr, a>0, B>0. (8.21)
The potential f(r) satisfies the conditions of the dual repre-
sentation (8.1) so that we have by {7.7) and (8.12)

G (u) = su — as"'*/v + B In(v/s"?),

s=Q, ) =B*(a/2v)? +2uf "> — (a/2v)} 73,
(8.22)

lowerv=(n-+1), upperv={2n+1-}).
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GW

0.1 u S. 1

FIG. 1. Trajectories for the Coulomb plus log potential. Bounds on the
eigenvalues G (u) of H = — ud — 1/r + In rareshownforn = l and/ = 0~
8. Upper and lower bounds given by Eq. (8.22) are in the full line; the “center
lines” for /> 0 are obtained by using a mean value v = 3n/2 + I — 1/4; the
dashed line between the / = 0 bounds is essentially the exact result given by
Eq. (8.23).

This recipe for the trajectories is in explicit form since we
have solved for s in terms of u. The trajectories withn = 1
and / = 0-8 are shown in Fig. 1 for the case a = 8 = 1; for
I>1 the “center lines” are means of the bounds obtained by
using v = 3n/2 + I — }; for I = 0, the “center line” is the
exact result. The exact values for / = 0 were obtained by
using Eq. (4.10) of Sec. IV, which yields the following explicit
formula:

G{u)=inf( —ud —a/r+BlInr)
= —a/2t+ B In[v*t%/2)/2, (8.23)

where ¢ = [(8u B + a?)'/? — a]/2 3, and v* = v, = 8.07 for
the lower bound and v* = v, = 8.6057 for an upper bound
via the exponential trial function (see Table II). If we use the
average value {v,, + v,)/2, then the error in G (¢) is strictly
less than 1.6%of B8 for all@>0,8>0,and u>0; forg =1,
this error is less than the resolution of Fig. 1.

The pure log potential is obtained by setting @ = 0 and
u = 1 so that the eigenvalues E,, of the operator
— A + v In r(we now use v in place of §) are bounded by

— v In(/v5)<E,; = — v In(v/v,)< — v Infv/v}),
(8.24)

where vk, = 2e(n + /)2 and vy, = 2e(2n + | — })*. Wederived
the general form of E,; in Ref. 18; we had probably misread
the graphs in Quigg and Rosner’s article'® for we find now,
by numerical integration, v,, = 8.07 (rather than 7.63).
Quigg and Rosner'® find for S states the WKB approxima-
tion v, ~m(2n — 1)*. If we represent the potential In 7 as a
concave transformation of the linear potential (rather than
the harmonic oscillator), then we get* v,, < 8¢(|a, |/3)%,
where {a, } are the zeros of the Airy function (g, = — 2.338,
a, = — 4.088, etc.?’). We have indulged in this level of detail
for a special case of the very general approximation (8.12) in
order to put the result in some numerical perspective.

Now we turn to the N-fermion problem. By exactly si-
milar reasoning to our treatment of the power-law potentials
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in Sec. VIIIB we have by Eq. (7.8)

ESEY =N3 [wQ, —avQl + Bniv/Q Y],

v=1
Q. =B lla/2v? +2u B 1" — (a/2v)} 73,
u = 3#/2Nm,
Nel=k(k+1)2k+1)/3, k=123,

where the complete potential is given by (8.21) for we have
set ¥, = a = 1. Once again, the pure log potential is recov-
ered as the special case @ = 0.

(8.25)

D. The Yukawa plus linear potential

Consider the potential
fi)= —ae~"/r+pBr, a>0, B>0. (8.26)

Now this function is concave and therefore also a concave
function of 7. Provided 2 B> a, fis at the same time a convex
function of 4 (r) = — 1/r and, therefore, under these condi-
tions (the linear component sufficiently large), we can again
immediately apply the recipe (8.12) to find bounds on all the
energy eigenvalues. However, we wish in this final example
to illustrate some other approaches.
Suppose A, () is the Hulthén potential,

hy()= —(”—1)"", b>0, (8.27)

and a transformation g is chosen so that the Yukawa compo-
nent of f(r) is given by

— e~ /r=g,lhy(r), (8.28)
where
b(l _ I/X)—l/b
X)= - ——— —  X<O. 8.29
&) In(1 — 1/X) < (829

We then find (after a tedious calculation) that g, is convex for
b>/6 and concave for b< 1; for values of b between these two

bounds (1 < b </6), the convexity of g, is not definite. Now,
by Table I and the scaling Theorem (2d) we have

hy(s)= —3[(1 +4s/b3)"2 — 1], b>0. (8.30)
Hence, by Theorem 4 we have, for a lower bound to the
ground-state energy with b = /6
fuls)= —ab/WV"In W+ 2BG,;s~ ",
where
Wis)=1[(1+4s/b3"2 +11/[(1 + 45/ = 1],

b=\6,

and G, = 0.688 041 (from Table II). For an upper bound we
use an exponential trial function and by Theorem (4b) we
have

fols) = —4as®?(2s'2 + 1)"2 + 2 8GEs 172,

(8.31)

(8.32)

where G { = 0.75 (from Table II). The resulting trajectories
F(v) = vG (1/v) [bounds on the lowest eigenvalue of
H= —A +vf(r)]areshowninFigs. 2 and 3 for the cases (e,
B)=1(1,0) and (1,1), respectively.

For the pure Yukawa potential y(r) = — (re”) ™! the fol-
lowing simple result may sometimes be useful. We find by
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FIG. 2. Trajectories for the Yukawa potential. Upper and lower bounds on
the lowest eigenvalue F(v) of H = -- 4 — ve ~"/r provided by the kinetic-
potential bounds (8.31) and (8.32} with (a, 8) = (1,0).

elementary methods that

0<(reh ™! — [sinh(r)e’} ~' <0.056, r>0. (8.33)
Hence

—22" —1)7' = 0.056 < — (re") " '< = 2(e* — 1)}

(8.34)

Now the S-state eigenvalues of the Hulthén potential are
known exactly'® and for the potential 4, (r) = — (e* — 1)
we have the exact trajectories

F%v) = — (v —n’b??/4n’b>. (8.35)

Consequently, the S state eigenvalues F,(v) of the operator
H= — A —p(re")” ! are bounded by
— (v — 2n%)2/4n* — (0.056)v<F,,(v)< — (v — 2n?)2/4n>.
{8.36)
It turns out that if we apply the convexity estimates of the
first part of this section to the excited .S states of the pure
Yukawa potential by using Eq. (8.35) with & = /6 and 1, the
results are not sufficiently better than (8.36) to justify the
extra complication. Accurate results for the pure Yukawa

FW 5

0

| 1 1 1 L 1 L L

0 v 10

FIG. 3. Trajectories for the Yukawa plus linear potential. Upper and lower
bounds on the lowest eigenvalue F(v)of H= — 4 +v(—e~"/r 4 r) pro-
vided by the kinetic-potential bounds (8.31) and (8.32) with (@, 8) = (1,1).
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potential may be found in Ref. 21; recent results®* for the
Hulthén potential with /> O may also allow us to estimate
the higher angular-momentum energy of eigenvalues corre-
sponding to the Yukawa potential by the above methods.

IX. CONCLUSION

We have presented a variety of results concerning
bounds on Schrédinger eigenvalues for central potentials.
The bounds are analytical recipes which exhibit the depen-
dence of the eigenvalues on the potential parameters. The
separations of the bounds are typically a few percent for
ground states, rather larger for higher radial quantum
numbers, and vanishingly small (as a percentage) for large
angular momenta. Such results are useful in the exploratory
stages of modelling and as checks on other techniques such
as perturbation methods. Our principal motivation, how-
ever, has been the N-identical-particle problem whose ener-
gy is intimately related to the two-body energy trajectories
via the necessary permutation symmetry of the N-body
wavefunction.

The introduction of the kinetic potential f(s) corre-
sponding to a potential f(r} has allowed us to unify our earlier
methods for convex transformations of potentials and for
sums of potentials. The optimization of “weights” feature of
the potential-sum method of Paper I1I is also now automati-
cally incorporated in the new general formulation: the prob-
lem of finding the optimal w, 0 < w < 1, in the representation

—4 +ulfi +H)=w{ -4 + (v/w)f}}
+(1—w)f -4+ /(1 —w)f}

is now solved by the minimization with respect to the param-
eter s > 0. Moreover, s is now identified as the mean kinetic
energy for both upper and lower bounds. There is also a
certain harmony between the functional analysis'~ which
regards the potential as a perturbation of — 4 and our ana-
lytical methods in which { — 4 ) is set equal to s and then the
energy trajectory (v, F(v)), v>0, is given in terms of a Le-
gendre transformation of the kinetic potential (s, f(s)), s> 0.
TheA transform which yields F = A { f) has been factored in

e
I
Q-
o
Q
; S
0 r S
FIG. 4. Dual envelope representations for the potential f(r) = — 1/r + /2,

The potential is represented as the envelope of a family of Coulomb poten-
tials (hyperbolas 4 ) below, and of a family of harmonic-oscillator poten-
tials (parabolas p'*') above.

334 J. Math. Phys., Vol. 24, No. 2, February 1983

100

Fv

oj

-100

200

FIG. 5. Trajectory bounds by the potential envelope method. The A, trans-
form for (n, 1} = (1,5) is applied to the families {4 "'} and { p"'} of hyperbo-
las and parabolas of Fig. 4. The envelopes of the new lower and upper
families do not now coincide but split into the lower #5, and upper F Y,

bounds to the unknown exact energy trajectory A,,(f) = F,,. Fis(v)isa
magnification of the curve F}5(v) with magnification factor
p=02n+1— 3/ (n+ 17 = (137122

the form A = A PoA Y, where f= A (f) and F = A ?(f).
In general, A ‘" is labelled by » and /.

In the present paper we have used min—-max arguments
along with Jensen’s inequality to establish our results. Jen-
sen’s inequality is a perfectly natural tool, but the idea of the
envelope representation from with the potential-envelope
method of Paper I originally came may provide the richer
conceptual framework. In Fig. 4 we show the potential
f(r)= — 1/r + /2 along with its dual ( — 1, 2) power-law
envelope representations

f = envelope {A "'} = envelope { p""'} (9.1)

by hyperbolas {4} below, and parabolas { p*'} above,
where ¢> 0 is the point of contact. In Fig. 5 we exhibit, for
n=1and/=5,thecurves A, (k") and A,,( p")) along with
their envelopes. We have, as a consequence of Theorem 6,

envelope {A,,(h ")} <F, <envelope {A,,(p")}. (9.2)

The transformation A ,; applied to the envelope components
of f has given rise to a splitting of the unknown exact trajec-

_ tory F,, = A,,(f) into upper and lower bounds.

Dual power-law representations lead to the concept of
magnification: the curve (uv, uF (v)} is a magnification of the
curve (v, F (v)), where > 0. The entire collections of upper
{F5} and lower { F 1, } curves given, for example, in the case
of ( — 1, 2) dual representations, by Eq. (8.12) are magnifica-
tions of a single curve, namely, the curve (v, F *(v}) given in
parametric form by

v l= — if(s"”z), 5>0,
ds
9.3)
F*p)=s+vfls~'2).
This result is trivial when fitself is a power law but is other-

wise more interesting. In Fig. 5, for example, the upper tra-
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jectory is a magnification of the lower trajectory, where
w=[(2n 4+ 1~ 1)/(n + 1)]*> = (13/12)%. For a given dual
power-law representation all the relative magnifications are
fixed; they do not depend on the details of f provided only
that / does have the given representation.

The restriction in this paper to increasing potentials
f'(r)> Ois not essential. This is merely a simple device which,
along with nice behavior at r = 0 and r = o0, guarantees the
existence of eigenvalues for sufficiently large coupling con-
stants v (or small u). Molecular potentials can be treated
along the same lines provided the various Hamiltonians
which are reached by transformations and sums can be de-
fined on essentially the same domain. For the N-body prob-
lem there is reason to expect that our lower bounds will be
weaker in the case of saturating potentials.?*

Similarly, our variational arguments remain valid for
potentials which are not smooth. Useful results can be ob-
tained with families of square wells: a monotone increasing
potential, for example, is bounded above by an enveloping
family of infinite square wells and (if the potential is nonsin-
gular) at the same time below, by a family of finite square
wells.

The energies of the excited states of many-particle sys-
tems can be treated with the aid of the present results by the
method of Ref. 9 provided there are independent reasons for
believing that the objects approximated by min-max argu-
ments are in fact eigenvalues. The bounds which we have
found in the present paper for the N-body problem simply
concern the bottom of the energy spectrum, whether or not
this object is an eigenvalue. If one is interested in a particular
symmetry or angular-momentum state of the N-body sys-
tem, then a lower bound to the bottom of the spectrum of H
restricted to the corresponding subspace may be found by
the methods of this paper with the aid also of group theory.?*

If we consider the N-boson problem with the linear pair
potential

flr)y=Vyr/a=yr,
then we find by Eq. (5.6) that
AN — 1)(NyP(#/4m)' 3
SEy<A,(N — 1)(NyP3(#/4m)"3, (9.4)

where — A, = — 2.338 107 is the first zero of the Airy func-
tion, and 4, = 3(3/27)'/3. Thus (9.4) determines the lowest
energy of this N-body problem t0 0.15% for all ¥ > 0 and all
N>2.

Results like this are not difficult to obtain by the meth-
ods of this paper: Our theory is complementary to conven-
tional many-body theory®® which has been developed pri-
marily to tackle “physical problems,” where F,,/N
approaches a finite limit as NV increases. In the conventional
theory the interaction is regarded as a perturbation and, just
as in QED, one is rarely able to discuss the value of the sum
of the entire perturbation series. Because of this, definite
bounds like (9.4) and the large variety of similar results
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which are made possible by Schrodinger Lego may prove to
be very useful.
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Exact results for the diffusion in a class of asymmetric bistable potentials
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We solve the Fokker—Planck equations with drifts deriving from a class of asymmetric
nonharmonic potentials which include bistable cases. An analytical expression for the probability
current over the potential barrier is obtained. Finally, we compare our exact results with those

obtained by Kramers’ approximation.

PACS numbers: 05.40. + j, 05.30. — d

In a recent communication,' we proposed exactly
solved models for the diffusion in a class of nonharmonic,
symmetric potentials which includes bistable cases. Here, we
give an extension to asymmetric situations.

The diffusion problem we are considering reads

J
— Pix,t |x,,0
9 (3,2 |%0,0)
o e o)
=— 3| — Ux) )P (x,t|x,,0
gl | e (x) )P (x,2 |x0,0)
+9 Pl |x0,0)], xeR (1)
ox
with
P(x,t |x0,0) = 5(x haat xo): (lb)
Px,t|x,,0)>0, VeR™", VxeR, (lc)
f Pix,t|x,0)dx =1, VR, (1d)
R

Ulax)=21nd¢(ax)
=2 In{ y,(ax) + By,la.x)} (le)

x? a 1 1 x?
= — 1 {F(_+~_1_9—>
y T\ T2
a 3 3 xz)]
F - Ty Ty T o ]
+hx ‘(2 YT
ae] — Lo (19)
and
4 1\]-!
pes=vr(3+3)r(5+5) - e

The condition (1f) guarantees that the confluent hyper-
geometric function | F\(e, B,z) in Eq. (1e) is positively defined
and the condition (1g) combined with (1f) implies that ¢ (a,x)
is itself positively defined. The function ¢ (a,x) itselfis a solu-
tion of the Weber equation®:

d> x
TS lax) = (T + a)¢ (@.x). )

The potential U (2,x) in Eq. (1e) is asymmetric when

2 On leave from the University of Geneva, Department of Theoretical Phys-
ics, Bvd. d’Yvoy, 1211 Geneva, 4, Switzerland.

Y Supported by the Swiss National Science Foundation.

°'On leave from the Institute of Theoretical Physics, Academia Sinica, Bei-
jing, China.

“Supported by the Robert A. Welch Foundation.
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[ #0 (the symmetric case # = O has been studied in Ref. 1).
Moreover, for a€] — 1,0[ and <S5, , U (a,x) exhibits
asymmetric bistable shapes (see Fig. 1).

To solve the diffusion problem (1) by van Kampen’s
method,” let us write an associated Schrédinger equation in
the form

0022-2488/83/020336-05$02.50

d 2
— ¥x) + [E — V(x)1¥x) =0, (3)
dx
with
1] d 2 1 4d?
Vi =+|-L v - L vt
) 4 ldx =) 2dx2()
x? [ d 2
= —-—= —a+2|—|ln a,x], 4
4 & {In ¢ (a,x)} 4)
By using the transformation discussed in Ref. 4,
Uix}
40+
3.0
2.0
1.0 1
, 0
-20 y
\ /
\ 4
\ 7, -
\ / 4 10
\ /
N _ s
FIG. 1. Shape of the potential U (x) fora = — 0.4 and various asymmetries
B = —0020; +003.
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¥ Yhx) = xix) = [4 (a,x)l-‘-j;w @w), ()

the Schrédinger problem (3) with the potential (4) (see Fig. 2)
can be solved exactly.
Indeed, from Egs. (2)—{5), we obtain

&= (% +a—E o) )

Taking into account that y{x) is square-integrable, the
solution of the Schrédinger problem (6) reads

X»(x) =D, (x) = exp{ — x*/4]H, (x/V2), (7)
E,=n+a+4, n=012,.. (8)
and the ground state has the form*
Ye_olx)
~ el §.D (x) + &>D (~x)
W _a_ 12X —a~172
=¢lax) x[ . o ],(9)

where £, and &, are real constants.
From Eqs. (7)-{9), we can write the solution of the diffu-
sion problem (1) in the form

Plxt[xp0) = N ~'{g (ax)) 2 4 2100
¢ (ax)

X Zo e~ "'t (XN (xo) (10)

where
Yulx)= —E,C,¢ l(a,X)f ¢ (ax)D, (x) dx (11a)

vix)
—4?0 S
8=-0.08

FIG. 2. Shape of the potential ¥ (x) for a = — 0.2 and various asymmetries
B= —0.04;0; +0.08.
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¥ (x) = C, 6 (a%) %wn () (@) (11b)

The last equality in Eq. (11b) has been established in Ref. 4.
The normalization factors N and C, occurring in Eqgs.
(10) and (11) are calculated in the Appendices A and B,
where we find
N=28.[B:-B%]"", (12)
T = (n+a+n2m)/?. (13)
From the solution (10), we can immediately calculate

the probability current over the potential barrier located at
x = xp (see Fig. 1). We obtain

J(x = xpxpt)

ad
= — — P(x,t|x,,0
Ix (%, [x0,0)

X=xg

- E, exp{ —E,t}
~ gyt § PSRt
an(xB)f #(a,0D, (x) dx (14a)
= 3 E,CZexp(—E,t]
x[¢10.0) 2,1~ D) - pla)]|
XD, {x5)[8 (ax)1 ", (14b)

where Eqgs. (14a) and (14b), respectively, follow from the use
of Eqs. {11a) and {11b).

For small asymmetries ( 8<€f, ), the location of x5 can
be approximately obtained by keeping only the first-order
terms in the expansion of F,(a, 5, z). Namely, we have

2 Ylax
dx x=xg
)
+/9x(1+(a+g)’%2 +)” x=x5=o, (15)
and hence
x5 = —B/a+0(B?). (16)

Hence by introducing the value {16) into Eq. (14a) and
considering #» 1 such that only the first eigenvalue n =0
contributes, the currentJ (x = xp x,,t> 1) up to first order in
B reads

J(x = x5.X0,t> 1)
_ _ la+Yexplla+yr] fxoe—"’/%(a,x)dx

(271.)1/2
2
mli/z'e"l’ (a+£)‘}[xo 1F1(2 +—3— 3 _"21)
_3._ i _xi —x%/Z
+BF 1( + 2’22 )/\/f(a+£)]e . (17)

From Ref. 5, the current given in Eq. (17) permits us to
calculate the large time scale (7,) characterizing the decay
process:
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=~ %ln{J(X=xa,xo,t>1)}=a+§. (18)

According to Kramers (r;) ' can be expressed in terms
of the extreme of the potential located at x = x 4 (minima)
and x = x5 (maximum)(see Fig. 1), and in terms of the corre-
sponding curvatures w,, = d*U (x)/dx’|, _ . . By Ref. 6, we
have

(7 Ykra = (277)—1[(w+|(‘)8 I)I/Z exp{U(x,) — Ulxp)}

+lo_|wp])'? exp{U(x_) — Ulxs)}]

-7 H( 4 +a) 4 +a] [¢(a,x,,)]
xz_ ﬁ /2 ¢(a,x_) 2]
+[( 2 “) 4 +a] [rﬁ(a,x,;)] '
(19)
As we have (see Appendix C)
B. ]
~21 20
F n[(a+%)7r(ﬁc$ﬁ) 0
and
¢(a,x¢)=236$ﬁ, 21)
Xx
Eq. (19) reduces to
(r hera = —r (@ + 1) 22)
T

which is the same as the result (18) up to the factor 2/
r/2~1.17

We close this paper by mentioning that the diffusion
problem (1) exhibits a situation where the two wells of the
potential are not well separated. Indeed, the eigenvalues of
the associated quantum mechanical problem are here equal-
ly spaced whereas for well separated wells, the spectrum pre-
sents a structure of close pairs.® Therefore, the approxima-
tion schemes based on the WKB method for the
corresponding Schrodinger problem are likely to fail for the
class of models presented here.
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NOTATIONS AND FORMULAS

We introduce here the notations and formulas which
we shall use in the Appendices.

2a/2~—3/4 a 3
b= r(5+3) (NY
A=Al £B/B.) (N2)

We use the notations of Ref. 2 and have
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¢ (a.x) = y,(a,x) + By,(a.x)
=A,D_,_ 1px)+A_D_,_\,(—x)
=A,Ulax)+A_Ula, —x). {N3)
The following integral is given in Ref. 9:

L, = f "D, () dx = (2120 (N4)

We shall use the asymptotic developments?
U{—v—blx])=D,(|x|)~e="*|x|"[ + O(x )], (N5)
Ul=v—4 —Ixl)

=Dv( - ‘x|)
XA —v—1 (277')1/2 —2
e x| = S 114 0]
+e %% |x|" cos va[l + O{x "2, (N6)
and therefore
a ~_ I
dx Dv(‘xn— 2 Dv(‘x”’ (N7)
4 pi—ixh= X p_
o D, (— |x]) 5 D, (— |x|). (NB)

From Ref. 2 we have
nilax) = [cos aUla,x) + I' {} — a) sin a ¥V (a,x)}k,, {N9)

yilax)=[sinal(a,x)+ I'(} —a)cosaV(ax)k, (N10)
with
a 1
(2 . 1, N11
“ (2 + 4)” (NTD)
1/2~as2 + 1/4 1 a\]!
4 2
3 a)\]!
k. = 1/220/2—1/4[r(___)] N13
2 =7 4 2 ( )

Finally, for a <0, x* 4+ 4a>|a|, and x > 0, the Darwin
expansion reads?

Ula,x)~k.,x~ "2 exp{ — x*/4}, (N14)

V(ax)~kx" "% exp{x?/4}, (N15)
with

ky= [T (4 —a)]"/*2m) =14, (N16)

ky={[{§ — a)}"/*2m)}} =1 (N17)

APPENDIX A

We calculate the normalization factor N in Eq. (10).'°
We have

= dx « dx
N 1= —_— = .
le [¢(a,x)]2 J.—oo [YI(a:x)+BJ’2(a»x)]2 (Al

Using Eqs. (9) and (N3), Eq. (A1) takes the form

+ o

N-t= SiUlax) +&Ul, —x) . (A2)
A Ulax)+A_Ufa, —x)| _»
Then using Eqs. (N5) and (N6), Eq. (A2) gives
N—lzﬁz____gl_z §2A+_§lﬂ'—. (A3)
A_ A ALA_
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To calculate the numerator in Eq. (A3) we use Eq. (9) for
which we can write

A Ulex)+A_Ula, —x)]7 "=
-4
= [6,U

_ _6Ufax)+§&,Ula, —x)
A Ulax)+A_Ula, —x)

X[’dd? A Ulax)+A_Ula, - x)}|x_ .. ] (Ad)

(ax)+ &:Ule, —x)] .-

We finally use the asymptotic developments (NS5), (N6),
(N7), and (N8) to obtain

(64, — &6 A _Ulax) = [Ula, — x)] 7", (A35)
and hence from {A3) we have
N-'=28.[B—B]"", (A6)
where
J

B.=V2I'(a/2+ a2+ 4" (A7)
The normalization constant &N being positively defined,
Eq. (A6) is meaningful only when 3 < 3. . This last condition
guarantees that ¢ (a,x) > 0, VxeR (in terms of quantum me-
chanics, the ground state does not present nodes). Let us
illustrate this last point by the following example.
Example: a =}

¢ (3.x) =y,(7,x) + Bya(4x)
= exp{x¥/4}[1 + (Br'/2/V2) erf (x/V2)]. (AB)

Itis clear from Eq. (A8) that the function ¢ (},x) remains
strictly positive provided 8 < 27~ "'/2 which precisely is the
value of B, given in Eq. (A7) fora =

APPENDIX B

Here, we calculate the coefficients C,, in Eq. (11)."° Us-
ing the representations (11a) and (11b), we have

cr2=[ g = — £, [ (L p,w6i00)([ 610210, 00 )

+
[[ 2 g tamp,was| " - [ 10,17 ). B1)
¢ a’x) — R
Then using Egs. (11a) and (11b) and (N4), Eq. (B1) can be written in the form
~E{[pi0 222 Lo, /s 0] |7 o]
d + o 172
- [Dn (x)é (@D, + E,ni2m". (B2)
dx =
r
Finally, using Egs. (N2), (N5), and (N6), we obtain nlax ) FByylax )
-2 _ \ 12 _ Y 1/2 2
C,*=E,n(2m) (n +a+ Ynl(2m)""2 (B3) 2k3ll/c21 (COS eT Btana . a)e_XIM
xY B.
APPENDIX C
We calculate the location of the minima x - of ¢ (a,x) . B s
whena~ — 4 Whena~ —, x_ are expected to be large + 2(5111 a + — tan a cos a)ex*“
and therefore we use the Darwin expansion Egs. (N14), B.
(N15), (N16), and (N17) to obtain B. FBtanh’a(B. FB)]>
~2cos a ] . (C3)
B.x
¢ (a.x) = yila.x) T By,la,x) ) Fora~ — 4, we end with
=~(k, cos a F Bk, sin a)k,x /2 —*/4 8. T B\
+ (ky sin @ Bk, cos a)k, " (} — ajx /2% — %74 nlax )+ Bylax )gz( et ) . (C4)
Xz

(x—F o). (C1)

From Eq. (C1), the condition (d /dx)é (a,x)|, e =0
reads

(C2)

T tan2
| B ]

2(B. FB)tana |’

where a is defined in Eq. (N11) and 3, in Eq. (A7).
Finally, using (C2) and the Darwin expansion, we have
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Quantization of spinor fields. lll. Fermions on coherent (Bose) domains

Piotr Garbaczewski?®
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A formulation of the c-number classics-quanta correspondence rule for spinor systems requires
all elements of the quantum field algebra to be expanded into power series with respect to the
generators of the canonical commutation relation (CCR) algebra. On the other hand, the
asymptotic completeness demand would result in the (Haag) expansions with respect to the
canonical anticommutation relation (CAR) generators. We establish the conditions under which
the above correspondence rule can be reconciled with the existence of Haag expansions in terms
of asymptotic free Fermi fields. Then, the CAR become represented on the state space of the

Bose (CCR) system.
PACS numbers: 11.10. — z

1. MOTIVATION

Our basic purpose is to deal with quantum field theory
models (irrespective of the space-time dimensionality) whose
elements of the field algebra admit a reconstruction in terms
of one or more quantum free fields. By free we understand
the field solutions of standard sourceless field equations like,
e.g., the Klein—-Gordon, Dirac, Maxwell, etc., ones. In addi-
tion, we require the equal-time canonical (anti)commutation
relations to be satisfied on appropriate domains. The latter
are, however, not required to belong to the Fock space.

For quantum fields with well defined asymptotics, the
above reconstruction is realized in the form of the Haag se-
ries. In what follows, by Haag series we understand any pow-
er series in terms of the normal ordered products of the CCR
or CAR algebra generators, denoted: F(a*, a);, :F(b*, b):,
respectively.

As is well known, the asymptotic condition is not an
obvious notion even for the simplest Fermi system; compare,
e.g., Ref. 1 and references therein. In this connection we
admit the Haag series reconstruction of quantum fields in
terms of free fields which are not the asymptotic series in the
usual sense of the word.?

In 1 + 1 dimensions, for all models solvable via the
Bethe ansatz technique, the construction of the eigenstates of
the Hamiltonian explicitly involves the fundamental free
fields; compare, e.g., Refs. 3—-5. We know, for example,® that
in case of the sine-Gordon system the underlying field is the
massive neutral scalar. In case of the massive Thirring model
the free massive Dirac field is used to construct the energy
eigenstates. However, to relate this quantum model to its
completely integrable c-number (semiclassical) relative, one
is forced to adopt a “bosonization” in terms of the massive
neutral vector boson.'

A quite analogous situation appears in the infrared
QED, where a bosonization of the quantum Dirac field
weakly coupled to the photon field is realized in terms of the
Coulomb gauge free Maxwell field potential.’

A common property of both the Fermi and Bose models

“Permanent address: Institute of Theoretical Physics, University of Wro-
claw, 50-205 Wroclaw, Poland.
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mentioned above is that to relate quantum and classical (c-
number)} levels of a given ﬁ/gld theory model, one starts from
the Haag-like expansions F = F (a*, a) in terms of the funda-
mental CCR algebra generators. Then one makes a boson
transformation a—a + A, a—a + A, where A is a c-number
function, and finally calculates the Fock vacuum expecta-
tion value in the tree approximation

(0|, |0}—(0|:F; :|0) = (O:F(a* + A, a + A ):|0) = F(1, A).
(1.1)

The functional power series F(, A) stand for classical, c-
number relatives of the quantum objects F' = F(a*, a), to
which :F (a*, a): corresponds in the tree approximation. One
knows that the tree approximation prescription can be used
to recover the classical Euler analogs of the quantum equa-
tions of motion.

It is of special importance to know these boson transfor-
mation parameters A, which in the tree approximation give
rise to the classical solitons. This problem was partially
solved (for solitons) for the Korteweg—de Vries’ and A *
models,*° and more generally for the sine-Gordon sys-
tem.*'%!! The latter case, using the Orfanidis’ formulas,'?
allows an identification of at least some soliton solutions of
the massive Thirring model. For a few other models in con-
nection with a coherent state description of hadrons, see Ref.
13. The tree approximation procedure can be described as
follows:

F=F@a* a—~Fla*+1,a+1)=F,

OIF (a* + A, a+A)|0): = (1 [F(a*, a)l4) = (A |F|A), (1.2)

(A |:F(a* a)|A)=F(L,A),

where |4 ) stands for a generalized coherent state for the field
(CCR) algebra. In general |4 ) is not an element of the Fock
space and hence gives rise to its own |4 )th Hilbert space

irreducibility sector for the CCR algebra, incomplete direct
product space IDPS (|4 )) CH in the general Hilbert space
H. For the particular case of Fermi models one can start

from the Haag expansions in terms of the CAR generators:
F (b *, b): but then the bosonization enters via b = b (a*, a),

© 1983 American Institute of Physics 341



b* = b*a*, a),'*'®so that
F(b*, b)=F[b* b]a* a) = G(a*, a),
(0|Ga* + 4,8+ A)|0)=(A|F[b* bla* a)|d), (1.3)
(A :Ga* a):ld) =G4, A).

In particular (4 |b (a*,a)|A ) = b (1,4 ), (A |b *(a*.a)|A)

=b(A,A)=b(A,1)correspond to b, b *, respectively. Here
the CAR generators are by construction acting on the Bose
domain, hence we are confronted with a serious problem of
representations of the CAR algebra living in the non-Fock
representations of the CCR algebra the latter being based on
generalized coherent states.

Let us recall that the case of Fock representation has
been investigated and solved in Ref. 14, while the non-Fock
case was not considered in full generality. We know only"’
that the CAR do allow a local representation in the Hilbert
space of the Bose system, i.e., that the CAR hold true (while
on a lattice) for a finite number of degrees of freedom, but
may not hold true for almost all would-be Fermi degrees of
freedom, upon bosonization.

As we show below, only a very special class of (Bose)
coherent states allows the existence of fermions (representa-
tion of the CAR) on subspaces of IDPS(|4 )) and that in gen-
eral the CAR are prohibited. In the latter case, the interact-
ing spinor field does not possess an asymptotic spinor
partner (“‘confinement” property), and this role is played by
the fundamental boson(s) affiliated with the underlying re-
presentation of the CCR algebra. More precisely, it means
that in the von Neumann-Hilbert space H of the Bose sys-
tem we can find irreducibility domains for the CCR algebra
such that the CAR can be irreducibly represented on a sub-
space. On these subspaces an asymptotic expansion of the
interacting spinor field ¥ = ¥ (¢, ) in terms of the free fer-
mion ¢, makes sense. Whenever the CCR algebra irreduci-
bility sector in H does not carry an irreducible CAR algebra
representation, the underlying expansion makes no sense,
and ¥ should be expanded with respect to the free boson:
The free fermion is then “confined” and ¥ does not possess
an asymptotic spinor partner.

2. MAIN THEOREM

For clarity, we shall abandon the explicitly continuous
case and restrict considerations to the product representa-
tions of the CCR and CAR algebras.'”?° We refer to Ref. 20
in connection with the role of coherent states in this case.

Let H=112h,, h, = hVk =1, 2, ... be the von Neu-
mann infinite direct product Hilbert space. It is an infinitely
reducible carrier space for the representation of the CCR
algebra generated by a countable sequence of Schrodinger
representations {a*, aj;:

[a,-,aj]_[zﬁ):O: [aF, a}"]_W),
[a:, a*]_|¥) = |95, {2.1)
Vij, |¢)eH.

Let {¢) = 11?2 f,, fi€h, be a product vector with the proper-
ty || fi |l = 1V&. With each |¢) we have associated a separable
Hilbert space IDPS{|#)) on which a representation of the
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CCR algebra acts irreducibly. Among all possible product

vectors in H, we shall distinguish the coherent states, which
can formally be obtained from the Fock vacuum |0)eH, a; |0)
=0V}, |0) = II? £ 2, by applying a product mapping U 9 :

UR|0)=T2(U; fO:=T2|A), = |4),

U, = exp(Aa* — Aa), A,eCVk. (2.2)
Here |4 ) is determined by fixing a denumerable sequence (4 )
of complex parameters. We have g, |4 ) =4,|4), (A |[1)= 1.
The incomplete direct product space based on |4 } we denote

IDPS (|4 )). Two coherent product states are equivalent:
|4 )~ |y} if and only if the series

Sy —HAE Al 2.3)

converges.” When 2, |1 — |{(4, 74|l < «, we talk about a
weak equivalence |4 }={y). One knows®® that the weakest
condition for the CCR algebra representations acting in
IDPS (|4 )), IDPS (|y)), respectively, to be unitarily equiv-
alentis that |4 )z|y). In particular {¥)~ |4 }=>|y)z |4 ). Notice
that if 2, |4;[*4 oo then |0)£|y). If 3,|4; — 7;|* £ oo then
1)
Let us denote

P = exp( — a*a): + a* :exp( — a*a).a 2.4)
a projection on a two-dimensional subspace 4, of # spanned
by vectors f° and a* f° = f'. For a countable sequence
{a*, a}; we introduce a corresponding countable sequence
{P,}, and observe that the operators

o;" =atrexp( —a¥ a;):=P,a*P,,

(2.5)

o, =:exp(—a*a;}a;=Pa;P,
satisfy the following commutation relations on the Hilbert
space:

IDPS(|0)) =1 ;IDPS(|0)), 1, =I2P,:
[or o7 l.=0=[o",0"]_=[o7,0, ], i#j(2.6
[o77 0t | =P, Pl¢)=[U)Vi, V[¢)eIDPSL(|0)).
By applying the Jordan-Wigner transformation to the set
{o™, 07}, one can easily reproduce a sequence {b ™, b }; of

the related CAR algebra generators. We wish to emphasize
that the condition

lo7 .o L) = [¥)Vi (2.7)
is a crucial requirement, to have the CAR algebra represented
on a domain to which a vector ) belongs. Notice that the
relations (2.7) are immediate if |¢) appears in the form of the
product vector:

19) =NE@sr’+B

‘ak|2+ |ﬂk]2____ 1v,, (2.8)
af’=0, a*f°’=f"
Vectors of this form are the conventional product ones used
to investigate representations of the CAR algebra.'®'® No-
tice that (2.7) does not hold true if applied to a coherent

productstate |4 ). Werelate the above mentioned representa-
tion of the CAR algebra to that of the spin | algebra (2.6) via
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the Jordan-Wigner trick:

k—1
b? =exp(i1r 2 ot o )a,;* ,

J=1

k=1,2,.. (29

k—1
b, = exp(iﬁ Y o o )ak".

=1

It is easy to verify that (2.7) reads

[bk»bz]+|¢)= [Uk_» 0:]+|¢)Vk, (2.10)
and that (2.6) implies

(6 0,119 =0, k#j

(b, b7 1119 =0, (2.11)

(6.0, 1.1 =0.
Moreover, if 0¥, b *, a*, 0,7, b;, a; are applied to the Fock
state |0) we find

0,710)=b}|0) =a?|0)Vi, b;|0)=0=4g;|0)=0;"|0),

(2.12)
i.e., the basic property of the Fock representation construct-
ed in Ref. 14.

Theorem: Suppose we have given IDPS(|4 )), where |4)
is a coherent product state determined by a complex se-
quence (1) = {4, 4,,...}, where 4, = |4, |exp(i8;), |A«|, &
€R'. Inaddition tothesequences (|4 |)and (8 )let usintroduce
the three additional real ones (¢ ), (¥), (@). Assume that

(1) Ek: el =, (2) Ek: lAe|* < o0,

(3) lim 4.

ke |4, |*

=4 #0, »,

1.

(5) lim —%_ —
koo |4

Then a product vector |¢) = I12 (uf° + vf '), with
u, = cos a;explid,),

is an element of IDPS(|4 )).
Proof: It suffices to prove that vectors |4 ) and |¢) are
equivalent. The equivalence cirterion is 2, |z, | < o, where

v, = sin a; expliY, ) (2.13)

2, = 1 — [cos a,explid,) + |A,]
Xexp i(¥, — &,)sin @, Jexp( — |44 |%/2).  (2.14)
Let us consider k> k> 1, when all the parameters are close to

0. Then, upon expanding z, into a Taylor series about 0, we
have

(1= 01~ 2)- %)

i 858,

Imzkz(l - M;lz)[(l - a_;:)¢k + 1A (Wi — 5k)ak]:
(2.15)
i.e., by virtue of (1}H5),
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Rez,~|A,|*, Imz,~(4 + B)|A,|* (2.16)
Consequently,
zZ
lim | "'4 =[1+ (4 + BP]"*#0, . (2.17)
ke |A]

Because of (2) the equivalence criterion holds true, and
|#)~ |4 ). Consequently,

|#)eIDPS(|1 )).

It is worth emphasizing that we must have here lim,_, _ |z, |
=0.ItleadstoRez, — O0,i.e,

k—

[cos @) cosp, + |A,|sin a,cos (¥, — 6,)] —exp(|d, °/2),

which holds true if and only if [1,| — O.
k— o0

Remark I: Notice that in the above, at a fixed choice of
parameters |4, |eR *, westill have a freedom in the choice of
phases (6 ) in the complex sequence {4 }, which is furthermore
reflected in the appropriate freedom of choice of the phases
(¢) in the product vector |¢). The latter is obviously regulated
by

L V=8
im =

ko |4 ]2
A consequence of this is that if we have two sequences (4 ),
(A

A = |Alexplidy), Ak = |Ai|exp(id ;)Vk,

then the condition

z |Ak]?[cos(8, —61) — 1] <

k

(2.18)

(2.19)

is a sufficient and necessary condition for the product vec-
tors |¢)eIDPS(|4 )), |¢')IDPS(|4 ‘) to be weakly equivalent.
Toseethis, itisenough to notice that product vectors |4 ), |1 )
are weakly equivalent if and only if the real part of (2.3)
converges. In fact

A =espl = 33 ke =i+ S i
(2.20)
and 3, |4, — 4 ;|* < w is just the same as (2.19). Obviously,
if 2, |4 —A;]* = co, then |4 }£|4 7).

Remark 2: The above theorem can also be deduced as a
special case of a more general theory of Ref. 19. Namely, if 4
is a Hilbert space with an orthonormal basis (e, ), and p a
projection on a linear span of e, ..., ¢ sothat Py = p,-py is
a projection in IDPS(|4 )), then
(1) there exists a limiting projection P = lim P, in
IDPS(|1)); e
(2) by expanding 1), = 2, v¥e, =2, A ¥/ (k)% ey,
we arrive at the following conclusion:

P#0ifand only if 3 [1 - ( i lr,’-‘|2)m] < o;
i k=0
(3) the vector |¢), P |¥)#0 can be constructed as follows:

=i wi=(5 ) 3 Hee @21
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In the special case of N = 1, we have ¥? = exp( — |4,|%/2)
andA ! = A,exp( — |4 17/2),and 37_, |4 | < o0, T2, A4 |
= o, is a necessary and sufficient condition for a projection
P to exist in IDPS(|4 )).

Remark 3: Notice that states |¢) = I12|¢,) in (2.21),
(2.13) have exactly the structure required by the spin 1/2
approximation procedure of Ref. 4 for quantum Bose sys-
tems. The above (Remark 2) statement is more general, how-
ever, and allows a construction of quantum spin chain states
(with a fixed finite spin) in the Hilbert space of an interacting
(non-Fock) Bose system; see in this connection also Ref. 15.
The Holstein-Primakoff SU(2) generators

S/ =(29)aX(1 — a¥a,/(29))',
S 7 (29741 — a%a,(25) ",

S? =S —afan

(2.22)

provide us with an irreducible (at each ith site) representa-
tion of the SU(2) group Lie algebra corresponding to spin
s = N /2, given by

S, = PSP,
where P is a limiting projection of Remark 1.

(2.23)

3. DISCUSSION

Let us notice that the existence of |) in IDPS(|4 }) guar-
antees that all vectors equivalent to |¢), of the form
2 (af°+Bf %, lac|* + |Bi|* = 1V, are elements of
IDPS(|4 }). A Hilbert space closure of the set of all linear
combinations of such equivalent product vectors,
IDPS(|#)) is a subspace of IDPS(|4 )). The CAR are irredu-
cibly represented on IDPS(|¢)) provided {&*, b }; are con-
structed from {a@*, a}; according to Ref. 14. Let us also ob-
serve'® that once we have any product vector |y)sIDPS(|4 ))
with the basic property [0, ;% ] |¥) = |¥)V, then the fol-
lowing two properties cannot be simultaneously satisfied: (1)
o7 |y) =0V, (2) |¥)#0 under an additional restriction (3)
|4 }£|0), where |0} is a Fock state in H, and |4 } is a coherent
product state. Consequently, there exists a unitary inequiva-
lence of the CCR algebra representations associated with
IDPS(|4 ), IDPS(|A '), where |4 }£|4 ') implies a unitary ine-
quivalence of the related CAR algebra representations in
IDPS,(|#)), IDPS.(|¢')), respectively. Let us here empha-
size that a particular form of the boson transformation pa-
rameter for a concrete field theory model follows from its
equations of motion. This severe restriction may violate, and
in general it does, the condition (2} of the Theorem of Section
2. In this case the bosonic semiclassic (i.e., the CCR repre-
sentation based on the coherent product state) prevents us
from having represented the CAR on the appropriate do-
main. The “semiclassical Hilbert space” allows at most a lo-
cal representation of the CAR on a subspace,"” i.e., with a
property [b;, b*]. |y) = |y) for a finite, though arbitrarily
large, number of modes, |y) belonging to this subspace. No-
tice that by defining an arbitrary polynomial W ,(b*, b)in
terms of “bosonized” Fermi generators {b *, b };, (/) being
a finite set of indices, we arrive at the following definition of
locally Fermi, but globally coherent (Bose) quantum states:

A )sr =14}, =W, (b* b)|A). (3.1)
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One can easily verify that on |y),, the CAR hold true for all
Je(Jj), but not for j¢( j), albeit [b,, b *], = O for all i#/; com-
pare, e.g., Ref. 17. Suppose now that the coherent product
state |4 ) obeys the restrictions of the theorem of Sec. 2. Then,
the semiclassical Hilbert space IDPS (|2 ))does carry a Fermi
system on a subspace: the CCR algebra possesses the mani-
festly Fermi states in IDPS(|4 )); compare, e.g., also Ref. 21.
In this case, we can say that both fundamental free bosons
and fermions can exist in the same state space on an equal
Jooting. However, if the restrictions of the theorem are not
satisfied by |4 ), then the only fundamental free field that
remains is the Bose one. No fundamental free fermions are
allowed. In the case of interacting Fermi systems such a phe-
nomenon would correspond to a “‘confinement” of their fun-
damental free excitations (absence of asymptotic free
fermions).

Example I: Sine-Gordon versus massive Thirring model.

(1) Both the Mandelstam?? construction and the Orfani-
dis'? observations allow a bosonization of the massive Thir-
ring field in terms of the interacting sine-Gordon field under
appropriate constraints. Namely, we can symbolically write
an operator identity:

V=v (), =0, O-mi¥,=0 (2
so that according to the tree approximation scheme, we
should have calculated a coherent state expectation value:

W@, ]:1A) =¥ @S] =¥(d), (33

where ¢ is a free classical field {the scalar neutral one) of Ref.
6, ¢,, in the above is the plane-wave solution of the Klein—
Gordon equation in 1 + 1 dimensions, and the normal or-
dering refers to its (plane-wave solution) creation-annihila-
tion generators. Classically,'? one knows that if @ = @ (¢ ) is
the sine-Gordon 1-soliton, then ¥ (¢ ) introduced according
to

¢ 1/2
¥V, =Vi= ia‘”z(% sin —23-) exp( — i®,/r),

P \12
W, =P = a”z(% sin T) expli®, /4), (3.4)

P, =P(d.),
satisfies the massive (mass 1) Thirring model equations of
motions, which are the classical (c-number) ones:
—i0,. ¥, =¥, -2¥, Y,
(3.5)
0¥, =1W¥ 29 "WV,

The underlying coherent 1-soliton states were con-
structed in Ref. 6, and their boson transformation param-
eters satisfy

1 dk =
3 | e Ak = [axtg i = o,
{3.6)
where ¢ (x) = ¢, (x) = exp my,x, y, = (@* + 1)/2a; hence
Condition {2) of the theorem of Sec. 2 is manifestly violated.
As a consequence no free fermion is allowed in the 1-soliton
Hilbert space IDPS (|4 ) for the sine-Gordon system.
{2) On the other hand, the spectral solution of the mas-
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sive Thirring model given in Ref. 23 proves that the funda-
mental free field, to be used in the Haag expansions of the
model, is the massive Dirac one in 1 4 1 dimensions. Its
creation and annihilation operators are required to satisfy
the CAR:

[bi(P), bﬂQ)]+ = 5,75([7 -4q),

[bi(P)’ bj(q)]+ =0= [b f(P); bf(q)]+y

and¥ =¥ (zzzi,,) = ¥ (b* b). Noticethatinl + 1dimensions
one can introduce both Bose and Fermi fields on the com-
mon Hilbert space domain, without bothering about any
spin-statistics problems (this is not the case in 1 + 3 dimen-
sions). A bosonization of {b*, b },_ , involves the corre-
sponding Bose degrees of freedom {a*, a};_,, (see Refs. 1
and 14) so that

b*=b*a*a), b=bla* a)

O=w(,)=Pb*b)=V¥@*a=w0,)
where UM is the massive vector field in 1 + 1 dimensions
with no Proca condition imposed. If the construction of
semiclassical domains IDPS(|4 )}, i.e., of coherent states |4 ),
respects the coexistence of fermions and bosons on a com-
mon domain, both ¢m and U are equally fundamental and
give rise to equivalent Haag series expansions of the quan-
tum fields on the subspace of IDPS(]4 )).

(3) The above picture breaks down if the coherent state
|4 ) does not respect restrictions of the theorem. Then the
CAR are no longer satisfied by 1//,,,, and an appropriate (and
then unique) fundamental free field is U , 1.€., the Bose one.
In particular, if we impose a Proca condition we arrive at
Case (1), wtlere the fundamental free field is a massive neu-
tral scalar ¢, , i.e., a boson again.

To summarize: The massive Thirring model always ad-
mits a bosonization in terms of U Nevertheless, the notion
of a free fundamental fermion can still be saved if coherent
states |4 ) obey the theorem. Otherwise, either U or ¢m plays
the role of fundamental field in the model. Consequently,
this special Fermi model admits in principle the three differ-
ent types of Haag expansions—in terms of ¢, ¢;,, or U,,,
depending on the choice of the state space in H. Let us once
more emphasize that an expansion in terms of ¢m can always
be rewritten as an equivalent expansion in terms of U This
is obviously a peculiarity of the 1 + 1 dimensional space-
time, where the spin-statistics theorem does not apply. The
inverse statement in general is not true, because once having
specified a domain for ¥(U, ) = ¥ in H, we may have pro-
hibited the existence of the CAR on it. Then, even having
started from an expansion g=y R ) one must realize that
1//,,, is no longer a free Fermi field in the conventional sense of
the word. It is worth mentioning at this point that quite a
variety of spinor modelsin 1 4+ 1 dimensions do not meet the
requirement of asymptotic completeness; the asymptotic
spinor field related to a given interacting spinor field does
not exist on the state space of the latter, see, e.g., Ref. 24, but
also Refs. 1 and 25-27, where the spinor field asymptotic in
1 + 3 dimensions is considered.

Example 2: QED in the infrared domain, or the gauge
Jfield transcription of the Dirac-photon system.

(3.7)
j=1,2

(3.8)
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The statement of Ref. 1, that the correspondence princi-
ple allowing us to relate the classical (c-number) and quan-
tum levels of spinor systems in 1 + 1 and 1 + 3 dimensions,
involves free Bose systems with unbounded-from-below
Hamiltonians. With any element of the spinor field algebra
in hand, upon bosonization we can calculate its coherent
state expectation value in the tree approximation, thus arriv-
ing at the corresponding semiclassical entity.

In 1 + 1 dimensions, the free (asymptotic) fermion can
in prinicple coexist with the subsidiary (background) boson
on the same state space in H. Then an interacting fermion can
have its free asymptotic Fermi partner. However, in 1 + 3
dimensions, the spin-statistics theorem must be taken into
account. By using a chain of heuristic arguments, we demon-
strated in Ref. 1 that a Dirac field, if weakly coupled to the
photon field (a nonlinear system of coupled Maxwell and
Dirac equations), allows a bosonization in terms of the pure
gauge field itself. We use here the Maxwell potential in the
Coulomb gauge

Y=y, )ovd,)= 1| ¢d,)|1) (3.9)
where |4 )is an appropriate coherent photon state, 4, beinga
solution of the sourceless Maxwell equations. A really strik-
ing peculiarity of (3.9) is that an interacting spin } field ap-
pears as a nonlinear and nonlocal excitation in the spin 1 free
field algebra. This observation can hardly be reconciled with
the traditional wisdom about the (perturbative) QED, and its
asymptotic problem solution.”>"?’ Namely, in the latter case
the interacting fields, both Bose and Fermi, have expansions
in terms of free Bose and Fermi fields via the Haag series.
The Haag series is written in terms of free Fermi and Bose
fields commuting among themselves, which is distinct from
the bosonization recipe, as discussed in (2.4)—{2.17). The as-
ymptotic infraparticle states of QED found in Ref. 27 re-
quire both free bosons and fermions to commute among each
other.

In the bosonized case, while using (2.5) and (2.9), we find

that, for example,
k—1

[y, a%] . _expnrz oto” (o7, ar] .,
7=
hence neither commutation nor anticommutation occurs.

On the other hand, the observation (3.9} is fully consis-
tent with the attempts of Righi and Venturi**=*° to construct
charged fermion fields from extended particlelike solutions
in their nonlinear approach to quantum electrodynamics.
An example of the fully bosonized interacting spinor field
which satisfies the CAR, and does not at all commute with
the electromagnetic field, is given in Ref. 29. An analogy
with the previously considered sine-Gordon/Thirring case
appears to be striking.

Obviously the field A is not free, but its Haag series do
apparently fit in our framework Hence a construction of the
appropriate coherent photon states is quite in order. In the
case of the relativistic field theory, we expect that the pres-
ence of free fermions should be forbidden in the fully boson-
ized Fermi system. Hence one should look for coherent
states which do not conflict with this theorem. We still can-
not propose a final solution to this problem; let us, however,
indicate that the coherent photon states invented by

(3.10)
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Chung?® in the conventional approach to the QED do not
allow the existence of free fermions on any subspace of the
semiclassical (photon) Hilbert space. The coherent states of
interest read (a single electron case)

|4), = U210}

=exp{(2_:).3_5 f p |k, plart

=12

~ Fk pla ] 22} o) (3.11)

d 3
(2 ko)l/ 2
where '
Fik,p) =2 6k, p) (.12
pk
and p, k, € are the four-vectors, p-k being the corresponding
scalar product formula. Here p stands for the four-momen-
tum of the electron to which the state |4 ), is assigned. The
function ¢ (k, p) equals 1 in the vicinity of £ = 0. By also
taking into account a factor 1/(2k,)'/%, k, = |k|, one easily
verifies that the coherent photon state |4 ), violates Condi-
tion (2) of the main theorem due to the singularity of
|F(k, p)| at k = 0. Let us mention that in analogy to |4 )., the
soliton states of the massive Thirring-sine-Gordon example
did exhibit a manifest parametrization |4 ) = |1 ), in terms of
the 1-soliton parameter a; compare, €.g., (3.6). Because the 1-
soliton total momentum reads k = 8m(|a|> — 1)/2|a|, |1),
provides us with a momentum parametrization as well.
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We verify the global Markov property in some class of strongly coupled exponential interactions
in two-dimensional space-time. To obtain this result we apply the Albeverio and Héegh-Krohn
strategy. The basic ingredients we use in order to employ this strategy are the Fortuin-Kastelyn—

Ginibre correlation inequalities.

PACS numbers: 11.10. — z, 02.50.Ga

I. INTRODUCTION

Let dy, be the free Euclidean field measure on S'(R ?),
1.e., the Gaussian with mean zero and covariance
(—A4 4+ mj) ™}, where A is the two-dimensional Laplacian
and m, > 0 is a free field mass. Let { U, ] be a local space-
time cutoff interaction, i.e, the map R > A—U, is an addi-
tive functional of the free, Euclidean field such that U,
€ L*(duy) and e~ "*e L Pldu,) for any 1<p < «. By 3, we
denote the o-algebras generated by the fields with support
within A. The measures considered in the Euclidean field
theory are of the form

du, (@)= [Ede ™ "]t e™ “ duyp), (1.1)
Eof= f o N=(( Do (1.2)

Of special interest are the infinite-volume limits of the quan-
tities like (1.1).

A measure du on S '(R?), being a Gibbs measure corre-
sponding to the multiplicative functional {e ™ Ua }, is any
measure which is locally absolutely continuous with respect
to duy and such that the associated conditional expectation
values of functions measurable within A with respect to the o
algebra X, coincides with those computed with du , instead
of du:

E f1=Ep(f10A)=Eu,(f1A). (1.3)
A Gibbs measure dp is pure iff there is no other Gibbs mea-
sure corresponding to the same multiplicative functional
which is absolutely continuous with respect to du.

We recall now what the global Markov property (GMP)
is. Let C'be any piecewise-C ' curve such that R\ C consists
of two components 2 © and 2 ~. Let £, and f_ be any
bounded functions of the field g, associated with the Gibbs
measure dy which are measurable in £2 * and {2 ~, respec-
tively. A Gibbs measure du has a global Markov property iff
for any C, f, f_ as above

Ef  f-IC)=E,(fL|C)EfIC) (1.4)
In many cases considered in the Euclidean field theory it is
known that the property (1.4) holds for every bounded,

piecewise C ! curve. It is called the local Markov property
(LMP).

*'Qn leave of absence from the Institute of Theoretical Physics, University
of Wroclaw, Poland. Supported by the Forschungsinstitut fiir Mathematik,
E. T. H. Ziirich.
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Only in the case of the weakly coupled trigonometric
interactions has the global Markov property been verified
recently by Albeverio and Héegh-Krohn (AHK).! The in-
genious paper by Albeverio and Héegh-Krohn includes,
among other interesting things, a general strategy for the
proof of GMP in a more general context than the sine-Gor-
don? model. Let us define

o= [ P imaintat, (1.5

where P %1 is the Poisson kernel associated with the follow-
ing Dirichlet problem:

(— 4 4 m 2 x) = 0 for xeR*\ 34,

(1.6)

¥ (x) = n(x) for xedA
for any dA which is piecewise C ' in R,

Now let du$ be a Gibbs measure 4 conditioned by
& = 7 on a given piecewise-C ' curve C in R Then we have
the following strategy for proof of GMP(AHK strategy):

If duS is a pure Gibbs measure for the interaction
U, (¢ + ¢5) for almost every 5 with respect to du and du ,
has the global Markov property then the Gibbs measure du
also has the global Markov property (see Ref. 1).

In this paper we employ this strategy for the class of
exponential interactions

Usp)=A4 L dx f dv(a)e*?:(x) , (1.7)

where A€R ., dv(a) is some bounded measure with support
on (0,a*), a* < 27'/?, and a* is sufficiently small. In this
paper we will not give the precise bound on a*.

The Gibbs measures du associated with (1.7) are the so-
called exponential interaction. They were discussed pre-
viously in Refs. 2—4. Our main result is the following
theorem:

Theorem 1.1: For o* sufficiently small the exponential
interactions defined by (1.7) have the global Markov proper-
ty.

Consequences of the GMP have been discussed in sev-
eral papers; see, e.g., Refs. 5-10. It can be easily shown that
these discussions are applicable to the models {1.7). We sum-
marize some standard consequences of Theorem 1.1.

Theorem 1.2: For a* sufficiently small the quantum
fields corresponding to the exponential interactions defined
by (1.7) have the following properties:

(i) They are canonical fields in the sense of Ref. 8.
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(ii) Time-zero fields generate the corresponding Hilbert
spaces.

(iii) Physical Hamiltonians corresponding to (1.7) are
the second order elliptic variational operators in the sense of
Ref. 7.

It is worth noticing that the AHK strategy of the proof
of GMP has been applied in Ref. 11 to alarge class of discrete
spin systems on a lattice in the region of coupling where the
Dobrushin uniqueness theorem can be applied. A similar
proof to that in Ref. 11 was given by Follmer for the pure
phases of the Ising model.'> A very attractive alternative
strategy to the AHK strategy for the proof of GMP has been
proposed and applied to some lattice spin systems and the
continuum Widom-Rowlinson model by Goldstein.'* Some
uniqueness results for the Dobrushin—-Lanford—Ruelle equa-
tions for the continuous spin systems have been established
in Refs. 14 and 15.

We close this Introduction with some comment on the
organization of this paper. Section 2 contains some prepara-
tions for the proof of GMP, which is given in Sec. 3. The rest
of this paper is of a technical character. In Sec. 4 we prove
Fortuin—Kastelyn—Ginibre (FKG) correlation inequalities
for the conditioned measures. Appendixes A and B contain
some technicalities necessary to complete the proof of the
crucial Theorem 2.4 in which we prove that the Gibbs mea-
sures corresponding to the conditioned exponential interac-
tions (1.7) are the pure Gibbs measures almost surely with
respect to du. Throughout this paper we always assume for
simplicity

dvla) = 8(a — a¥*).

2. Preparations for the proof of GMP

Our proofis modeled on an original paper by Albeverio
and Héegh-Krohn,' where they proved the global Markov
property (GMP) for the case of the weakly coupled trigono-
metric interactions. One of the basic ingredients of their
proof is that the following local boundness properties of the
solution of the Dirichlet problem (1.6) with the boundary
conditions 7 are chosen randomly from the space
{S'(R?),2,du}, where du is the infinite volume measure cor-
responding to the exponential interactions (1.7)and Zisa o
algebra generated by the field ¢ associated with dyu.

Proposition 2.1 (Local Boundness Properties = LBP)":

1. Let @ (x) be a field associated with the exponential
interactions (1.7). Let C and C, be two piecewise C ' curves in
R? and let

PS5 (x) = Y5 U%x) — YSuix) for xeC UC,,
where $/S(x) is the solutionof (— 4 + m})¥g(x) = 0inR*\C
and ¢ (x) = g(x) on C. Then there exists a constant a such

that for almost every @ with respect to du and xeR*\ C UC,
with d (x,C )» 1 we have, with respect to du

f [WSSx) Pdulp )<ae ~ ™), my <m, (2.1)

Moreover if A is a compact subset of R\ CqUC such that
d(A,C)»1, then we have

L|¢§'C°(x)|2dx <ge ~ mAAC), (2.2)
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2. Now let C,, be any fixed C ' curve and let C, be any
sequence of piecewise-C ' curves in R? which tends to infinity
in the sense that d (0,C,)— . Let A,, be any sequence of
bounded sets in R? such that A, CR*\CquC, ) and
dist{4,,,C, )~ as n— co. Then for any a < m, there is a
subsequence 7' such that

(@/2)d (A ;C,) cnuc c
e - ¢¢p0(

Sup|¢ X)I—"r0

for almost every ¢ w1th respect to du.

Let C° be an unbounded connected piecewise-C ! curve
such that R*\ C° consists of two components £2, and £2_.
Let A, be any sequence of bounded sets in R? which tends to
R? in the sense to be specified below. Let us define 94,

= dA, \ C°. We also assume that for any neN, d4,,nC ° con-
sists of at most a finite number of points. If fis ¥, measure-
ble then we have

ESY[ £1im) = f £+ 9SS ),
(2.3)

where
C%04

d:u’i'r]A ( )

=(Z {2

Xexp[ A J. dv(a)j :exp [ alg + rlzcw" )] :(x)dx]

CyudA,

A" ), (2.4)

where dug® 7‘"@ ) is the free field Gaussian measure with
Dirichlet boundary condition on C,udA, and

25577 = [ s ™(p) exp| — 4 [ dote

xL exp[alp + ¥ ] :(x)dx]. (2.5)

n

CoudA . .
Because @ and ¢, " are independent Gaussian processes
we can write

Cyu9A,,

exp [ alp + ¥ ]1{x) = € {x)explap ) (x),
(2.6)
where
explay )i (x)
=exp[ — (@*/2)K f;j,“ ] exp(azpc"“"‘ )(x), (2.7)
K S =(— 8 + md)~"xx) — (— Agpan, + m3) ™ '(xx),
(2.8)

where A is a Laplacian with Dirichlet boundary condition
on C. We summarize the crucial properties of the measure
dpi",’,‘?,’,‘"((p) in the following proposition.

Proposition 2.2:

1. For almost every 7 with respect to du, A, CR?
bounded, the measures dpi",‘,‘i’,’: are well defined probabilistic
measures on S'(R?).

2. For almost every 7 with respect to du the measures

Co» GA

dp; 'y A" (@) fulfill Fortuin-Kastelyn-Ginibre correlation
inequalltles
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We prove this proposition in Sec. 3. Now we note the
following important consequence of Proposition 2.2.

Corollary 2.3: 1. For almost every 7 with respect to du
the unique thermodynamic limit

w-lim dyf%‘,"f{': f,‘;, @) 29)
AR?

as a weak limit of measures exists.

2. For almost every % with respect to du, measures
dus’, have the exponential cluster property uniformly in A,
7, and C,.

Proof of Corollary 2.3:

adl. By applying the FKG correlation inequalities we
have that for f >0

0< f e Vdu i< f e Vdu§ g )

(by conditioning)

< f e*Vduyp),

(2.10)

Cos aA

and moreover fe®/ldu {24 is monotonically decreasing in

A.

ad2. Let us consider the A dependence of the truncated

two-point function of the measure du$s,

2 ([ oo tomusst
- J @ x)duGes -fcp( y)dﬂf::,‘,’f)
- f dzexpla)¥ 7% 2)(p (X (y)e™2) S22
+ f dziexpla ¥ S) iz)( (x);:e®i(z)) S0
XA@ (¥)S=2A
+ j dz:expla¥ &%) :(z)-(p ( y);:e°"(2)) o2

X A@x)) 53, (2.11)

By means of the Ginibre and FKG correlation inequalities
we have

(¢ X h:e°%:(2)) 5574 >0

(@ (x):e*(2)) 524 >0

(2.12)
(2.13)

Applying the integration by parts formula on function space
we have

(p )22
=—A f dziexpla¥ S29A):(2)S S40A(:e"%(z)) $27 <.
A
(2.14)
So ﬁnally we have
— (rp Xk (M) 22 <0 (2.15)

from whlch follows
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0< (@ (x)ip () 2 f @ (X0 ¥) it (@)

{by conditioning)

< f @ (x)p (PMtolg ).

We conclude that for almost every 7 with respect to du the
two-point moment of the measures du’;< clusters exponen-
tially fast with decay rate bounded from below by the free
field mass m,,. This cluster property holds uniformly in
A,CyA,m, for almost every 5 with respect to du. Another
application of Proposition 2.2 and the Lebowitz-Simon'¢
theorem concludes the proof of statement 2. Q.E.D.

The crucial step in the verification of the GMP is the
following theorem.

(2.16)

Theorem 2.4;: Almost surely with respect to du

w- llm d,uc"""(q))—w llm ause, @) (2.17)

Proof: Let us take without loss of generality S (R?) € f
>0 with compact support. Let us consider the following
interpolation between du$5’*(p) and dus’, (). Let A, be
some sequence of regular sets in R? such that A, 1R? by in-
clusion. Then we define

duioarw) = [Z20°]
Xexp[ —A J :€°%:(x):
A

xXexp[a¥ s(x) + o1 ]:(x)]
X g™ (p) (2.18)
for 0€[0,1] and

Z5To f P (mexp[ _a f ()

:exp[a(!l’,f“ﬁ-aWZ)]:(x)]. (2.19)
Here we are using the following notation:
expla¥ 5> + ao¥;):(x) = :expla¥ S:(x): ™% 7(x),
(2.20)
where
ac¥? a 02 Cod4 n
2”7 =expl — ——K(“, "lexp[ao¥;(x)], (2.21)
W (x)="¥ > ¥(x) — W Soix), (2.22)
K= [ dugo 195710
— KSR _ g dz, | dz,PCM
CoudA, Co
XP(xzz)Sg(zl’z2) + K&x)’
(2.23)
K (xx)=(—4 +mj)"'xx) — (— Ac + md)~'(x.x).
(2.24)

With this notation we have the fundamental theorem of
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calculus
C, aA T =1 C(,aA o=0
fe¢‘f)d#1 Ay — few(f)d# Ao)

1 A n
= -4 J. dx f do( — 02K 3" + a® i (x))e"" 7(x)
A, o

XF S fx), (2.25)
where we have defined
F5moan fix) = (€967 (x)) o0, (2.26)

Now let Y,, be another sequence of sets in R? such that Y,
tR?as n—w, Y, CA,, lim,  _d(Y,,dA,) = «. Further-
more, we will impose some other geometrical conditions on
Y, which will become clear by consideration of Appendix A.
Let us now define

1
J o, =a’ J; dx .L do oK (i‘f’j" % 7:(x): expla¥ 5°):(x)
Xt (2.27)

ngnEaZL . dxf do oK S explac® S):{x)e™ " (x)
AN

XF e, (2.28)
i
J) ., =a L dx J{; do a:exp(aW,C,":(x)W:'I(x);e“""’”:(x)
X s (2.29)

1
Jan=a J dx f do o:explaW S):(x)¥ 7 (x):e*¥ 7:(x)
ANY, 0

CopdA .0
XF e - (2.30)
In the four lemmas contained in Appendix A we prove that
almost surely with respect to du there exists a subsequence
{n'} C{n} such that
lim J;. !

n'\y

=0 fori=1234. (2.31)

To control lim,, . J;,, =0 fori=1,3 we use LBP sum-
marized in Proposition 2.1 and to ensure lim,,_, . J ., for

i = 2,4 we use the uniform exponential cluster property giv-
en by Corollary 2.3. So we have proved that

Co0A 0 =
w-lim dp; 7

AL R?

1 . Cp,0A o0 =0
= w-lim du ;% 4"
A, R? "

By the 2¢ argument it remains only to prove

wllmd,u,l,,,1 —whmd,u/l,,,1 ) (2.32)

A, /R?

i.e., the independence of the half-Dirichlet boundary condi-
tion in the thermodynamic limit of the conditioned measure
d;tfj’;,f’,,j". Appendix B contains a detailed proof of this miss-
ing statement. Q.E.D.

Let us note finally the following consequence of the proof of
Theorem 2.4.

Corollary 2.5: Exponential interactions corresponding
to the interactions (1.7) are pure Gibbs measures.

Remark: Using the kind of arguments (essentially due
to Frohlich and Simon'” given in Appendix B we are able to
prove the independence of certain classical boundary condi-
tions for a class of exponential interactions described by
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U,p) =,1JA dx J dvla):e®¥:(x), (2.33)

where now dv(a) is an even, bounded measure supported on
(— 2/Jm,2/J7). However, we are unable to extend Corol-
lary 2.5 to this case, because conditioning destroys the cru-
cial Griffiths—Kelly—Sherman correlation inequalities.

3. PROOF OF GMP

This section is included only for the reader’s conve-
nience. Having proven Theorem 2.4 we follow exactly the
original arguments given by Albeverio and Hdegh-Krohn.

Proofof Theorem 1.1: From the definition of du:, , we
see that it depends on 7 only through the field gb,c,"(x), which
be definition is 2 measurable. Hence the functions

n_,Jeqa«f)d#cnaA(‘p) (3.1)
are all 2 measurable. On the other hand we have

J‘e‘p(f)dﬂcoa/\ T = 1(¢7)

= exp[ — WSS ]exp[ — W5 (N]E S [ ))
(by the local Markov property) (3.2)
=exp[ — ¥ (f)]exp[ — ¥ ()]

XE W ep (),

assuming # is so large that supp fC A, . But the conditional
expectation E C"“Rl\""[-] is by definition a martingale in 7 so
by the martingale convergence theorem we have that
lim,  E f"unz\"”[-] {7n) exists for almost every 7 with respect
to du. Hence it follows that lim,,_. _ fe?'/'du % A=Yy
converges for almost all 9. In particular we obtam by the
martingale convergence theorem that it is enough to investi-
gate the limitlim,____ fe®!/ ’d,uc A = '{ ) by choosing sub-

sequence as we did in Theorem 2. 4. This limit is equal to
E; X [exp[lp — 590 (),

where 2 & =n[Zcureaa, |-
n

Taking into account that

E; % [exp{l@ — ¢SV ) )
=exp[ ¥ ()] E . “le” (), (3.3)

we conclude that E fa[e""f '] is X0 measurable as a func-
tion of 7. This enables us to prove that for any Fe L =
[S'(R?),3,du), E*%[F] is Z.. measurable. By Theorem
2.4 we have that the o algebra ““at infinity”’ corresponding to
the Gibbs measure associated with the interaction
U, (@ + ¥5°) is trivial for almost every % with respect to du.
LetR*\C°®= 1,02 _,wheref2, areconnected com-
ponents of the set R2\ C?, and let F,, and F_ be bounded
functions which are 3, N3, and X, N2, , respectively,
measurable. By Theorem 2.4 and the discussion above we
have then that for almost every 7 with respect to du
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EZ[F - F_](n)

= lim ES M [FL - F_1(n)

n'—so0

(by Theorem 2.4)

= lim E " [F,- F_](n)

n'—cw

{by LMP)
lim E S [F, |(n)E S [F_ ()
!im E CUR*NA, [F+ ]W)E CouR*\ A, [F_ ](77)

B (by Theorem 2.4)

il

E2[F )mE 2[F_1(n)

which is exactly the GMP. Q.E.D.

4. FKG CORRELATION INEQUALITIES

In this section we prove Proposition 2.2. Our idea is the
following. First we introduce some auxiliary regularization
for the Dirichlet problem (1.6} in such a way that the lattice
approximation for the regularized conditioned measure is
convergent. For this approximation we check immediately
the FKG condition by applying the Avron-Herbst-Simon
criterium. Then we prove that for almost every 7 with re-
spect to du this auxiliary regularization can be removed.

Let y.€b(R?), y. >0, be an arbitrary sequence weakly
regularizing the original problem (1.6); i.e., instead of (1.6)
we consider the following two-sided Dirichlet problem. Let
Cbeany piecewise C ' curvein R>. We define 5_asasolution
of

x&C,

{( —4 +m3)¥7 (x)=0,
(4.1)

v (x)=n.(x)=(n*y.x)
where w — lim, oy, = 8. This is a well-posed Dirichlet
problem because by the fundamental principle 7, (x)
€C *(R?). Let us consider the following measure:

d/‘inpA p)= [Zf,ngA ] -

Xexp[ —A L dx:e"“’:(x):exp(aWgt):(x)]- duS(@),

xeC,

4.2)
where now
:expa¥ 5 :(x) = exp[ — (@*/2)K {(x,x)]exp [ans(x)] ,(4.3)
K {xex) = (e ® xe)*K OYxx). (4.4)

Let us note the following simple fact.
Lemma 4.1: (a) For every 7€ S '(R?), A CR? bounded,

:expagb,i «eLA).
(b) For almost every 5 with respect to du, A C R? bound-
ed

*Y(x)e L (A ).
Proof:

(a) This is trivial.
(b) We have

J. d/z(ﬂ)llzeaW$¢(x)‘|L )

= [ ax [ dutrye=ix
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[by positivity of P and FKG inequalities for dyu(7)],

< [ ax [ dutmeitn
(4.5)

c
— fdx e(a’/Z)K 1x,xi< o
A

for small a because local singularities of K € are of logarith-
mic type. Q.E.D.

Remark: From part (b) of this lemma we get immediate-
ly the proof of statement 1 of Proposition 2.2. To see this we
apply the Jensen inequality

VA >exp[ —A J :ew’c':e("z/z)’(‘iu‘(’m]. (4.6)
A

For the proof of convergence of the lattice approximation for
the measure duy, , we refer to Refs. 3 and 4. Using the
Avron-Herbst-Simon criterion we immediately conclude
that the FKG correlation inequalities for duf, , hold. Now
we prove

Theorem 4.2: For almost every 5 with respect to du
w-limdus, , =dui, 4
N0

Proof: Let us consider the Laplace transform of the
measure du{, 4

<e¢(f))im A= e‘p(f)d:uf.ns Alg) (4.7)

We take f >0 without loss of generality. By FKG correlation
inequalities

(@IS, < f duS(g e\ (4.8)

Hence by the Lebesgue dominated convergence theorem

nmfdumxew’)f,,, A
AN A
< f du(mlim(e*)S,, 4
N0

< J dulig e (4.9)

Therefore almost surely with respect to du the limit lim, o
(€)1, 4 exists. Now we show that this limit is equal to
(e?' )5, 4 for almost every 7 with respect to du. For this is
enough to prove (almost surely with respect to du)

(i) lim | e*Vexp[ — Uylp + ¥ <) ]dusle)

€0

(4.10)

= [ertne= e *ugig)
and
(4.11)

Step (ii) follows immediately from Lemma 4.1 and the Jensen
inequality. We proceed to prove step (i).

(ii) Zg, 4 >0 uniformly ine.

Roman Gielerak 351



By application of the Duhamel formula it follows that it
is enough to show that

lim | du(n)
eNO0

X [ [Uslp+#5)— Udlp + 51 duip) =0
(4.12)

With help of the FKG correlation inequalities we have
[ aut [ ausio)[Uaip + )

—A f f dx dy f i) ) (x)e
{( y)expla¥ 5 ):(x):expla ¥ <))

<’ [ [ drar [ausiorerrishernis
X f duq(n):expla¥ 5 ):(x):expla¥ ) y).

(4.13)

By simple Gaussian computation and application of the
dominated convergence theorem we have

tim [ dutn) [ dusle)0%ip + 500

— [ dutn) [ dusio 1030 + ¥ 50
(4.14)

provided « is sufficiently small. Q.E.D.

Extension to the case of U, (¢ + 95, + o}, )is
straightforward. So we have proved that du$'2%, is a weak
limit of a measure for which the FKG correlation inequal-
ities hold. Therefore the limiting measure also obeys these
inequalities. This ends the proof of Theorem 4.2 and Propo-

sition 2.2. Q.E.D.
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APPENDIX A

Without loss of generality we always assume f >0. Let
Y, and A, be a set in R? as explained in the course of the
proof of Theorem 2. {n'} below always denotes the subse-
quence mentioned in Proposition 2.1.

Lemma A.1: For almost every i with respect to du

limJ,, =0.

n'—ow

Proof: By FKG correlation inequalities we have
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CodA s
|F/1.7],A,,. a(frx)l
<{eP e i (x)) goiinT

CodA Cord A
+ (e"’(f))l,f,,/:,.. o't € X)) A ’

<<e¢(f):ea¢:(x)>o + (e'f)¢)0<:ea¢3(x)>o
= (ewf)>o[eaf°s<€(x; + 1]’

[ 1k lduto

1
<a’ f dx f do a(e”), [eaf‘Sétx) +1 ]
Y, 0

Co,04,,

XK o f du(n):explac¥ 7):(x):expla¥ $):(x).
By FKG,

! 2,
<a® f dx f do U(e""f’)o[e"f‘sdx) 1 ]
Yy ([}

CodA,

XK oo " f du(n):explac ¥ 7 ):(x):expla¥ 5):(x).

By LBP for sufficiently large n’
<ol +€,) JY dx J: do o(e""f’)o[e“f.s‘z’(x' +1]
XK @ f dyso(n)-expla¥ 7):(x)
<2l +¢,) J; dx J: do a(e""f’)o[eaf‘sg(x) +1]
XK f;,’ﬁz"'ex;;[ - (@®/2K “(x,x)].

It remains to use the exponential decay of K f“_’ﬁ"" asA, T

in order to finish the proof that lim,,_, _ fdu(nV )., = 0.
Q.ED.
Lemma A.2: For almost every 7 with respect to du

limJ2, =0.

n—so0

Proof: Here we use the uniform exponential cluster
property proved in Corollary 2.3,

f du(mJ % |

1 -
CodA,; —m, ALY,
QaZJ doaJ. dxK (x,x)e ~ o (PRS- AN Yo
o AN,

XJ- du(n):expla ¥ 5):(x):explac ¥ 7 ):{x).
By FKG
<e — mydist(suppf,A,-\ Y,,'iaz
1 —
> j doo| dx K23 exp[{ — a®/2)K “(x,x)]
0
Xe — (a?d?/2)K n(x,x)exp[ _+_ (a20,2/2)K C“(x,x)] .
If A,.\Y, — o sufficiently fast then

lim Jd,u (qM 2., =0.

n'—w

Q.ED.
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Lemma A.3: For almost every 5 with respect to du(7)
,.hf.n Jy, =0

Proof: Now we use LBP. For sufficiently large n’ we
have

1
IJi»,,,l<af dxf do o(l + ¢,)
Y, o

Xe ™ ISt Y,y A )|F Sofar ! fix)|.

By FKG
l .
<a(l + e,,.)f dx J do ge ™ (/A YurdAr)
Y, 0

X (e g[8 1]

Because [ SHE g ] is locally L 7 integrable ( p> 1) we
conclude

limJ3, =0

for almost every 7 with respect to du.
Lemma A.4: For almost every % with respect to du

; 4
11m J"'ﬂ) =0.
n—cx

Proof: (by uniform exponential cluster property)
f du(m|J 5. |

1
<a J‘ dO' o J- dX e~ mydist(suppf,A,\Y,)
(] Ap\Y,

X f duln):expla ¥ $):(x)| ¥ 7 (x)|:explxo ¥ ; ){x).

Now we use Cauchy-Schwartz’s inequality
J- dp(n):expla¥ $):(x)| ¥ 7 (x)|:explac ¥ 7 ):(x)

<[ f dy(q)(:exp{awgo):(x):exp(aaw;’):(x))2]

x| [ a7
(by FKG)
172
<[ [ dumiezien|
X [ f duo(n)(zexp(awsﬂ):(x)ﬂ:e“"”:(x»’] :

Both

[ f duo(n)(:expla¥ 5°): (x))2] 172

and

IEXGE.

are locally L ? integrable ( p> 1) as can be shown by simple
Gaussian computations. This enables us to conclude that
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lim | du(m)s.,| = 0.

n'—co

if dist(suppf, A4, \ Y, }—« sufficiently fast. Q.E.D.

APPENDIX B
Theorem B.1: For almost every 7 with respect to du

welim du () = duSip),
AptR

where du5° is the measure du conditioned by 7 on the given
piecewise C ' curve C,C R? and 4,, is a subsequence as in
Appendix A.

Proof: Let us consider the following identity:

f e duSdi ()

1
d
= | do-ZerViguGoine, BI
[ trZerraugs (B
where
dsio=12 5207
Xexp( — A4 f dx:°%:(x):expla¥ $):(x) dus*** (g )(B2)
A

and du§™* is a Gaussian measure with mean zero and co-
variance ( — A, 54 + m3)~'(x.y). Using well-known formu-

las we have

d .
L [erraugsiteip)

1 5 ooe 5
=7fdedy5¢(X)K ) Sg (¥)

Xf e Ndugait(p).

(B3)

Taking the functional derivatives in the last formula we get

d .
L [evraugieip)

= — Aa? fdx K 553 expla® So)i(x)
X (:e*®i(x)e?! ) fnone
+ A2a? f f K 5ot expla W So):(x)-expla¥ S y)
X (:"%:(x):e*%( p);e® ) o0t odx dy
+ (e g [ [ roar (oK gopas ay

_z.afjng;;m

X (:ea“’:(x)ep(f’)i*’;;,’;‘"a
X f(yyexpla¥ $):(x)dx dy

—A-xffdxdyl(&f;’f"

:expla? 5°):( y)
X (€% y)e® 1) {2242, f(x). (B4)

We are going to show that for almost every  with respect to
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dy all the terms which appear in the right-hand side of (B4)
give vanishing contribution to the limit A = R2. We start
from the first term:

Lemma B. 1: For almost every n with respect to du,
uniformly in o

lim f [K &8 — K “{x,x)] :expla¥ $):(x)

AR?
X (:eawz(x);ewf))iofl’}"’ =0. {B3)

Proof: Let us choose £ C R? such that supp fC = and
Z'CA. Then we have

[ dutn [ x5

expla® $):(x){ %" {x};e? 1) o0t vdx
fd#m)f (K& —K C(x,x)]

expla ¥ $9):(x)(:e*P:{x);e™ ) Sootdix

+ [aun | prE

rexpla ¥ S9:{x) (2= (x)e? V) Sa22dx. (B6)

By FKG correlation inequalities we have for every
bounded =

f du(n) f explat S){x)e{x)en ) o < o, (BT)

from which it follows, using the exponential decay of K -4
(x,x) — K “°{(x,x), that

— K “(x,x)]

— K xx)]

tim [ dutn) | 1K 04 r) — K 450

iexpla ¥ 5):(x)(:e*®:(x);e? ) (201dx = 0. (B8)

On the other hand, by using the exponential decay of
(:e*%:(x);e® /) £204-7 we have

J du(n) [K 24 (xx) — K
ANE
(:e:(x);e? ) (500 7dx

<o~ misHEANE) J duln)

“lx,x)] -expla ¥ 7)(x)

Xf _ [K €94 (x,x) — K S(x,x)]:expla ¥ $):(x)

<o~ mAREANE) f [K €4 (x,x) — K (x,x)]dx.

ANE

(B9)
In the last step we have again used FKG correlation inequal-
ities. Q.E.D.

Lemma B.2: For almost every 7 with respect to du,
uniformly in o

lim J J dx dy[ K 4 {x,y) —
A/R? Ja Ja
:expla ¥ s°):(x);expla ¥ &o):( )
X (:e%P:{x):e2%:{ p)e® V) Suite = 0. (B10)
Proof: Let ZC R? be as in Lemma B.1. Then we have

K “{x,3)]
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JJ =L L

gL

(B11)
By FKG correlation inequalities and exponential decay of
[K €994 _ K ©](x,y) we have
lim f J dx dy|K “9% (x,p) — K “(x,p)|
A/R Jz =z

| dutmrexpiaw Sin
< cexpla® S )| e x):e™( yle? M Gadt

< lim f f dx dy|K 4 (x.y) — K {x,p)|
ASR Sz )z

[ dutmrexplaw i

X :expla ¥ )(y)((:e"%:(x):e*:( y)) Ty *(eP ) Zoa

+ ((:e“"’:{x):e"‘"’:(y)e""f’)%;f,’,"")

< lim J J dx dy|K 9 (x,y) — K “(x,)| (B12)
AR? zJ=

. f du(n)-expla? 5):(x)

X iexpla® S p)((:e2P:(x):e®{ y)e® ),
+ (:e%%:(x):e"%:(y)) o (€™ ) )

< lim J J dx dy|K <% (x,y) — K “(x,p)|
AR o Uz

X [ duolyerpia® $ix

:expla ¥ &) y)({:e°%:(x):e°%:( y)e? ),
+ (:e%?:(x):e®®:(¥)) o (e ) g)

= lim ffdxdy
AR Jz U=z

X |K 4 (x,p) — K “(x.p)lexp[(a®/2)K “(x.y)]

X ({:e°®:(x):e°%:( y)e® ),

+ (:°%:(x):%2:( ¥)) (e )).
Logarithmic singularities of the functions which appear in
the last expression and exponential decay of K ©-94
(x.5) — K (x,y) enables us to conclude that the limit A tR?
gives contribution zero for « sufficiently small.

The integral §, . = f 4 . =+ is then controlled in a similar

fashion using exponential decay of correlations. It remains

to analyze the integrals § , . =fz--and fz§, .z . Let
ZuA \(EuE) = A \Z. Then we can write

j ~[dx dy- = f de dy- + fdx dy--.
ANE VE =z, J= ANEuE)IT

Now we proceed in the same way as before, using the expo-
nential decay on § - fzdx dy-- of [K “* — K ] and uni-
form exponential clustering in order to control the integral
Sazus S=dx dy-. QED.
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Lemma B.3: For almost every 7 with respect to du,
uniformly in o

lim f f [K 594 (x,5) — K S(x,p)] £ (x):expla® S y)

A R?

X (:®®:{x)e® ) (2247 = 0.

(B13)

Proof: As before we use positiveness of :exp(ay?):(x) in
order to show that the L '(du) norm of the expression under
the lim, r: goes to zero by divisions of integrations, expo-
nential decay of K “***(x,y) — K “(x,y), and the local inte-
grability property of f (x):exp(ays°):( y)(:e**:(x)e" /),
Q.E.D.

Remark: Similar arguments for the proof of indepen-
dence of the pure states for some classical boundary condi-
tions in the pure phases of P (@ ), theories have been used
before by Frohlich and Simon."”
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Muitiple fiber bundles and gauge theories of higher order
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We investigate a theory of gauge fields over multiple bundles, i.e., principal bundles constructed
over base spaces which are principal bundles themselves. The Higgs—Kibble field is introduced

geometrically, together with the quartic potential. Results of Forgics and Manton are interpreted
in this scheme. We also discuss a spherically symmetric ansatz which yields the quartic potential

introduced by ‘t Hooft.
PACS numbers: 11.10.Np, 11.30.Ly

1. INTRODUCTION AND NOTATIONS

Let ¥'be a (pseudo)-Riemannian manifold of dimension
n, with the metric form g, ; let G be a compact and semisim-
ple Lie group of dimension N. We denote by g the Killing—
Cartan invariant metric formon G. Let P (V,G ) be a principal
fiber bundle over the base space ¥ with the structure group
G. We denote by 4 a left-invariant 1-form over P (V,G ), with
values in the Lie algebra .« ; of G; the 1-form A defines a
connection in P(V,G ). Let T,P(V,G ) denote a tangent space
to P(V,G) at a point peP (V,G ); by TP (V,G )

= [U,ep T, P(V,G )] we denote the tanget bundle over

P(V,G).LetXeTP (V,G );thevectorfield Xis called horizontal
if4(X)=0. Any XeTP (V,G) can be uniquely decomposed
into the horizontal and vertical parts:

X=horX +verX (1
such that
AverX)=A4(X), A(horX)=0. 2)

Let Obe a p-form over P (V,G ); let d be its exterior differ-
ential. The covariant differential of & is defined as

DO (X, X,,...X,, ) =df(hor X,,.,hor X, , ).  (3)

The covariant differential of the connection 1-form 4 is
called curvature and denoted by F

F=DA. (4)
The Maurer—Cartan identity enables us to write
FX,Y)=DAX,Y)=dA(X,Y)+ A4 (X)A(Y)]. (5)

The bracket means the skew-symmetric product in the Lie
algebra .7 ;.

The existence of the canonical projection 7: P (V,G )=V
and of the connection form 4: TP (V,G }—« ; enables us to
construct a unique metric form on P (V,G):
for any X,Y, and TP (G,V),

gr X, Y)=gyldmX)dmY)) + g4 (X)A(Y).  (6)
The principal fiber bundle P (¥,G ) with the connection 4 now
becomes a Riemannian (or pseudo-Riemannian) manifold;
we denote it by P(V,G,4,g;). [There is another possible
choice for defining a canonical metric on P(¥,G ), namely
gr = &y — 8. For physical reasons we do not consider this
case, because the resulting signature can no longer imply an
interpretation in terms of one “temporal” direction and all
the remaining directions as “spatial” ones.]

356 J. Math, Phys. 24 (2), February 1983

0022-2488/83/020356-05$02.50

Let us now give some explicit expressions in local co-
ordinates. We recall that dim V' = n, dim G = N; let
i,j=12,.,nab,. =12,..,N;and a,8,... = 1,2,.,N +n.
Symbolically we denote @ = (j,a). Consider an open set
UC P(V,G)isomorphic with the direct product of an open set
m{U)C ¥V and the group G:

U~w{U)XG.

We can always choose a coordinate system in U such that for
peU, p = {p*} = (x'£°}, where the coordinates x’ corre-
spond to the points 7{p) = x em{U ), whereas the coordinates
£ “ denote an element of G. We choose a basis L, in the Lie
algebra &7 ; such that

[Lo,Ly] =CoL,, (7)
¢. being the structure constants of G. In the same local
coordinates the Killing—Cartan metric tensor is equal to
8°ab = szngb’ (8)
whereas the metric tensor g, has the components g,,.

Now we can decompose the connection 1-form and the
curvature 2-form

A=A°L,=A3Ldpf =(AJdx + A}dE)L,,  (9)

F=F°L, =Fisldp*NdpP)L,. (10)
By definition F does vanish when applied to vertical vectors;
therefore, the components F¢, and Fj, = — Fj, vanish
identically

3,A% —8,A% +C4L A4, =0, (11)

JAL —3,A]+CHA%} =0, {12)

and the only nonvanishing components of the curvature
form F are

F§=0,A]—347+CyA34%. (13)
The scalar product can be defined for any two forms of the

same degree. We denote by (F%F®), the scalar product de-
fined by

(FeF®),, =8'8“FiF. (14)

Finally, for any two elements of .« ; we denote by Tr(P,Q)
the expression

Tre(P.Q) =8, P°Q° (15)
where P = P°L,, Q = Q°L,. Therefore
Trg(FF )y, = 888" FiF 1. (16)
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We close this paragraph by expressing the Laplace-Beltrami
operator on the bundle P(V,G,4;g,) induced by the metric

gp: If in local coordinates g, has the components g5, then
for a scalar function on P we have

@6+ 6d)f=8"V Y, f, (17
where V, is the covariant derivative with respect to the

Christoffel connection of g,; for a 1-form ¢ = 4, dp® we
have

[(d6+6d)p ],
=ga6[va Vﬁ¢r -V, vr¢ﬂ + Vrva¢ﬁ]
=g*[V, Vs, + R 3 N (18)

R, being the Riemannian curvature tensor of the Chris-
toffel connection induced by g,.

2. DEVELOPMENTS

With the notations established as above we can formu-
late some useful results.

Theorem 1: Let P(V,G,A4;g,) be a principal fiber bundle
over a Riemannian manifold ¥ with the semisimple and
compact structure group G, endowed with a connection 4
and the canonical metric g, defined by (6). The scalar curva-
ture R, is a sum of the following three terms:

Rp =Ry, —T1g(FF),, + 185, (19)

where g2 = g,,8°° = N is the square of the Killing—Cartan
metric of the structure group G. R, is the scalar curvature of
the base manifold V; the second term is identified with the
Lagrangian of the gauge field.

Proof: By calculus. The first formulation of this result
can be found in Ref. 1, though with some errors in calcula-
tions. For correct proofs, see later papers.>?

Corollary 1.1: Consider a structure group G which is a
direct product of several compact and semisimple Lie
groups, G = G, X G, XX G,, and construct a principal fi-
ber bundle Pas before: P (V,G, X G, X -G, 4;gp). The scalar
curvature of the canonical metric g, is then the sum of the
following terms:

(L] 2) 2
R, =R, — gTrG,(F,F)g — iTrg, (F,F)
v 8y

(k) (k)
— o — Tt (F,F ), + 12 +4gh + -+ igh.. (20)

@
The notations are obvious; F means the projection of the

curvature form F onto the Lie algebra .« g,
Proof: Obvious, because

A=A 0l 500 L, (21)

Example 1: Let V = M, the Minkowskian space-time;
consider the bundle P (M,, SU(2) X U(1)). Then

Rp= — abgc'agole?ijl; - igwgleikF}I + const, (22)
where a,b = 1,2,3; ¢, =6,,, 8’ =diag(—, +,+,+),

F3;=3,Bf—d,B}+C;.BB; (23)
is the field tensor of the SU(2) Yang-Mills field, whereas

F; =3,4; — 9,4, (24)
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is the field tensor of the electromagnetic (abelian) field.

Theorem 2: Consider the principal fiber bundle
P(V,G,A;g,) with a connection 4 and the canonical metric
gp-Denoteby A, = (d6 + 8d ), the Laplace-Beltrami oper-
ator on P induced by the metric g,. Then

(a) Let f'be a scalar function on P (¥,G,4;gp). Then

APf=g°ijgi‘@jf+§abLaLbf; (25)
where
D,f=8,f- AL, f, (26)

L, being the basis of the generators of & ; and g*°L, L, is the
Casimir operator of & ;.

(b) Let ¢ be a 1-form over P (V,G,4;g,); by means of the
connection A and metric g, it can be decomposed into hori-
zontal and vertical parts, which in local coordinates will be
denoted by (W;,8,). If the form ¢ satisfies the covariance
conditions

L,¢, =Coda (27)
L W, =0, (28)

then the equation 4,¢ = 0 is equivalent to the following
system:

§'D.D ;4. — 186 Fiul W, — 3, W) =0,  (29)

gcljaiaj W, + gw-@j(F?k¢b) =0, (30)
where
‘@j¢c =Jd;é. _A},C:c¢d' (31)
(c) The equation
4,4 =g,8"A=NA (32)
{(N=dim G)
is equivalent to the Yang-Mills field equations
§'D F=§'0,F;, + Ci.AFj)=0. (33)

Proof: By calculus, which is quite cumbersome. The
best way to simplify it is to use the an-holonomic system of
coordinates on P (V, G, 4; gp) in which g, is diagonal, and
the only nonvanishing components of the Christoffel con-
nection are

s =AiC;, I'y=rj, =§"§,F]

jm»
Ij= —\Fj. (34)

The details may be found in other papers.*® The case when
the principal bundle is itself a Lie groupand V=P /Gisa
homogeneous space is discussed in Ref. 6.

Corollary 2.1: If the structure group is a product of sev-
eral compact semisimple Lie groups, G = G; X G, XX G,,
then for a function fon P (V,G, X - X Gy,4; gp)

Apf=fj~@i'@jf+ C1f+ C2f+ "°+Ck.f; (35)

where C; is the Casimir operator of the group G;.

Proof. Obvious, as &g = &g, & LG, @0 L g,

We see that with this formalism we can obtain the non-
linear equations by applying formally linear operations as
4. Now let us proceed to further generalization.
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3. MULTIPLE FIBER BUNDLES

The above construction can be repeated ad infinitum if
we replace the original Riemannian manifold ¥ by a princi-
pal fiber bundle endowed with a connection and the corre-
sponding canonical metric gp. In fact, when we consider vec-
tor fields or forms over P (V,G ), we are already working in the
associate fiber bundie of frames, or a tangent bundle, over
P(V,G). What we shall investigate now is the case when the
bundle over P(¥,G) is also a principal fiber bundle.

Symbolically, we write

PyP(V,G\),G), (36)

i.e., a principal fiber bundle P, with the structure group G,
over a principal fiber bundle P, with the structure group G,
over a Riemannian space V. We call this manifold a double
(principal ) fiber bundle over V with first structure group G,
and second structure group G,. [An interesting question
arises immediately: under which conditions the bundle
P,(P,(V,G,),G,) has the structure of a principal fiber bundle
over ¥ with some structural group H ? (dim H = dim G,

+ dim G,). We know the answer only for the trivial case
(V' X G )X G, =V X (G, X G,); the same is probably true for
any P(V,G,) with V simply connected.]

Theorem 1 can be applied to the double fiber bundle
(36), giving the following,.

Corollary 1.2: Consider a double principal fiber bundle
Py(P\(V,G;4,,8p, ), G1;4,;8p,) With the two connections 4,
and A,, and two canonical metrics g, on P, and g, on P,.
The scalar curvature of the metric g, decomposes as fol-
lows:

2) 2)
R, =R, —iTrG)(F,F)g + g5,
ma @ @)
=Ry —Tr,(F,F) —iTrq,(F.F) + 185, + 166,

(37)
This formula is easily generalized for a multiple fiber bundle
Pm (Pm -1 ("'(Pl( I/’Gl))'")’(;m )'

{n
F is the curvature 2-form of the connection 4, in the

@
fiber bundle P,(¥,G,), whereas F is the curvature 2-form of

the connection 4, in the fiber bundle P,(P,(¥,G,),G,). The
horizontal components of the connection 4, will be identi-
fied with new physical fields interacting with the gauge field
A,. As an example, we shall see how the Higgs—Kibble scalar
multiplet may be introduced and interpreted geometrically.

Example 2: Consider the simplest case when G, = U(1),
and G, is any compact and semisimple Lie group of dimen-
sion N. Then dim(P,(M,,U(1)) = 5,
dimP,(P,(M,,U(1}),G,) =N +5.

The Lie algebra of U(1) is isomorphic with R ; there is
no canonical metric on U(1), but we can replace it by any
constant. Let us introduce the local coordinates in an open
set of P,(M,,U{1)} such that for peP,(M,,U(1))

p=1{p"} ={xx%}, i=0123 a=12345

In these coordinates the connection form in P,{M,,U{1)) has
the components 4 }, 4 3 ; its vertical part 4 ] is just a constant
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(identified with the elementary charge e). The nonvanishing
components of the curvature tensor are

F=0,A}—3A;} (38)
and
Ry = — \§"¢'F}F}, + const. (39)

This is the well-known Kaluza—Klein theory.”® Let us de-
note the connection form in P,(P,(M,,U(1)),G,) by B; in a

local coordinate system it has the following components:

Bj = {B},B}.B%}, B=1{bj5} (40)
The components B % are functions of x', x*, and £ *.

The vanishing of the vertical components of F ;, means
that

3,B; -3,B: +C;,B.B}; =0,

3,Bf—3,B. +CBEB} =0,

3,Bs —3BS +C,BSB: =0. (41)
Local triviality of the bundle enables us to choose a coordi-
nate system in which

3B =0, dBS=0. (42)

We assume that these relations are satisfied in what follows.
The nonvanishing (horizontal) components of the cur-
vature are

F;:&,.Bj‘?—ajB?+C;,,B§Bj' (43)
and
4= —F4=09,B%~ 3B +C5BIBS.
We assume that nothing depends explicitly on the cyclic

variable x°, i.e., d5s B ¢ = 0. Therefore, denoting B § by ¢ ° we
can rewrite

Fi=0,¢°+CiBi¢°=9.4° (44)
the “gauge covariant derivative” of the Higgs—Kibble scalar
multiplet.

Suppose now that the first bundle P,(M,,U(1)) is flat,
i.e., that the connection form 4, in P,(M,,U(1)) was identi-
cally null. Then

2@ v .
R, = — ﬁgoabgwgle?k Fft - 5gabgu@i¢ gﬂsb
+ const (45)

(we put g = 1). This is the Lagrangian of the nonabelian
gauge field interacting invariantly with the massless Higgs—
Kibble scalar muitiplet.

If the connection A4, is not flat, our fields will interact
with the abelian (electromagnetic) gauge field. The compo-
nents of 4, being denoted by A4;, we have

(¥ ‘?jAf) 46
(gp')—(—'éjin 1+g°iinA1’ o

therefore (45) is modified into
LN s e 22
Ry, = ‘ig”éleik Fy — 18,88 Fy Fy
- %éabéqgi‘ﬁ agj‘ﬁ b— gnbéﬁ
XA A" D $°D ,$° + const. (47)
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The nonlinear interaction modifies the characteristics; e.g.,
the abelian field does not propagate along the light cones
when ¢ “#0:

DA; = (gabéklgk¢ agl¢ b)Aj- (48)
Let us consider a case of double fiber bundle with flat con-
nection in the first bundle:

Py M, XG;GA4,.8p,) (49)
Let [£“} be the local coordinates in G,, a,b = 1,2,...,N,, the
generators of o/ ; being L,

[La’Lb ] = Cszr:'
The horizontal components of the connection in P, will be
denoted by B /,B Z; the vertical components being B .

The nonvanishing components of the curvature tensor
are now

Fj=8B!—3dB{+CyBIBf,

F?b = _F';i =aiBg —abe“f' C;CB?Bgy

Fi, =3,B;—3,B} +C3:B;B¢, (50)
and the Lagrangian becomes
RP, = - igDAné‘J?leﬁcFﬁ - %goABéOgOMF;% ,“:

— 18 p§"E°FLF2 + const. (51)

We assume that d, B ¢ = 0 (the local triviality of the bundle
plus the invariance properties of B with respect to the action
of G, on P,}. On the other hand, different properties of B may

be assumed with respect to the action of G, on P,(M,,G,). We
shall suppose the simplest choice:

either

abB: =0,
or

3,Bi=Cl,A8B7, (52)
with 4 § satisfying

3,45 — 9,45 + C% A4} =0 (53)

so that the operators S0, = L, span o/ ; S5A! =8¢,

4. A MODEL WITH SPHERICAL SYMMETRY
Consider the case when G, = G, = O(3), i.e.,
Py(P,(M,,0(3)),0(3):4,.85,)- (54)

We shall suppose that P,(M,,0(3)) = M, X O(3) and is flat
(i.e., 4,=0). A similar case has been considered by Forgics
and Manton,’ with a particular interpretation: the group G,
was the gauge group generating the Yang-Mills field, and
the group G, was the symmetry group of the subset of solu-
tions under consideration.

Leti,j=0,1,2,3;a,b = 1,2,3; 4,B = 1,2,3. The struc-
ture constants of both Lie groups are the same, but the scale
factor (coupling constant) may be different; therefore, let us

put
-
C3p = €€ 45ps

Ch =A€a, (55)

where €5, denotes the Levi-Civit4 antisymmetric tensor.
We call the components B/ the Yang-Mills potential,
and the components B § = ¢ { the Higgs—Kibble tensor po-
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tential. We want to see what the static and spherically sym-
metric solutions are like; in order to do so, let us consider the
following ansatz (see, e.g., Refs. 10 and 11):
k
B!=0, B!= i‘lix_
=0, B;

1-K(), k=123

er*

x*x, &
B4 = Hipr)+—G(r). (56)

er er

We suppose that

aaB: = ;"ecdbA :B: (57)
and A4 ¢ are left-invariant forms on G,; we may as well write
Ff =24€,,Bi +e€5pBiB.. (58)

The two cases of (52) correspond to putting A equal toOor 1.
The Lagrangian density (up to a constant)

— & =P[FiFl +WFLFL + o F7) (59)
is equal to the following expression:

_[(dKY: , (\—K* , (rdH/dr—Hy
—‘f_[(dr>+ R 27

, 3rdG/dr—GY _ (rdH /dr— H)rdG/dr~G)
27 e
HY14+K?Y)  2G*1—K)P  2GH(1—K)
t et T
3G*  GH® 2G°H . 61(G*H+G?)
ttTE T T
+,12[H2+ZGH+662]]. (60)

This expression is obviously positive definite (4 > 0). The La-
grangian is considerably simplified if G = — H; then (60)
reduces to

““g:[(‘fz_f)zJ” (1;()2 | lrdH/dr—H}

'2

HY1+K?% H* 2772

S+ o +SAH?. (61)
The condition of linear dependence between G and H may be
interpreted as the fact that only the trace of B # interacts with
the gauge field B/, the traceless part of B 7 being irrelevant.

There is a striking similarity between (61) and the La-
grangian proposed by ‘t Hooft':

L= —\FiF}, —\9.¢"D'¢, - V($), (62)

where B /' was the same as in (56), and ¢ * = (x* /er*)H (r); the
potential V(¢ ) was introduced ad hoc and had the form

+

._/‘_2 A ___B_ Ag (2
Vig)= 3 A Ve @7%4). (63)
In that case
o g]_{ * (1-K?% (rdH/dr—HY)
z—[(dr) tTp T
HK | B pu o
t——+ s H' -5 H ] (64)

Our geometric construction of a gauge field over a multiple
fiber bundle enabled us to introduce in a natural way the

fourth-power termsin H (7). In order tointerpret our Lagran-
gian in the same spirit as ‘t Hooft’s, we have to make A pure
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imaginary, 4 2 <0, and identify 2u?/B with 104 2. Introduc-
ing an imaginary A corresponds to the change in the signa-
ture in the Killing-Cartan metric of G,. Another difference
is the presence of the term H ?/7* in our Lagrangian. If we
want the action integral (energy) to be finite, H (7) has to be-
haveasymptoticallyas H (#} = Cr + h (r),h (r)>Owhenr— o,
with C? = 242/B = 104 %. Then the term H 2//* at infinity
behaves like a constant C. In order to remove the linear di-
vergence §C 2 dr we are obliged to introduce a constant sur-
face contribution, the physical interpretation of such a
counter-term not being clear. The problem does not arise, of
course, if the base manifold is compact.

It seems worthwhile to investigate more deeply the
properties of the gauge fields over the multiple fiber bundles,
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including the topological properties of the solutions.
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We generalize the usual gauge theories, as well as the supergauge theories, in the following way.
We construct a graded group associated with a compact semisimple Lie group G. This graded
group contains G and the linear space of anticommuting G-spinors on which G acts through a
highly reducible representation. The graded group generalizes the notion of the super-Poincaré
group. Next we construct a fiber bundle the basis of which is the superspace, the structural group
being the graded group. Then we introduce the connection, curvature, and calculate the
corresponding Yang-Mills Lagrangian. The nontrivial content of such a theory is put forward if
we impose the Grassmann parity condition on our connection and curvature; we supposed here
that both Grassmann parities (i.e., the one in the superspace and that in the graded group) add up
to define the Grassmann parity of the corresponding field components. Together with the
Hermiticity condition this supergauge leaves almost no room for arbitrariness in the expansion of
the superconnection; it contains only the usual gauge field, the adjoint Higgs multiplet, and the
spinor multiplet belonging to the spinorial representation of G. The conformal symmetry of the
Lagrangian is broken, and the mass terms appear for the Higgs scalar and the spinor multiplet.
The Yukawa and current—current interactions are also obtained, together with the Fermi four-
point interaction term. The theory yields the ratio of the Higgs scalar mass versus the bare spinor
mass equal to 27/40; the strengths of other couplings depend on the group via the decomposition
of the spinor multiplet into the irreducible representations.

PACS numbers: 11.10.Np, 11.30.Pb, 02.20. + b

1. INTRODUCTION

Soon after the supersymmetric theories had been intro-
duced by Wess, Zumino, Akulov, and others,'™® many au-
thors proposed different extensions in order to include natu-
rally the gauge field theories. Fiber bundles and connections
have been constructed over the superspace”®; the supergra-
vity can also be viewed as a gauge theory with the super-
Poincaré group taken as the structural group of a bundle
over a Riemannian manifold ¥,.*'° Usually a complete the-
ory contained so many kinds of fields, all interacting be-
tween each other, that it was almost impossible to get any
useful information without drastically reducing their num-
ber, namely by imposing more or less natural supergauge
conditions which eliminated at least some of the ghost fields
and simplified the couplings between the remaining fields.

Here we investigate a general graded gauge theory, in
which the gauge field is considered as a connection in a prin-
cipal fiber bundle over a superspace with structure group
being a well-defined Z,-graded extension of a compact, semi-
simple Lie group. The graded Lie groups (or supergroups)
have been considered already by many authors (cf. Refs. 11
and 12). However, with the exception of the supergravity, no
serious attempt has been made yet in order to calculate an
effective Lagrangian of a gauge-field theory over the super-
space, with structural group replaced by a Z,-graded Lie
group. We have carried out such a calculus as far as we
could, imposing some supergauge conditions in order to
keep a well-defined Grassmann parity of the fields as well as
their Hermiticity. This had led to the breaking of the confor-
mal symmetry and mass generation for the fermions and the
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Higgs bosons; another interesting feature appearing here is
the purely geometrical deduction of highly nonlinear
Yukawa and current-current couplings.

2. SUPERGROUP ASSOCIATED WITH A COMPACT,
SEMISIMPLE LIE GROUP

Let G be a compact, semisimple Lie group of dimension
N. Its structure constants being denoted by
Cipa,b =1,2,...,N, there is a nondegenerate and positive
definite metric on G, the Killing—Cartan form
84 = C2. C5y; this metric defines a length of any vector
from the Lie algebra & ; of the group G. The metric space
(# ¢+&as) has its isometry group, which is SO(N ), the real
orthogonal group in N dimensions. The right action of G on
itself induces the representation of G on the linear space .« ;,
called the adjoint representation; this action preserves the
Killing—Cartan metric too. The covering group of SO(¥ ) is
called Spin(N )."* The lowest-dimensional faithful unitary re-
presentation of Spin{/V} is often called the spin (or “double-
valued”) representation of SO(V ). It also provides a (reduc-
ible} representation of G. Here is how this representation is
constructed.

Consider NV generators of the Clifford algebra associat-
ed with the Killing—Cartan metric on G, satisfying

Ya Vb + Yo Va= Zgabld’ (l)

where Id means the identity matrix in the representation
space. It is well known that the lowest-dimensional real ma-
trix realization of y, ’s is in K X K matrices, with

K = 2N+ 121 ([{] meaning the entire part of 1), whereas the
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lowest-dimensional complex Hermitian realizationisin J X J
matrices, J = 2[N/2].
The N{N — 1)/2 matrices 0,, = — 0,,, defined by

Ogp = é(ya Yo = Vo Va )9 (2)

generate the J-dimensional Hermitian (or K-dimensional
real) representation of the Lie algebra & 5oy = o spiny) -
These matrices satisfy the commutation relations of .7 5o :

[0061Tca ] = 8acTba + 8o Tac — 85cTad — 8ad e (3)

We can raise and lower the indices a,b by means of the metric
tensor g, and its inverse g*; we define C,,. = g,, C{.; for
any compact and semisimple group G, C,,. are totally anti-
symmetric. It is easy to check that the matrices

7o =4 Cpp 0™ (4)
satisfy the commutation relations of .« :
77 1=C3 74 (5)

They provide a reducible K-dimensional representation of
& ; by exponentiating them one obtains the corresponding
representation of G. Let the indices 4,B,...run from 1 to X
then, in matrix notation

[r.]=7."5.
The element of the linear K-dimensional space will be called
a G-spinor (group-spinor) and denoted by u = u, y*,y"* be-
ing a local basis. From now on, by analogy with the super-
symmetry formalism, we suppose that y*’s are anticommut-
ing quantities:

X' x"+x"x'=0. (6)

In the cases which we shall investigate for physical rea-
sons, i.e., when G = SU(2) or G = SU(2) X U(1), in the spinor
space there exists a skew-symmetric tensor invariant under
the action of isometries and defining a skew-symmetric inner
product of two spinors. There always exists a choice of co-
ordinates in which this antisymmetric form has the compo-
nents

€= — €= 1, €34 = — €43 = 1) etc., (7)
all other components vanishing. (The dimension is always
even.) €, being nonsingular, there exists an inverse matrix

€%P such that

€45 €20 =55, (8)
We can now raise and lower the spinorial indices by means of
the tensors €, and €*2.*

Now we can introduce, along with y, = €5 y?, the
tensor

T,‘;B-_"gabeAD TbDB- (9)
By construction,
Ty(1, 74) = K8y - (10)

The matrices 7, generalize in an obvious way the Pauli
matrices in the case of G = SU(2).

Because of the anticommutation relations (6) any func-
tion of y* is a finite polynomial of order <K. In order to
define the derivation of functions depending on y* it is suffi-
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cient to put

3, " =58° (11)
together with the (anti)-Leibniz rule

nlxPx)=82x -85 x" (12)
Then

043y +3d5d, =0. (13)

The group G acts on itself on the right: Any A€G induces a
mapping R, :G-—~G given by R, g = gh,g,heG. This action
generates the left-invariant of &/ ;. Let us denote these fields
by S,,a = 1,2,...,N; in a local basis

S, =8%4,. (14)
The Lie brackets of §,,5, give
[S.,S,]1= Ci Sy (15a)

or, more explicitly,
[S..Sp] = £, S, =[S, Sy —S83,S7] 9,
=C%, 8573, (15b)

Consider an infinitesimal transformation given by a linear
superposition of the N generators:

5, =6¢"S, =6g°S" ,. (16)

There is a one-to-one correspondence between this generator
and the following transformation in the space of spinors:

Y -8t 5 X (17)
The finite transformations generated by any geG are ob-
tained by exponentiation: Ifg, belongs to a 1-parameter sub-
group of G such that g, = ¢, dg/dt|,_, = €’ L,, then
formally

D(g,)=exp[te" 7, ]. (18)

Let us denote the linear space of spinors by {y }. With
the action of group G defined on {y } via the representation
{18), the direct product G X {y } acquires the structure of a
semidirect product of G with the abelian group {y } [let us
remember that the linear space {y } is isomorphic with the
group of translations in {y }]. We denote this semidirect
productby G O{y }. Thecompositionrulein GO{y }isgiven
by the following formula: If ( g,,y,) and ( g,,),) belong to
G O{y 1, then their product is

(8uY1)(&anx2) = (£:82X1 + D (&1)x2) (19)

G O{y } defined asabove will be called the supergroup associ-
ated with a compact and semisimple Lie group G.

3. DIFFERENTIAL OPERATORS OVER . ;,; AND
SUPERALGEBRA

Let M, denote the Minkowskian space-time with the
metric g; = diag( — + + +), iy =0,1,2,3. From now on
we use the notation introduced by Wess and Zumino.?> The
Pauli matrices are denoted by o’*5,a = 1,2; B = 1,2; the spin
representation of the Lorentz group acts in the linear space
of spinors {6 }, spanned by 67, 0%, satisfying

0 6% +6°6°=0, 6°6°+6°0°=0,
0268 + 686 =0. (20)
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The direct product M, X {8} is called the superspace.
The spinors {@ } transform under the isometries of M, via the
spinorial representation, which leaves invariant the skew-

symmetric product defined by the antisymmetric tensors
6(13 ’Ed,ﬂ:
€= —€;=1, €=—6 =1 (21)

The indices a,8 are raised and lowered by means of €,4,€.4
and their inverse matrices €°,e*%.

The derivations of the functions depending on {8 } are de-
fined by

3,0%°=682, 3,0,=¢€, d,0°=0,
3,0°=68, 9,0;=¢cy, (22)
3, (0%60%)=856"—57 6% etc.

Introducing the differential operators acting on functions on
M, X {8} (considered as {6 }-Grassmann algebra valued
functions on M,) as follows:

D=0, +0,.50%,

Dy=03+0,56°3, (23)
which satisfy the anticommutation relations

{@a’@ﬁ}+ =0, {gd:gﬁ}+ =0,

(2.,0,}, =243, (24)
together with the Poincaré algebra generators defined as
d
P, = pary
Tk1=xk_a___x1 a +UklaBaBaa+a,kla30aaB’
Ix, Ix,
(25)

where

ot =Y =¥, (26)

and the Dirac matrices ¥* have the components given by
) =0, (V= —0"%,
(V)% = 0"6% (V)5 =0.
We obtain the full graded Poincaré algebra (often called su-
peralgebra)
[Pk ’Pm ] = 0’
[T¥p,]=8% P -6, P
[TkI,Tm"] ___gkm Tln +g1n Tkm _glm Tkn __gkn TIm,
(T2, )1=0""T (28)
[Tmn,@B ] — Ummxﬁ o
(Pess =[P, Z5]=0,
{@a,,@ﬁ}+ = {@d’gﬁ}+= 0, {‘@a’gﬁ}w*— = 2ajaﬁ'PJ"
By analogy, we shall construct the graded algebra of differ-
ential operators “tangent” to the supergroup G O{y }.
In local coordinates the generators of &/ ; were repre-
sented by L, = S? d,, with [L,,L,] = C2, L,. Let us de-

note by A4 5 the inverse matrix of S 2; then, as a direct conse-
quence of (16),

0,45 —-3,4, +CL A4, =0 (29)

(27)
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(the Maurer—Cartan identity). A general differential opera-
tor of first order defined over G O{ y } has the following form:

e@d = Ugab +U;3A’
,@B=Ugab+U';aA.
We want our operators to have the well-defined Grassmann
parity, i.e., & has to be even (only even powers of y? or d,,
),5 has to be odd. Therefore, U,U 3 have to be commuting
quantities, whereas U% and U+ are anticommuting quanti-

ties. Therefore, we can always choose a coordinate system in
which

D,=L, + UaABXBaA’

9, =6A+UbADXDLb’ (31)
where U,4;,U?,,, are commuting quantities (depending on
g€G). If we now put

U = TaAB’ (32)
then

["@a"@b]=cgb D4 (33)
because 7, are representation of &7 5, too. Also
D, Ds +'@B D 4= (UZB + UZA)Lb =C,1;BLI>' (34)
To close our algebra, we have to calculate

D, Dy —Dp D,. (35)
We postulate

9, “@B—'nga:_TaDB Dp. (36)

In other words, we have to define a set of generalized struc-
ture constants which would provide us with the adjoint re-
presentation of the graded algebra: & ;-

The only nonvanishing structure constants are

be = —Co (37)
CaDB = _Cga = _TaDB’ (38)
Cac=Cep=(Ujc + U‘Z*B)=gab€m> Tch- (39)
If we introduce generalized indices ¢,y denoting both a,B,
and if the Grassmann parity (¢ ) is defined as 7(a) = 0,

m{B) = 1, then the generalized Jacobi identity (the adjoint
representation of &/ g, ) reads

(30)

Czw C}l’m o l)mmmcfw C;/(’A =C¥n CﬁA' (40)
Explicitly, this will give only one new identity
Ccd Ch, —C%:C.% =C,% Csz%, (41)

which defines implicitly the spinor metric €, when com-
bined with the definition

Coc =28 €3p 73 °c, (42)
&/ (epk 756 Ta s + €ng TfEG 7.%0)=C4, g¥ €5 7p.
(43)
We leave aside the problem of the uniqueness of the
spinor “metric” €5,; we know how to construct it in the
simplest case when G = SU(2) or SU(2) X U(1). We close this
paragraph with a table which gives the correspondence be-
tween the notions of supergroup and its graded Lie algebra

associated with a compact and semisimple Lie group G, and
the usual notions of the Poincaré superalgebra and the su-
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TABLE I. Correspondence between the superspace and the graded Poin-
caré algebra and the graded group G.

M,, Minkowskian space time G, a semisimple compact Lie group

8., = C4.C%,, the Cartan—Killing
metric

g, Minkowskian metric

7. generators of the Clifford algebra
induced by g,

¥; Dirac matrices

6°,8? Anticommuting Dirac
spinors

1, anticommuting G-spinors

2° Poincaré group acting on the G acting on itself

Minkowskian space-time

P, J,,, generators of the Poincaré L, =S%d, generators of the left-
algebra invariant vector fields on G

Oim = HVi¥m — Vm¥:) geNErators 7, = ic,mo-"‘ generators of the
of the spinorial representation spinorial representation of <7 ;

of #°

2 ,, D g, generators of the graded
algebra &/ 6

P.J.. D, @,; generators of
the graded Poincaré algebra
P9 P!

M*Xx {6}, the superspace Graded group (or supergroup)
GOy}

€45, invariant “metric” in the space
of G-spinors

€.55 €4, invariant “metric” in the
space of Dirac spinors.

perspace M, X {6 }.

The essential difference between the Minkowskian su-
perspace and the graded group is the fact that our Lie group
G has the double role of the symmetry group of the space and
the space on which it acts itself, whereas the Minkowskian
space has no group structure, being only the space on which
the isometry (Poincaré) group acts.'”

4. GRADED FIBER BUNDLES, GRADED
SUPERCONNECTIONS

The classical theory of nonabelian gauge fields is for-
mulated as the theory of connections in a principal fiber bun-
dle P{M,,G ). Consider an open set UC P (M,,G ) isomorphic
with a direct product of (U ) C M, and G; we can introduce
local coordinates in U such that peU has the components
(x*,€ ) with (x*)em(U), (£ 9)eG.

A connectionin P (M,,G )isdefined by a left-invariant 1-
form A of type ad with values in the Lie algebra &/ ;; in our
coordinate system we can decompose A4 as follows:

A=AL, =(A%dx + A} dE°)L,. (44)

The covariant exterior differential of 4 is a 2-form of type ad
called the curvature:

F=DA=dA+4{4,4]1,,. (45)
F is horizontal, which in our coordinates means that

3,45 —-3,4%5+Ch A8 45 =0,

A, —0,A4+ClA84% =0 (46)
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(a,b = 1,2,....N; ijj,k = 0,1,2,3). (In a local trivialization we
can always put d, 4 5=0.)

The only nonvanishing (horizontal) components of F
are

F4=0,A7 -9, 47+ C5 A4S (47)
and are identified with the Yang-Mills field tensor.
The Lagrangian of the theory is given by

L = —"‘lzgabg‘jgle?k F}

jis (48)
and the variational principle$ f £ d* x = Oyields the equa-
tion

g0 Fj +Ci AV F5)=0. (49)
Introducing the superspace and the supergroup defined in
Sec. 2 leads to the following three natural generalizations of

this scheme:

PM,x{6},60{y}) > P(M,GO{y })

! !
PM,x{6},G) — PM,G)
!

!
M, X { 6 } - M,.

We may call the cases represented here an ordinary
principal bundle over space-time, P (M,,G ); ordinary princi-
pal bundle over the superspace, P (M, X {6 },G ); a graded fi-
ber bundle over space-time, P (M,,G O{ y }}; and a graded fi-
ber bundle over the superspace, P{M,X {6 },GC{y }).

Our final goal is the theory of connections (gauge fields)
inP(M,x {6},GO[y });butfirst weshallhaveaglanceatthe
connections in P{M, X {@ },G ), because already here we en-
counter the main characteristics of such a generalization.'®

In P(M,X {6 },G), we decompose all geometrical ob-
jects in the local frame in which the basis directions are

e, =0, e,=D,, e,=D; e,=L,. (50)

The connection form 4 is naturally decomposed, as be-
fore, into the vertical and horizontal components:

a?’

vertical part 49§, (51)
horizontal part Ad = {A7,42%,45},

where we use the capital latin indices K,L,M to denote the
indices (j,a,3 ). The generalized curvature form has the fol-
lowing nonvanishing (horizontal) components:

Fi = DAy —(—1J""1G 4% + Cod s,
(52)
where &, meand,, 7 ,, 17 4 and m(K') is the Grassmann
parity of K, 7{j) =0, mla) =m({f) = 1.

The definition (52) has to be implemented by the condi-
tion on the Grassmann parity of 4 &, i.e., 74 %) = (K ), in
order to preserve the correlation between the spin and statis-
tics and eliminate the so-called ghost fields. In that case,

Flo= —Fj,
Foy=—Fj,, Fjp=—Fj (53)
Fog=Fpar Fog=Fpo, Flg=Fpg.
The Lagrangian of the theory now becomes
L= - AgabgKLgMNF‘Iz(MFII’,Nr (54)
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where g** stays for the matrix:

e 0 0
g¥t1= o e£ o | (55)
0 0 e*

Finally, .¥ hastobeintegratedover P (M, X {6 },G ); the
integration with respect to the Haar measure dG will yield
only a constant because of the invariance properties of an ad-
type form; we have to integrate then over M, X {6 }. The
integration with respect to the anticommuting variables has
been introduced by Berezin!? and is defined by

J-dﬁ =0, .[déﬂ =0, J'oadeﬂ = 55: Je—ada_ﬁ = 65

(56}
This definition enables us to calculate the integral of any
polynomial in 8 ’s. By construction, our Lagrangian is an
even polynomial; therefore, symbolically,

L= Lot Lag00° + L 30°0° + £ 50°6°

+ L .550°0%076°. (57)
After integration over the “volume element” of {6 }, i.e,,
with respect to d6 'd692d6 'dd?, only the last term will leave
a nonvanishng contribution.

The components 4 % are polynomials in the variables
6=,8° with coefficients depending on x*; the dependence on
the group variables is completely determined by the equa-
tions generalizing (46). We can develop

A%x,0)=B%x)+B.(x)0° + B%(x)8? + B:,0°0°

4+ e +B;a85,5900‘997)§6,
Ad(x,0) =Y (x) + 4 x)6, + V05,0707 + - - etc.
(58b)

In order to eliminate the wrong relations between spin and
statistics we impose the condition on the Grassmann parity
of components'®:

m(d$)=mK). (59)

(58a)

This automatically excludes a lot of terms, e.g., in 4 §(x,0)
we can have the first term B /(x) but not the next one, B, 67,
which is odd; similarly, in 4 5 (x,0 ) the term ¢ %(x)6, has the
required parity, whereas the spinor multiplet ¢4 (x) has not,
etc.

Moreover, some of the terms will not contribute to the
Lagrangian because their order in 8 is already too high [e.g.,
the last term in (58a)).

Any particular choice of the development of 4  which
does not contain all possible powers of 8 °s will break the
supersymmetry invariance; however, such a “supergauge”
fixing conserves both the classical gauge and the Lorentz
invariance. Some choices break the conformal invariance
and may introduce a mass of the gauge field, or at least of
some of its components. Let us illustrate this by an example.
The simplest connection A4 § that is Hermitian and obeys the
Grassmann parity rule (59) is

AP=0, AL =¢°x)0,, A}=0%x)0;. (60)
Then the only nonvanishing components of the curvature
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tensor are

Fi =3,6%,, Fi=03,4, Fi5=0%;0%,4%;,

Ff,,‘g =a{18§83j¢a58’ ;ﬂ =0’-}a’073j¢aaﬁ, (61)
and the Lagrangian is equal to
& = —18.,89,0°3,4%6'6%65*
+ lower power terms in &’s. (62)

If we choose 4 { = B [(x), then the gauge invariance will im-
pose the modification in 4 Z, 4 }, namely,
A =Bx),
AL =¢°6, +0.;07B;, (63)
A =6°0s +0.50°B},
and our Lagrangian is equal to
& =[—16G5Gheng"e" — V¢ V,42.,8"10'6766"
+ lower order terms in 6, (64)
where

G;=9,B;—9B{+C; B!Bj,

(65)

Ve =094+ CiBo"

Of course, the ansatz (63) is not the most general one satisfy-
ing the conditions of Hermiticity and of Grassmann parity;
we shall discuss later more general forms of connections. We
proceed now to the definition of a connection form in
P(M,x {6}, GOfy}), its curvature form, and the
Lagrangian.

Let us denote by greek letters ¢, y, ¢ the “vertical”
indices, i.e., (@,b,¢,4,B ); the Grassmann parity is 7{¢ ) = 0 if
¢ = a,b and m{¢) = 1 if ¢ = 4,B. By capital latin letters we
denote the “horizontal” indices @, 5, and j,k; (L) = 0 if
L =jkand #(L)=1if L = a or 8. The connection 1-form
has the components A % and 4 {; more explicitly,

A3 ={43454347} (66)
and

Ay ={a545,45474245} (67)
The generalized left-invariance property of this 1-form leads

to the vanishing of the vertical components of the curvature
2-form, which is defined as

Fio=D A% —(— 1yl + N g 49
+C%,4%4% =0. (68)

The nonvanishing structure constants C %, are given by {43).

The vertical components of F'%,, are the ones in which
one of the lower indices y,# is vertical, i.e., takes on one of
the values a, 4, or B. The fact that F is horizontal gives the
equations of the type

FW =D A, -~ DA% +C,A%4} =0,

(69)

FoQo=2,45 - (-1)"®D 4% + C;«;A X47%,
etc., which may be regarded as definition of the “vertical”
components of 4, i.e., (66). The nonvanishing components of
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F are the following:

Fiy Fop Foy Fop Fop Fiyp,
(70)
F;;, Fl;j’ F:ﬁ’ Fgﬁ, ngr gﬁ;
with
Fé, =DA% — (= 1yEmbill +mig))
XD AL +ClA%AY. (70a)

The Lagrangian will have the same form as previously, ex-
cept for the normalization factor which we shall fix after:

1
L= —?gngLgPSF?EPF}I:s ’ (71)

the “horizontal” indices 5, j being denoted by K, P, L, etc.
Now we can proceed farther to compute .¥ effectively.

5. SUPERGAUGE CONDITIONS AND THE CONFORMAL
SYMMETRY BREAKING

Let us generalize the Grassmann-parity conditions for
our superconnection. As a matter of fact, these conditions
are contained implicitly in the definition of the supercurva-
ture (68), namely, we suppose

mA §) =) + m(y),

mAd$)=ml¢)+m(L),
where 7{a) = 7{j) =0, 7{4 ) = 7{B) = ma) = () = 1.

Therefore, the components A 7 are odd, A 2 are even, 42

(72)

odd, 4 { even, etc. The left-invariance conditions generalized
for the graded group G O{ y } mean that there exists a coordi-
nate system in which the components of 4 ¥ do not depend
on y (which corresponds to their invariance with respect to
the translations in y — space). Together with the conditions
{72) this eliminates most of the terms in the generalized ex-
pansion (58). If we require the Hermiticity of the compo-
nents of our connection, i.e., (45) " =42, etc., then only
the following terms will remain:

AL =¢°X)0, +A400,,0%,
8 =00, + A0 ,0°=(43)", (73)
AP =0,

A =yB(x)+ —’ll—(cp‘;aqugé*)ea
+ I-Vz-wgole@iéi.

Before proceeding farther let us note that we have intro-
duced a dimensional constant / (a length scale), as well as two
dimensionless parameters A and v. The length scale / occurs
in a natural way, because we want 4 | to have a definite
dimension (namely, 1/cm); our potentials B and ¢ * have
the dimension 1/cm too, whereas the variables 6 * have the
dimension cm!/?; the o-matrices are dimensionless. The
spinor field ¥ has the dimension cm~'/%, After computing
the components of the curvature tensor F %, we shall use the
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length factors when adding different components squared
forming the Lagrangian density, e.g.,
dim[F§]=cm™7?
dim[F{Fi]=cm™*,
dim[Fi;]=cm™,
dim[FizF*] =cm™2,
sowehavetotake F{FY + (1/1%)F %5 F 2%, etc. With the sim-
plest ansatz (63) the resulting Lagrangian density is homo-
geneous in 1//7, and the corresponding equations are confor-
mally invariant. This is not the case for our supergauge (73);

the conformal invariance is broken.
The Lagrangian density we postulate is then
£ =— 2 |Frie 2rpys Lrery

(74)

+FiFY+ PP+ LFLFY]. 09
where, for simplicity, we did not distinguish between the
dotted and undotted indices. All the indices are raised or
lowered by means of the corresponding “metrics,” i.e., g7 for
the space-time vectors and tensors, € for the Lorentz spin-
ors, g** for the group-algebra vectors, and €* for the group
spinors. In the final stages of the calculus, only the terms
proportional to 8 '628 162 in .# will be of importance, be-
cause all the lower powers of & will vanish when integrated
over the volume element d6 'd6 2d8 'd@ *. This relevant term
in the Lagrangian density turns out to be the following:

L=~ o [86561 +64v,6°6, + <3 6%,
4,12+21;/1—4v 7,59 + 3;13v 0
+ C W Gy — 9,0
BB Conn PP — B4 Conn PV
+ BB o PPy 9107678

(76)
The following abbreviated notations have been used here:

G;=0B;—dBi+ Cy B/Bj,

Vj¢ = aj¢ “+ ngle')‘ﬁ dv

Vj% = aj% + TaADBﬁbg:

U = €,5(€YaYE + €CPLUR). (77)
In what follows, we shall use even more symbolical notation
when there is no risk of misinterpretation.

The remarkable thing about this Lagrangian is that the
supergauge conditions, while keeping the Lorentz and the
gauge invariances intact, have broken the conformal symme-
try, introducing masses of the Higgs multiplet and of the
spinor multiplets. The price to pay is the presence of the
d’Alembert-type term for spinors V, V¢, as well as the
four-point interactions, which may lead to the unrenormal-
izability of the theory.
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Before identifying the masses of ¢ and ¢ fields we have
to fix the scale factors for our fields. As we want to have the
term G ;G J enter with the usual factor — }, we must put 2°

= 32; then we have to interpret the Higgs multiplet as given
by the expression ¢~ ¢ = 2¢ °. We can also absorb one of the
two dimensionless parameters A and v into the definition of
the Dirac spinors, just by fixing (24 ? 4+ v)/8 = 1, which
amounts to the rescaling of ¥. Then the following expression
is obtained:

1

L= —|1GiG! +1V,4°Vig, + EI_ZJGJ“
2 _ - . _ 2y
¢ AR g oy 2040 5y

+ 2 V8 — 9, ) - 29,8 Cono ¥

AT—4) -, -
+ (—875-—) @ Copp¥®y®
8—342% -5 D=
+ TR C o Coer VWYY | . (78)
It seems reasonable to restrain our theory by eliminat-
ing the second-order derivatives of spinors from the equa-
tions of motion; in other words, we want to make
8 — 342 — 24 disappear. That gives us two solutions:
Av=—-24,=%
The corresponding Lagrangians are

# = - 16361+ 19,64, + 4%,

+ ,iz(@rfvm—wv,-?ﬁww }lvja" o PV P

1 -— —
- I—ZCGEFCaBleEwF'ﬁB'pD] ford,= —2 (79)
and
L= [QG,?J-G'Z +4V,6°V8, + #J“ﬁa

40
2713
— LV Canp B~
6/
2
+ 312
In the first case the Lagrangian describes an invariant
interaction between (massless) gauge fields, the massive
Higgs field 4 “ whose mass is 2, = 1/2/, and a reducible mul-
tiplet of massless Dirac spinors, which interact with ¢ via the
current—current coupling; there is a four-point interaction
present, as was often postulated for the weak interaction
neutrinos.
In the second case spinors acquire the mass equal tou,,
= 20/27; the current-current coupling and the four-point
interaction are still there, but with different coefficients than
before; finally, the Yukawa coupling between ¢ and # ap-
pears, too.

+

W+ 2 V= V)
Tésl—z ¢~ aCaBD l/_,Bl/’D
30 Carr !Z”W!ZEW ford, =4 (80)
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6. CONCLUSIONS

We have a geometrical method of deriving a gauge and
Lorentz-invariant Lagrangian which describes the interac-
tion between the gauge bosons, an adjoint representation
multiplet of Higgs scalars, and a reducible multiplet of Dirac
spinors. By imposing a supergauge condition which seems
reasonable enough, we eliminate all the ghost fields, break-
ing at the same time the conformal symmetry and introduc-
ing masses for Higgs scalars and spinors. Still, we are quite
far away from any physical interpretation if we do not per-
form a group representation-theory analysis of our expres-
sions. Although that is not in the scope of this paper, we shall
at least show what we mean by this.

Probably the most interesting feature of the graded
gauge presented here is the fact that the fermion multiplets
belong to some well-defined representations which are im-
posed by the geometry itself, whereas usually the choice of
the representations to which the fermions belonged was exte-
rior to the geometrical content of the theory. The gauge
fields and the Higgs field always belong to the adjoint repre-
sentation of G by construction, whereas no constraint was
imposed on the representations of spinor multiplets.

Let us consider the simplest case G = SU(2). As dim
SU(2) = 3, K = 2021 = 2; therefore we have an irreducible
doublet of Dirac spinors. In this case the Lagrangian (80)
may be interpreted as the isospin-invariant Lagrangian of
the nuclear forces, the couple of Dirac spinors representing
proton and neutron, ¢ ° representing three pions.

The case of G = SU(3) is more interesting. Then dim
SU(3) = 8, K = 2¥21 = 16; so the spinor multiplet belongs
to a 16-dimensional reducible representation. By the con-
struction & ;—ad o/ ;—SO(N ), this representation decom-
poses into two octets 8 ® 8. (The invariant metrics €, have
to be compared with the invariant Cartan-Killing metrics in
ad spaces). In general, our representation will contain 2!#/?!
times the representation 8, where 4 is the dimension of the
Cartan subalgebra of G, §; being the highest-weight (4 sum
of the roots) irreducible representation of G found in Spin
[SO(N))."° As we see, the quark representations are not found
here. Further generalization, including more irreducible re-
presentations of G, may probably be obtained by enlarging
the notion of the supergroup so that it would contain not
only GO{y }, but also all the polynomials of {y ], i.e., the
whole Grassmann algebra of the anticommuting variables
x*4GUA {y}.

We cannot take very seriously the “‘universal length”
parameter /; however, the mass ratiou, /i, = 3 seems to be
encouraging if we think of the simplest example of nuclear
forces, i.e., if we identify ¢ with the couple proton-neutron
and ¢ ¢ with the three pions. The orders of magnitude of the
Yukawa couplings and of the current—current coupling seem
to be then quite realistic, too. In either case it must be under-
lined that the masses are just unrenormalized quantities, and
have to be modified if we take into account the dynamical
terms. Only then will we obtain some more realistic picture
in which the masses will split.
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We discuss the normalization condition for a three-body Bethe-Salpeter amplitude and apply the

result to the relativistic wavefunction for protons.
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I. INTRODUCTION

The normalization of a Bethe—Salpeter (BS) wavefunc-
tion' which describes a relativistic bound system is uniquely
determined and has been a subject of many investigations for
two-body bound states.”> While the generalization to many
particle bound states is straightforward, the importance of
the normalization condition for three- or more-body BS
wavefunctions can hardly be over emphasized in light of rap-
id developments in the quark model of hadrons. In fact, it
was an important ingredient in a computation of the proton
decay rate in grand unified gauge theories.*

In this article, we formulate the normalization condi-
tion for the BS wavefunction of three-quark bound states in
Sec. IT and apply it to the proton wavefunction in Sec. I1I. In
Appendices A and B, the residue formula for the bound state
is obtained, and the normalization for the three-body BS
wave function for constituents with unequal masses is de-
rived in Appendix C.

Il. NORMALIZATION CONDITION FOR THREE-BODY BS
WAVEFUNCTIONS

In this section, we shall formulate the normalization
condition for a three-body bound system, which serves to
define our notation. In doing so, we shall closely follow the
derivation of Ref. 3.

The three-body propagator for fermion fields ¢ (x),
¥?(x), and ¢ (x) (with masses m , my, and m_, respective-
ly),

K(xlrx2’x37x4’xs»x6)EK(1’2’3;4’5,6)

= — (O] Ty (x )0° (x )9 (x, )9 (x4)t7x”<x5)¢0(x6)10(>2 .

satisfies the integral equation’
K(1,2,3,4,5,6) = S (L4SE (2,55 F(3,6)

12
= | TI 4% SE(L7SF (2,85 5(3,9)
k=7

X G (7,8,9;10,11,12)K (10,11,12;4,5,6), (2.2)

where
SE(1.2) = (O] Ty (x,)¢" (x,)|0)
_ 1 A’ iplx, — x;) 34
= fSF (ple d°p, (2.3)

and G (1,2,3;4,5,6) is the irreducible kernel for the three-body
propagator. Inserting a complete set of states {| p,a)}, we
have

K (1,2,3;4,5,6) = — ZXN(1,2,3)Z,Q(4,5,6) (2.4)
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for t,,2,,t5 > t,,t5,ts, Where

Xpa(1,2,3) = (O] TY" (x )¢* (x,)¥C (x,)| p.ar) (2.5)
and

= ( p.a| Ty (&W’(X:ﬂc(xs)lO)
= — X3 (L.2,3)¥a) (va) (va)© (2.6)
are the BS amplitudes. For the bound state wavefunction

Xpa(1,2,3) with momentum p ( p> = — M ?), we have the BS
equation

Xpal1,2,3)

12
Xoal123) = — f I[ @ SELTISER8S (3,9
k=7
XG(1,8910,11,12)y,,(10,11,12).  (2.7)

In order to separate the center of mass coordinate and
the internal relative coordinates, we use the following varia-
bles (assuming that the three particles have the same mass for
simplicity):

X=x+x+x;), £=x,—x, 9= Axy + x;, — 2x;5),
(2.8a)
and their conjugate momenta
P=pr+p2+ps P =3P —p2)
Py =3(p1+p2—2ps) (2.8b)

These variables satisfy the condition

PiX1+pXy +pxXs=pX+p.E+p,m, (2.9)

and the Jacobian of the transformations (2.8) is unity. The
discussion for the unequal mass case will be given in Appen-
dix C.

Using translational invariance, we define the Fourier
transforms of X, G, and y,,, by

K(1230.2.3) =217 [ K(pep,04.04)
Xexp{i[plX —X')+pe& +p,m—pil’ —pin']
Xd*pdp,d*p,d pd*p,}, (2.10)

G(1,2,3;,1'2,3) = (2m)~%° J- G (Pe:PyiPesPry D)
Xexpli[pX —X')+p & +p,m —pi€' —pin']

X d*pd*p,d*p,d*pdp, }, (2.11)
and
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Xra(1,2.3) =M /E, ey, (£m)
=\ M/E, e**(27)"8
XJXpa(Pg,Pn)ei'p5§+p”")d4pgd4pn,
(2.12)
where
_ I (2.13)

Then, Egs. (2.2} and (2.7} can be written as

d4 ”d4pn
———"—[ (Pe» s PEPY; P) + G (Pgs P PEs Pl P)]
(2m)®

XK (p{,py; Pe> Py P) = 27)°8( p, — pL)( P, — P)

(2.14)

and

nd4pu , .
J——f-—" [1(Des Pys PEs s P) + G (P, s PE, P P)]

27)

XXpal PE> D7) = (2.15)
or, in short,

(p)+G{pIK(p)=1 (2.16)
and

[Z(p)+ G(p)lx, =0, (2.17)
where
I(pey Py Per Pys D) = 278 pe — p)8( £, — P3)

X[SFGP +pe +4p0,)SE 0P —pe +1p,)

XSE@p—p)1" (2.18)

We also have the equations conjugate to Egs. (2.16) and
(2.17),

K(pI(p) (2.19)

+G(pl=
and
X, (p)+G(p)] =0. (2.20)

As is derived in Appendix A, Eq. (2.4) for the bound
state can be written as

phm(po E K (pg, Py Pe> Pys P)
- (M/Ep)Xpa(pgipn)fpa(pé’p"q) (221)
or, in short,
lim (py— E,)K (p)= — M /E, )X, X, (2.22)
Po—Ep
Again following the method of Ref. 3, we define
. ad
Q(p)= lim (py—E,)K(p)— [I(p) + G(p)]
PEp dpo
=1— lim (- [(py— EK (2] )U(7)+ G pl)
P()“’Ep apo
(2.23)

where Eq. (2.19) has been used. The use of Egs. (2.20) and
(2.22) enables us to obtain
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Qlpl, = (2.24)
- M, (9
S S A UL ERIE)) PRRCEY
Thus, we get
— % (—[l(p)+G(p)]) "-% (Po=E,)
(2.26)

or, in the full expression,
i —
(2 )16fddpé'd“pﬂd“péd“p;]Xpa(pg’p'q)

a ’ ’
X(ﬂ) [ (Pes Py P2 Ph; P) + G(pg,p,,;pg,p:,;p)])

X Xpe P2 2}) =§—; (Po=E,). (2.27)
For the ladder approximation
S3Q "' =8SHe) ™" = ilivg + m,) (2.28)
and
3
-—G(p)=0, (2.29)
ap,
and hence
a . ’ ’.
E’;I(ngpmpg’PmP)
i ’ ’
=3 (27)°8(pe — pe)(p, — Py M (Per Poi P) (2.30)
where

Javeav e (Pes Pys P)

= (Va)ao iV} P —P¢ +1p,) +mp),, (iviip —Py)+mg),.
H P+ +10,) + My (Voo (42 — p,) + M),
TGP +ps +4py) + my) (V4P — pe +1p,) + my),,.
X (Valeers (2:31)

a,b,canda’, b’, ¢’ being spinor indices. The final form of the
normalization condition is then given by

d*p.d*p, —
3 _[ (2§ )8 7 Xpa(P;“’Pq)J(Pg,P,,;p)xpa(pg,pn)

The normalization for a three-body BS wavefunction,
Eq. (2.27) or (2.32), may be compared with that for the two-
body case, which is given by

_ . (d%dq ~
lf 2P x,,a(q)
=2P0{P0—Ep)

[Iz(qq P+ Gola.q'5 D)X palq')
(2.33)

or

“% f %#Ea(wz(q;p)xm(q) =20, (po=2E,), (2.34)

where

Lig.q';p) = (27)*8g — ¢)[SFhp+ )SE(hp —q)] !
(2.35)
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and
IoAG Plavas = (Vadaa (YD — @) + Mp)ss

+ (3P + @) + Ma)aa (Vaos- (2.36)

lil. APPLICATION TO THREE-QUARK
WAVEFUNCTIONS FOR OCTET BARYONS

The BS wavefunction for an octet baryon is expressed

as®

(O TMfq (xltbhs ()5, (x3))| P
= VM/Ep éjkl(x(g) Uﬁfﬂy ‘077)4‘ U'(:‘!r,p!y )¢p (§ ﬂ)elpx
(3.1)
where I, j, k are SU_ (3) color indices (running from 1 to 3), a,b
¢ are spinor indices (running from 1 to 4), and a, 3, y are
ordinary SU(3)indices (running from 1 to 3). The Levi-Civita

symbol €7* represents the color singlet nature of hadrons and
the spin wavefunctions

Xooe = ([(—iyp + M)/2M 175C)op tic( P),

(3.2)
Xose = (IV3)(rel — X&)
and the SU(3) wavefunctions
U¥), =€.p05B3,
(3.3)

v, = =(1/VIUE), — Uk)
are constructed in order to make the baryon behave as an
SU(3) octet and satisfy the Bargmann—Wigner equation.” In
Eq. (3.2), Cis the charge conjugation matrix and satisfies the
conditions

c*C=1, CT"=-C, C'y,C=—yl, (3.4)
and B in Eq. (3.3) is a symbolic notation for the 3X 3 octet
|

;pa(ngPv,)',(Pg’PmP)Xpa(Pg’Pq)

=§16,(pe. 22| (€ 17 =222

—iyp+ M\ _ _
—-7—"—) buc(p)—(c s

matrix (e.g., B3 = proton). By construction, the spin and
SU(3) wavefunctions satisfy the relations
Xow = —Xbuer Xl =Xil»
(3.5)
X + X¥o + Xy =0, p=£m,
and
= U

Bay?

Ul

afy —

Ui?f’h' = Ug’rlr’
(3.6)
Uy + Ulha + U3 =0, p=&7.
The BS wavefunction for the proton [notice that
U, =B} and U, =(1/V3)B}]is given by
(0T (¢, (X8 ()05 (x3)| p)
= (0| T, (x,)d § (x,)us(x3))| )
=M/E, X} (Eme™”,
where
Xpa (&m) Engzbc(f’ﬂ) .
= ™y [ v — il — XEb)] ¥, (6m)
= e™Y(xGe — x5 ¥, (Em).

Defining the Fourier transform

1 ipk+ip,m 14 4
bl = s [#utperpers*ondtnatn, 39)

and noticing that

(3.7)

(3.8)

ik

Xpabc(pg’p'q) = — g’;'b'c’(pg’pn))*(74)a’a(74)b'b(7’4)c'c

=il (e =M 5
ab

_ —ivw+ M\ _
- (c s —Z’w—)kua(p)] $¥(Der o)

(3.10)
we can compute the integrand of Eq. (2.32) as follows:

—i7p+M)

22M) 2.0

X [(Vadaw (V3P — Pe +4P,) + m3),,. (¥4 p —p,) + mc),..
+(irlip +p: + ipq) + M) Vadeo (YA P —Py)+me)..
+ P +ps +4p,) + Myl (P —pe +34P,) + My, (Valeo |

—iyp+ M
1AM pc) weto) -

<%

E 2
= = 4A_{ |¢p(p§’pn)' [(

pp+p: +1ip,)
+( - +

2M
pdp—p: +1ip,

mA)(I-,(%P—A;P"—) + mc)

—ipp+M
Lrsc)b”ua'(p)]

(3.11)

) Py
s +m8)(p(§pMp )+mc)

Pip+pe +4p,) PAp—pe +
(R (R 1,
4 (p ? M 2
—3—l¢p(P;,p,,)lz[ ;;i) +(;Z”2) —4(?—m,) ] (3.12)
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where the factor 6 in Eq. (3.11) is due to the sum over the
color index (€;, €;;, = 6) and all quark masses are set equal:

my=my=mc=m,. (3.13)

The normalization condition is then given by

fd 'ped’p, |6,(pes 2,

4 (ppe) | (ppy) (M )2] B

T + e 4(3 m, 1. (3.14)
For the condition for the case of unequal masses, see Appen-
dix C.

In order to see an explicit form of the normalization
factor, we use the relativistic wavefunction ¢, ( p;., p, ) for the
ground state in a relativistic harmonic oscillator potential, as
an example, namely,

YpEm) = Nexp{—-—6— (’;5) +§2+2(PM77) +ﬁ2”
(3.15)

(27

X

where®

E=(1/V2)( and 7= \/gn (3.16)
and X is the normalization factor. The empirical value for «
is given by®

a=04~0.5(GeV). (3.17)

In the center-of-mass reference frame, the wavefunction in
Eq. (3.15) becomes

Jolb) = Nexp( O R LRIV ))

(3.18)
and its Fourier transform is given by
97 \3( 127 \?
4o pipa) = N (2Z) (122}
a a
XCXP(———(pg + p¢ )————~(p,, + P )
(3.19)
Substituting Eq. (3.19) in Eq. (3.14), we obtain
2
= (i) L —. (3.20)
3w/ 20 —&M = 3m,)
If we assume that
M=3m,, (3.21)
we get
#0,0; p)=N = (1/\brm)a/3m)'% (3.22)

This normalization factor has been used in a computation of
the proton decay rate in the SU(5) grand unified gauge mod-
el.?
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APPENDIX A: THE RESIDUE AT THE BOUND STATE
POLE FOR THE THREE-BODY PROPAGATOR

Equation (2.4) can be written as

=3 Xpal1,2,3),(4,5.,6)

Ols(z,1213) — Nt tsts)) + -, (A1)

where s and 1 stands for smallest and largest, respectively.
Using the result of Appendix B, we have

O(s(t11213) — U(t4256))

=0 [Jt+ 6+ 8) = bt — 6] + |6 — b5 + Jts — 1,])
— 2 — bt -+ Ry — 1 — 1 + [t~ Al
+ 26—t~ 1,4+ |t — 1))

K(1,2,3:4,5,6) =

— st 15+ 16) = [t — 15| + |15 — 16| + [t — 2,])
—ll2t — s — te — [ts — 16| |+ |25 — tg— 1, — |15~ 1, |
+ 21—t~ 15 — |t ~ 5] |)).

(A2)

By explicitly singling out the bound state contribution, we
obtain

M
(2my
X e X =30 (ko)b(k > + M )0 (s(t t,15) — tatsts))
+ ooy

where
< (xa)| ko)

(0T (x )¢5 (x,)0¢, =VM/E e**y,.(&7),

|k,a) being a bound state of spin 4, mass M, and energy
momentum k, = (k, Vk?+ M ?—=|E,). The remainders in
Egs. (A1) and (A3) vanish in the limit shown in Eq. (2.21).
Using the variables X, £, 7 defined in Eq. (2.8a) and the inte-
gral representation of 8 (¢t ),

K(1,2,3:4,56) = — K Y i &M ke &)

(A3)

Olr)= —— f dpg e~ oo (A4)
2mi Do + i€
we obtain
K (1,2 3;4,5,6)
d3k (X — X) — iE(Xo — X§)
’ a ’ e
(217) E, — Xk &MY kel "7)
X0 (Xo— X — gl€om0) — 86 6:70)) +

k(X — X') — iEyXo — X 8)

K e €

% ( _ __1_) J-dpo I e~ ipo[ Xo — X § — 8(or110) — 8'1€ &b + o

2mi Do+ i€
_ iM d ‘k XX = X) = ikl X X4 1 _
(217-)4 kO _ Ek + ié
X X e &Y ke (§ M)+
(AS5)
where
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ko=po+ Ex,
8l€o70) = Bll€ol + |10 — 40| + 110 + 160l
+ [0 + 30 + 110 — 3oll + 10 — 360 + (70 + 3ol

+ | — 270 + [&ol)s (A6)
g'66:m0) =8(—£ 6, — M0,
and
Xiallm) = "7y Em), A7)
Xial ) =€ B 6 )
Notice that in the limit k;—E,, Yi. (&), Y= (§,7) reduces to

X ka (g 977)‘
Defining the Fourier transform

1 i ,
YealEm) = o Jd ped p, " P T Py (Pes ),
’ ’ 1 ’ ’ i ©$ ;’ ' ” ’ ’
X;c,a(g ’17 ) = (277.)8 fd4p§d4pﬂe(P§§ e T”/Yaka(pg’P"l)

(A8)
and recalling the Fourier transform for X (123,45,6), Eq. (10),
we get
M i
K ’ 5 £ . ;k = —i—
(Pe> Py p;_p,, ) E ki E, i
X Xka(PePy X kal Pes Pr)
+ finite terms in the limit k,—E,,

which gives (2.21).

(A9)

APPENDIX B: THE SMALLEST AND THE LARGEST OF
THREE NUMBERS

The smaller of two numbers y and z is expressed as

sp2) =4y +2z— |y —2|), (B1)
and the larger of the two is expressed
yz)=4p+z+y—2z|) (B2)

Then the smallest of three numbers (x,y,z) is given by

slxpz) =[x + s(.2) — |x — s(p,2)]
=lx+ily+zl -ty -z — =4
+z— |y —z|)ll. (B3)
Symmetrizing Eq. (B3) by the permutation (x—y—z) and
taking the average, we obtain the symmetric expression
syz) =4lx+y+2z — Yy —z| + |z — x| + |x — p|)
—2x—y—z+|y—2z
+|2y—z—x+|z—x]| (B4)
+2z—x—y+x -yl
Similarily, the largest of {x,p,z) is given by
lx.p,2) =4lx +1p.2) + |x — 1p,2)|]
=ix+iy+z+y+2)
+h -y +z+ -z
={lx+y+z+§(x—2|
+y—zl+ |z —x|)
+i2x—y—z—|y—2
+ (2~ 2= x|z~ x]]
+122—x—y—|x—yl)
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APPENDIX C: NORMALIZATION OF THE BS
WAVEFUNCTION (CASE OF UNEQUAL MASSES)

The appropriate variables for the unequal mass case are

x =% + myx, + msx;
m;+m,+m, ’

E§=x,—x; N=4x +x;—2x, (C1)
and
p=p,+p2+ps
m,—m
Pe =Mp1—pl)— ! 2

p
2(m; + m; + m;)
1

= [(2m; + m3) p,
2m, + my + mj)

— (2m, + ms) p, — (my — m,) ps],

m; + my,; —2m,
3(my + my + mj)

p, = p1+p,—2p3) —

1
= — - + .
T+ m, [ms(py + py) — (my + my) ps]
(C2)

The Jacobians of transformations (C1) and (C2) are unity,
and these variables satisfy Eq. (2.9). The inverse of transfor-
mation (C2) is given by

_P ( 1 m, —m, )
P 3 Pe 2 my+m,+my

1( m, +m, —2m, )
+—(p,+
2 \2" T Sm, iy + my)

m,
=——l P 4p. + 4.,
m, +m, + ms £ épﬂ

_p( 1 m-m )
= —— 4+
P2 3 Pe 2 m+m,+m,

1
+‘2—(P,, +

ml + m2 - 2m3 )
3m, +m, + m,) (C3)

m,
=——"2—pp. +ip,,
m; +m,+ m, Pe %pﬂ

m, +m, —2m, )
3(m, + my + m;)

P —pn'

.y
D3 _-;_(p'r]+

— my
ml +m2+m3
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Then all formulas in the text will be valid if one replaces p/3 + p, + 4 p,, p/3 — p; + 4 p,,and p/3 — p, by [m,/
(my + my + ms)lp + pe +3p,,, [mo/(my + my + m3)l p — pe + ip,,, and [m,/(m, + m, + m;)] p — p,, throughout the text

[namely, in Eqs. (2.18), (2.31), (3.11), and (3.12), where m, = m,, mp = m,, and m; =

Eq. (3.12) becomes

U

m,]. The factor in the parentheses in

(i G et +m) (B (e —20) + )
M\m, +m, +m, ¢ " M m,+m2+m3 " :

G rte )+ m) (e —r) +m)
M ,+m2+ M 1+m2+m3 "

P P
el nm) o) o

M ,-+—m2+ AR #n ! m+m2+m3

pp§ ppn

l
—
3

2 m31

41— m31

e
2o

+
TN
3

m,+m2+m3)

+{m|1—

(e
()
(
(

N

ml+m2+m3)

(ppel | 3 (pp,)
Mgz +T M”Z —(m,m2+m2m3+m3m1)<1—
M PPe 1
+(1——————)(m Y S
T (m, :z)M 2( 1+ m,

P — D¢ +§p,,) +mz)

M )_ppn)
my +m, + m, M

PP pp,,)( (
+—=+——"mjl -
M 2M g m; + my+ m,

M )_pp,,)
my+my,+ m, M

M PPe ppn)
S CA gL R C4
) M+2M (C4)

M )z
m, + my + m;
44
2m,) L )] (C5)

The normalization for the three-body BS wavefunction for unequal mass constituents is given by

4 (pps) | (opy)
3 M? M?

)((ml — my) S

= [ atped p,,|¢,<pg,p,,)|2[

_f_i([____ﬂ___
3 m, 4+ m, 4+ m;

(2m)*
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On the dimensional regularization procedure for massless Feynman integrals

M. W. Kalinowski
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It is shown that the dimensional regularization procedure for massless Feynman integrals,
proposed by Capper and Leibbrandt, is unsuitable for practical calculations. This is due to the fact
that the procedure yields a logarithmic singularity for some specific massless Feynman integral.

PACS numbers: 11.90. +t

Trying to solve the problem of infrared divergencies
arising from massless particles in QFT Capper and Leib-
brandt' have proposed the following redefinition of the gen-
eralized Gaussian integral in 2w-dimensional Euclidean
space:

d*q
G (w) J- T exp |
= (47) Y exp[b¥/x —xf(w)], x>0, weC, (1)
where the vector b, is also defined over 2w-space and x be-
haves like a c number. The function f(w) is an entire function
which satisfies the conditions
(i) f*(w) =0 forw=n/2,neN g, keN &

ko»2,ky < o0,

(i) Re f(w) > O for any w##n/2 and some Im w = 0 (see
Refs. 1 and 2, for details).

It was claimed by some authors'** that such an exten-
sion of a Gaussian integral allows one to develop a reason-
able dimensional regularization scheme for massless theor-
ies. In this comment we re-examine the claim and show that
the regularization scheme proposed in Ref. 1 is unsuitable
for practical calculations. First we calculate the integral

— xq* + 2bq)

w
_Nkn+1’

2w
f (‘; o (* + 2pg + m*) % w, zeC,

with the help of (1). Substituting b = — xp into (1) one
obtains

,[ 2 exp [ — x(g* + 2pq + m?)]
(2”)2w

= (4m)~“x Y exp [ —x(f+m* —p?)]. (2)

Multiplying both sides of Eq. (2) by x*~
ing over x one finds

!, zeC and integrat-

f (‘; o (¢* +2pg +m’)~*

(47r““’ W _ _
ra f dx x* Vexp [ — x(f+ m? p)](3)

=@m) " f+m*=p}) T'(z—w)/I(z), wzeC.

*'Supported by MNSzWT Grant No. 04.3.14.02.05.2A-1K8E and partially
supported by INT Grant No. 73-20002 A01.
®Supported by MNSzWT Grant No. 04.03.14.02.05.2A-1K 7E.
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It is now obvious that for an integral of the type

f ; z;w (%)~ *

the Capper—Leibbrandt regularization scheme consists of in-
troducing a complex mass square f(w) at an intermediate
stage of the calculations. One may expect then that such a
procedure will lead to trouble with gauge invariance of the
theory and this is indeed the case (see Refs. 1 and 2). Now let
us consider the simplest one closed-loop integral

Iy = fdz “ql¢*(p — g1 ™'

Using the standard o representation
1/¢* = §& dx exp( — ag?), one finds

ISE=7r"’f dxf dye‘yPIsz“’q
0 0

Xexp [ — (x + y)g* + 2¥( pq)]. 4)
Applying (1) and introducing new variables u = x + y,
uw =y one gets

o 1
ISE=7wa duu"‘e"‘ff dvexp [ —uv(l —v)p?], (5)
(4] (V]

wherez =2 — w.
Introducing a new variable ¢? = y(1 — v) one obtains

Ku= J: dvexp [ — uv(l — v)p?]

= J dt(l —4ty)~"2exp(—bt?
(4]

— JO dr2t(l —4at?) =2 exp(— bt?)
172

1
—l—f dx(1 — x)~ 2 exp (bx/4)
=,F (L3 — — p*u/4), (6)
where b2 = pu [see Ref. 5, 4.2(1)].
Hence

I=7 f du uw* =" \F\(1,3 — p*u/4) exp ( — fu)

and
Igp =7 ¥~ (2 — w),Fy(1,2 — wi} — p*/4f),

|4f|>p% Ref>0 (7)
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[see, e.g., Ref. 5, 3.6(13)].
Now we apply Kummer’s theorem [see, e.g., Ref. 6,
2.1.4(22)] to ,F, (1,2 — w;3; — p*/4f) and deduce that

Iy = T (2 — w)(f+ p/4)*~ ’2F1(52 = f)()
Re f>0,

1< Re w<2.
Since
31) =402 Fw—-1)w-1)
I [2w —1)]
provided Re w> 1, one may rewrite (8) in a more convenient

form
L = 1001 + 47/~ (2 — w = f / F),
l1<Rew<2 (9)

K2 —w

where
IN'w—- 1) w-—1)
I {2w—1)]

Ed

1(O)=m(p¥*~2I"(2 — w)

£i{1)=F1(52 — wig1).
Performing an analytic continuation of the right-hand side
of (9) in the variable w one gets I for weC. It is trivial to see
that Eq. (9) yields the usual pole singularity of I, at the
physical point w = 2 (i.e., n = 4).

Now let us consider an integral associated with the pure
graviton triangle diagram

= [ @k tk(k — puik + P

and assume further that p, = — p,, p3 = p} = p?#0. Ap-
plying as usual the a representation one obtains after some
calculations [with help of Eq. (1) and Kummer’s theorem)]:
=1 J dx x® = le= % F\(1,3 — p*x/4)

2

_n“’I"(3—w)(f+p2/4)"’—32F(§3 w% 4f)

Pr= —p3 =p,
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so a singularity structure of J, at the physical point w = 2 is
determined by the singularity structure of ,F, at this point.
Since it is known that ifc — @ — b = O then ,F, (a,b,¢c;z) hasa
logarithmic singularity (see, e.g., Ref. 7, p. 18) then J; has a
logarithmic singularity at w = 2 whenp, = — p,and p3 #0.
This behavior of J; at w = 2 sharply contrasts with the stan-
dard pole singularity one gets with the help of the standard
definition of a Gaussian integral (i.e., when f(w)=0,weC]}:

J5(0) = 7* J- dx x® =¥~ 1 F\(1,3 — p*z/4)
0

=V p*/4)* > r (3 —w)il(w —2)/2I (w —3),
p2= —ps pr=p-
Unfortunately, this fact remained unnoticed in Refs. 1-4.

Summarizing, we have shown that although the Cap-
per—Leibbrandt redefinition of the Gaussian integral (1)
yields for one closed-loop integral /5, the standard pole sin-
gularity at the physical point w = 2 nevertheless it results in
the logarithmic singularity for J; at w = 2 (for a particular
momenta configuration). This means that unless accidental
cancellations occur, the pure graviton triangle diagram has a
logarithmic singularity at w = 2 which would render the
Capper—Leibbrandt regularization procedure unsuitable for
the needs of a renormalization of theory.
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High frequency asymptotic solutions of Yang-Mills and associated fields

Yvonne Chogquet-Bruhat

Institut de Mecanique Teorigue et Appliquée, Université Paris VI, 75230 Paris, France

Antonio Greco
Istituto Matematico, Universita di Palermo, Palermo, Italy

(Received 19 April 1982; accepted for publication 1 July 1982)

We establish the differential equations which rule the propagation of the high-frequency waves,
disturbances of a given background, for the coupled Yang-Mills, scalar and spinor field

equations. We discuss their interaction.

PACS numbers: 12.20. — m, 03.50. — z, 03.40.Kf, 02.30.Jr

1. INTRODUCTION

We shall construct asymptotic, high-frequency solu-
tions of the Yang-Mills equations, coupled with the wave
equations for scalar and spinor multiplets via the gauge co-
variant derivative defined with the Yang-Mills potential
(connection). We shall write the equations on an arbitrary
given space time M with a hyperbolic metric g; this space
time can be, for instance, Minkowski M.

The method we use (extension of the WKB or “two-
timing” methody) is the general method of Ref. 1, extended in
Ref. 2, to nonlinear equations. The (classical) fields that we
construct are also generalizations of what is called simple
waves. They depend on the point x of space-time where they
are evaluated, on the one hand, directly, and on the other
hand through a product wg@, where @ is a scalar function on
M (called phase) and w> 1.

We prove that for nontrivial solutions to exist it is nec-
essary and sufficient that the phase satisfy the eikonal equa-
tion of the hyperbolic metric. We establish the differential
equations which rule the propagation of the high frequency
waves along the rays, and show that it induces their mixing
in generic backgrounds (cf. in particular the propagation
laws 5-8 of the two polarization modes of the spinor waves).
We also give the propagation laws of the energies of the bo-
son waves and discuss their conservation.

Some aspects of the high frequency YM field, and of the
scattering of a scalar field on a given YM potential had been
studied in Ref. 3. The interaction of an electromagnetic and a
charged field (in this context) had been given in Ref. 4, to-
gether with their interaction with a gravitational field.

2. FIELD EQUATIONS
The equations are, with F,, =V, 4, —V, 4,
+c[4,4, 1,
V. F™ 4[4, F*]
=2kR{P*S #(V*g + SA"d) + ip y*T*¥ },

(2.1)

O =VAV, ¢ + 2547V, 4 + (S(V,47)
+ (SA*)(S4,)) = K ($,¥), (2.2)
Vo=yo(V b+ T4, ¥) = H($,¥). (2.3)

The notations are as follows (the same as in Ref. 5 ® and
k are constants). x*, 4 = 0,1,2,3 are coordinates on M. In-
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dices are raised with g. V is the metric covariant derivative
(i.e., the partial derivative with respect to x* if M is Min-
kowski).

A, is a 1-form on M with values of @, Lie algebra of a
Lie group G admitting a bi-invariant nondegenerate metric
(for instance a compact Lie group). [, ] is the Lie bracket in
®.

@, scalar multiplet, is a mapping M—C”, where C" is
the representation space of Gby N X N unitary matrices. Sis
the induced representation of their Lie algebras, i.e., some
constant linear map —W(N ); § # is the element of W(N ) @ &
deduced from S by duality and the isomorphism of ® with its
dual defined by the metric of G. The * is the Hermitian con-
jugate.

Y, spinor multiplet, is a mapping M—C™ X C*, C™, be-
ing the representation space of G by m X m unitary matrices,
T:@—(m) induced representation, T # deduced from T as
S # from S. The ¥ * are the Dirac matrices.

Hand X are given analytic functions of ¢ and ¥, compa-
tible with the gauge transformations of (¢ and V¢, and such
that the Egs. (2.2) and (2.3) imply V,J* + c[4,,J#] =0
{(For physical examples of such H and X cf. Ref. 6, some are
quoted in Ref. 5), J# given by the right-hand side of Eq. (2.1).

3. ASYMPTOTIC HIGH FREQUENCY WAVES

Following the method of Refs. 1 and 2, we consider the
unknowns as functions on M X R and write them as formal
series:

Bd) = W)+ L4 (f)+ b ()4 ()
@ w

Vi) =¥ () + ¥ () 4 - ()b (32
w @

AxE) = Ay ()4 A, (o) + LA, (o) 4 (33
[43] w

We set £ = we(x), where @ is a function M—R called
the phase. For a general function f(x,£ ) we set

, d
F o (x) = a—g 0 s wos

a
9 f(x09 (x)) = Ech(xf | P—
Thus
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Vo f xop (x)) = 0p; f(x0p (x))

43, flxop(x) with 3,=—2

x*’

I
ot
We say that (3.1)—(3.3) is an asymptotic wave of order p
if when we substitute ¢, ¥, 4 with these formal series in (2.2)—
(2.4) the terms in @,...,» ~°* ' vanish. Obviously an asympto-
tic wave of order p > O furnishes approximate solutions, by
taking only a finite sum of terms and making sure that the
remainder, o ~ ?K, is such that K is bounded for all x and ¢.
The condition that a function f(x,£ ) to be uniformly
bounded with respect to £ requires that the average of its
derivative with respect to £ vanish:

1 (", _
Tlgﬁjof(x,g)dg—o.

This condition will be taken into account in the following—
0 00

notice that it forces the background 4 ,¢ ,# to be an exact

Y=

solution, as we shall assume from the beginning.

4. DETERMINATION OF THE PHASE

The coefficients of the higher powers of @ (respectively
o', ©', and ©°) obtained by substituting (3.1)-(3.3) in (2.1}~
(2.3) equated to zero give respectively:
1

1
A" @lp, — A" ppt =0, (4.1)
1
¢" @' =0, (4.2)
1
Y. ¥'=0. (4.3)

A necessary condition for all these equations to be satisfied
with nonzerozi ,q; ,lII/ is that ¢, be a solution of the eikonal
equation

@ “p, =0.
The coefficients A] , and ‘11’ are then restricted by the condi-

tions (we choose the arbitrary functions of x which come by
integration, with respect to &, to be zero)

At@, =0, (4.4)

1
Yoo, ¥ =0. {4.5)
The condmon (4. 4) expresses that the Lorentz condition for

A and A + (1/w) A are the same at first order. Indeed,

0 1 1
Vi( + Ly >=V,1A’l +A4% @, +—1—81A‘.
@
(4.6)
Remark: Equation (4.1) alone does not imply
1

@%@, =0.Butif p*p, #0, 4* = fp*, and can be made to
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1
vanish by a gauge transformation U = identity + (1/w*)U

(V]
which preserves the background 4 .

Equation (4.5), considered as an equation on C*, has a
two-dimensional vector space of solutions, the mapping
¥ °@,:C*—C’ being of rank 2, when ¢%p, = 0.

Ifh,, r = 1,2, is a basis of this space, the general solution
of (4.5} is

¥!'=Ah, +4h,, (4.7)

where A, and A, are C” valued functions on M (the products
are in fact tensor products).

5. PROPAGATION EQUATIONS

Equating to zero the terms of the next order (0°%,0% 0 ")
in (2.1)2.3) after the substitution, taking into account

1
A" @, =0,and thefact that ¢*d, ¢, = ¢*d, @, = 0, weob-

tain

1 1 0 1
20°0,4" + A", 0% + 2c[A‘¢,1,A 'ﬂ]
0 1 1 2
—C¢#[AA,A,A] _¢y(a/1A 1A +A "/1¢,{)
0o 1
—2kpr 3t (4 ) (5.1)
1 1 0 1
20°0,8" +$'3ip" + 254 g, 4" =0, (5.2
2 1 4] 1 1 (o]
PO +y 0 +y T (4, ¥ +4, )

i3 8)+m5.9) 5

For Eq. (5.1) we first note, multiplying by @,,, that it
1

implies the propagation of 4 g, along the rays ¢™:

1 1 4] 1
2¢7’1c?,1(A ”‘(pﬂ) + A", 09" +2(A%p,, A ”‘:p#]
=0.

1 1
Therefore if 4 " satisfies (5.1), and 4 *@,, = 0 on a submani-

1
fold transversal to the rays, it will satisfy 4 “@, = 0 on the

region regularly spanned by the rays.

2
We then note that Eq. (5.1) gives for any choice of 4 *, a

propagation for the metric scalar product (with values in ®)
1

of A# with any given vector field v* orthogonal to the rays,

i.e., such that @ “v, = 0. We obtain a propagation equation
1 2

for all components of 4 # if we impose on A4 # (still unrestrict-

ed) the condition
2 1
A ”A¢A +al A 1A — 0’ (54)
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which expresses that the Lorentz condition is preserved at
order 2. Equation (5.1) then shows clearly that the significant

1
part of A # is influenced only by the background YM poten-

0
tial, and only if 4,* #0. It reads
1 1 0 1
2023, 4" + 4™ 3, 0" + 2c[A ‘g d w]

=g 4]+ 20m(707)) (55

We deduce from this equation by multiplication with
1

A, contracted in ®

1 i [ 1 1
H,I(A 4 '#cp‘) + ZC[A"%,A 'ﬂ] A4, =0,

the second term, written explicitly is
4] 1 1

)] 1 1
[A g, A 'ﬂ] AL =t AMp, A"A’ (5.6)

pa’

which vanishes if 5. + ¢5, = 0, thus, if G is compact. The
specific energy of the YM disturbances is then conserved
during the propagation. In the other case we may have cre-
ation or dissipation of this energy by the background (cf. a
similar phenomenon in another context in Trautman®).

1

1
Note: 4'#4 |, is the (positive) energy of the high-fre-

quency disturbance, associated to any direction u, transver-
sal to the rays, and normalized by the condition ¢ *u,; = 1.
Indeed the energy of the field at first order is

o 0 0 [
j— ai
EYM=§gA“uAu# Faﬁ FaB—F u, Fa#uu,

with
o 4] 0 Ly 4] 1 1

F,; =3,4A5 — g4, + c[Aa, AE] + A0, — AP,
that is, up to a linear term which disappears by averag-
ingin &,

4] 1 1
Ey ZEYM(A,{) —A"%4,.
Equation (5.2) gives the propagation of the perturbation
1

¢ of the scalar field along the rays ¢* associated with the

wave fronts ¢ = cte. This propagation is accompanied by a
mixing of the components of the multiplet if the background
0
potential is such that 4 @, #0.
Note: If we did not require 4 to be also an asymptotic
solution of Yang—Mills equations, we would have, added to

1 [¢]
the left-hand side of (5.2), the term 4 * @, ¢, and therefore a

generation of a perturbation in ¢ by the perturbation in 4 if
!

A, #0.
Using Eq. (5.2), its Hermitian transpose, and the fact
that § 4 §* = 0 since the representation is unitary, we ob-

tain the conservation law for the energy of the disturbance
1

¢
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a([o]e)=o
We shall now deduce from (5.3) a propagation equation for
1

the two modes of polarization A,, r = 1,2 or ¢. For an arbi-

trary vector p, and the standard choice of ¥ matrices, the
matrix ¥°p, reads

Po 0 P ~ip, +p;
0 Po ipy +p2 —Ps
pa = . ’
g -p Py — D> — Do 0
—(ip, +p2) P 0 —Po

wherep, = @, satisfies ¢®p, = 0, itis of rank 2. The vectors
h,, r = 1,2, depending on p,
b, = (ps ip' +p*, p°0),
satisfy the linear system
Yp.h, =k pp., k, = (0,0,0,1).
The covectors (Dirac adjoints) h, = h*y° satisfy
h, %, =k,p°,, r=1.2.

Thus we obtain (forms which can be foreseen from the gen-
eral theory>®) by derivation in p, and thenin x withp, = ¢,,,

b,7h, = 20%°8;, h,y"d,h, =9°3,p°8.  (58)
Note also that 2k, =0, for all r, s if p, = @, (but
h,¥°h, #0). Inserting (4.7) in (5.3) and using (5.8) we get

_ 0 2
#°2p°0,, + 4,3, + FA( T4, ) 3 4

s=1

hz = (ipl _pz’ P3’O, po): (5-7)

k, = (0,0,1,0),

o]

+ fz,f(TAla) ¥
= Z,(H@(;Z :/);) iishs +H;(£ ;Z)qi ) (5.9)

f=1
We thus see that the two amplitudes A4,€C™ propagate along
the rays ¢ but the background potential induces a mixing of

these amplitudes and so do the background scalar and spinor

00
fields if 7, H ; (¢ ,l/l)hs #0 when s#r. Moreover the wave

1 i
A, , and the scalar wave ¢ act as source of this spinor wave,

but in exceptional background configurations.
We shall give applications of these general formulas to
current physical models in a forthcoming paper.
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A normalized and centered spectral profile P () is conveniently expressed as

P(w)=(2m)~'5> drexp| — iwr — §5dt (r — t)¥(t)], which defines ¥ (¢ ). We consider cases
satisfying certain conditions, in particular | f$dt¥ (t)] < . A “broadening strength” A = 28 is
defined, where {2 ? and O are the amplitude and characteristic time scale of ¥ (¢ ), respectively. If
we let, formally, A vary freely, P () tends to a Lorentzian when A—0 (weak broadening or
strong narrowing limit), and to a Gaussian when A— o (strong broadening limit). To deal with
situations where one of these limit shapes is only approached, for A not being small or large
enough, we obtain for P (w) and its shift, width, and asymmetry two kinds of expansions: one in
powers of A 2, starting with the weak broadening limit; the other in powers of A ~, starting with
the strong broadening limit. Such expansions should allow one to describe spectral profiles over
much wider ranges of physical conditions than does the use of just the Lorentzian and Gaussian

limit shapes.
PACS numbers: 32.70.Jz, 02.30.Mv

1. INTRODUCTION

Spectral lines broadened by random perturbations of-
ten have, in certain limiting conditions, one of two very sim-
ple shapes: Lorentzian or Gaussian.!~ In general the Lorent-
zian shape corresponds, in some sense, to a weak broaden-
ing, or narrowing, condition, while the Gaussian shape is
usually associated with strong broadening conditions.

Situations may occur wherein a spectral line only ap-
proaches one of these two shapes, without the physical con-
ditions being extreme enough for that shape to be assumed
exactly. Our purpose here is to deal with such situations, by
constructing two kinds of expansions for the line shape and
its characteristic shape parameters, shift, width, and asym-
metry; one kind of expansions is applicable in the neighbor-
hood of the Lorentzian limit, the other in that of the Gaus-
sian limit.

Such expansions should allow one to describe line
shapes over much wider ranges of physical conditions than
does the use of just the Lorentzian and Gaussian, for the
approach to these limit shapes is often slow in function of the
relevant physical parameters.’” A welcome feature of these
expansions is that some of their coefficients are mutually
interrelated, thus permitting some measure of quantitative
comparison with experiment, without need for explicit
computations.

Expansions of the above kind have recently been found
very useful for analyzing pressure broadened spectral lines.’
In the present paper, we wish to render them more readily
accessible for other applications, and present more general
results than those given for the specific needs of pressure
broadening theory.

Such expansions were hinted at by Anderson,® who cal-
culated the first corrections to the Lorentzian and Gaussian
limit widths, for a special case, and interpolated between the
two. Such interpolation, however, may not always be
feasible.’
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In Sec. 2, we set down the basic expressions we shall be
dealing with, while Sec. 3 briefly reviews the basic theory of
randomly perturbed spectral lines relevant here. The weak
and strong broadening expansions are established in Secs. 4
and 5, respectively, and discussed in Sec. 6.

The Gaussian limit naturally evokes the Central Limit
Theorem (CLT) of probability theory.'®!! In Sec. 7, we con-
sider the case that the spectrum depends in a symmetric
manner on N random variables, as is the case in pressure
broadening.” The Gaussian limit is then a case of the Central
Limit Theorem, or a generalization thereof when the N var-
iables are not mutually independent; this latter case may be
of interest per se, and will be discussed in more detail
elsewhere.

A. Notation and conventions

Given any function of time /(¢ ), its Fourier transform
(FT) will be identified with a hat:

F=Frife) =o' [ dre==ri)

Derivatives with respect to time are indicated by dots:

(1.1)

Fiey=df/de, feu)=d/de)fe), (1.2)
and with respect to frequency by primes:

Flo) = df /do. (1.3)

Convolution is denoted

rrghol = | do'flo - o). (1.4

f"¥(@) is the N th convolution power of f(w).

f(+ 0)and f( — 0) signify the limits of (¢ ) as t—0 from
above and below, respectively.

flt)~t ~—™ast— oo meansthatf(¢)behavesliket ~™as
—o0.
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f(t) St ~™ast— oo meansthatf(¢ ) vanishes faster than
t  Mast—>owo.

flt)~t ~ = ast— o0 meansthatf(z ) vanishes faster than
any power of £ ' as t—oo.

f(t)is said tobe C * at ¢, if all its derivatives of order <k
are continuous at .

The Cauchy principal part is understood whenever the
generalized function » —' appears inside an integral;
(@ + i0)~! = o' F imS(w), where & is the Dirac function;
(@ + i0)"* = — (d /dw)(w + i0)~", in the sense of general-
ized functions.'?

Complex conjugation is indicated with a star.

2. BASIC EXPRESSIONS

Although the results we shall obtain are of more general
applicability, it will be useful, for intuition, to explicitly con-
sider a simple model, that of a randomly modulated
oscillator®?

X(t) =exp[iv0t+thdt'U(t’)]. (2.1)

Here, v, is the natural frequency of the oscillator and U (¢ ) the
random frequency modulation. As a typical example, X (¢)
might be an atomic dipole randomly perturbed by interac-
tion with its surroundings.

The basic quantity we are interested in is the power
spectrum

Pv)= Lim(41TT)‘1(|JT dte_i”’X(t}|2), (2.2)
T—ew -T

where ( ) denotes a stochastic average, with respect to which
we assume time translation invariance (stationarity'):

(UE)U)U)) = Ut + Utz + 1)U ltx + 7).
(2.3)
Physically, P (v) might be the power absorbed from incident

light of frequency v by our model dipole.
It is convenient to use the relative frequency

O=v—1v, (2.4)
and normalized spectrum

Plw)= P(vy+ a)/f dv P(v), (2.5)

j do Plw)=1. (2.6}

In view of (2.6)-and P (w)>0 [obvious from (2.2)], it will be
convenient to regard P (w) as the probability density of some
random variable y, which is thus defined by

Prob{u = 0} = P(w) = (6u — )Y, 2.7)
where { Y denotes the associated stochastic average:

Say= " foPio. 23)
The moments of P (w) are thus

ury= JW w*P (w)dw. (2.9)

We assume that the first moment
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(uy=(U)=0. (2.10)
This entails no loss in generality, since a nonzero (u) can
always be absorbed in v,—v, + {uY, which is then defined as
the mean frequency.

Let us introduce the characteristic function of w,'*"!

Cir)= J.w dw €“7P(w) = (e*"Y. (2.11)
Reciprocally
P(w)=(2m)~ ‘J-w dre “’C(r). (2.12)

By the Wiener-Khintchin theorem,'* C (7) is a normalized
autocorrelation function:

C(7) = (x(0)*x(7))/{|x|*) (2.13)
= (exp[i‘r aruit )] Y, (2.14)

where we introduce; an “interaction representation”
xt)=X(te ™' = exp[ifds U(s)], (2.15)

wherein the unperturbed (or mean) time evolution is factored
out. In the special case that U (¢t )=U (0)=U is static,

Cstatic (T) - (eifu>y
Pstatic(w) = <5 (U_ CL))> = PrOb{ U= w}

(2.16)
(2.17)

are just the characteristic function and probability density of
U, respectively [in this case, (u,{ ) may be identified with
(U

The fact that P (w) is real and positive in (2.11) implies

C(—7)=C{(n)*, (2.18)

|C(7)|<C(0)=1. (2.19)
Because of (2.18), we may rewrite (2.12) as

Pw)=7"'ReP_(w), (2.20)
where P_ (o) is the “Fourier-Laplace” transform

P (w)= Jowdre ~ @ C (7). (2.21)

The imaginary part of P () is often also of physical interest.

It is related to the real part (2.20) by the dispersion relation'*
ImP, (w)= — f do'Po')/ (0 — @'). (2.22)

Usually, P(w)~w ~ * as w— + o (see Sec. 3), while

Im P_ (w)~w " is slowly decaying [as is obvious from

(2.22)].

Equations (2.12) and (2.13) are the basic expressions we
shall be dealing with. As mentioned initially, we use the
model (2.1) mostly for heuristic purposes; in fact, the auto-
correlation (2.13) can be imagined of a much more general
form, classical or quantum, than the simple expression (2.14)
obtaining for model (2.1). For instance,” x(¢ ) might represent
a quantum operator in Heisenberg representation, and {( ))
signify Tr p{ ), where p is some statistical operator (in this
case, * indicates Hermitian conjugation). We shall always
regard (2.13) as of such a general nature, and all expressions
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(a)

(b)

N

A w, W, o w

FIG. 1. (a) Definition of the shape parameters: shift = w,, width = r + v,
asym = (r/v) — 1. (b} P'(w) is the inversion of P{w) about w = 0.

wherein U (t ) does not appear explicitly are to be so under-
stood [of course, expressions containing U (¢ ) pertainto(2.1)].
Rather than P (w) itself, its shift, width, and asymmetry
are often more practical characterizations of the line shape,
especially if it is desired to study the evolution of the spec-
trum under changing physical conditions. We use the fol-
lowing definitions [Fig. 1(a)].
The shift w, is the value of @ maximizing P (w):

(dP/dw), ., =0. (2.23a)
Half-height frequencies @, and w _ are defined by
P, )=1Pw,) (2.23b)
withow_ <o, <@, .
width=r+v=0, —o_,
asym=(5)—1= L9y, (2.24a)
v ®, — o,

where r = w, —w_ andv =@, — o, are the “red” and
“violet” “half-widths,” respectively. One may also add to
this list

height = P(w,). {2.24b)

The above definitions may be ambiguous when P (w) has a
complicated shape (e.g., if it has several local extrema); but
for the situations we shall consider, i.e., the vicinities of Lor-
entzian and Gaussian profiles, there is no difficulty.

It will prove useful to consider the inversion
transformation

I. P(w)—P (0)=P(— o). (2.25)
We have [see Fig. 1(b)}: I(r) = v, I (v) = r, and
Io, = —w,, lo,=-0w_, lo_= —w,, (2.26a)
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I(shift) = — shift, I(width)= width, (2.26b)

Iasym)= (/') — 1 =(v/r)— 1 =(asym + 1)~ — 1.

(2.26¢)
We will find in general that the inversion (2.25) can be real-
ized by means of simple modifications of parameters or con-
stants upon which P (w) and its shape parameters depend.
Thus, e.g., once an expression or expansion is obtained for
o, the corresponding result for w_ can be deduced by ap-
plying I [in view of (2.26a)]. Also, if one prefers to define
asymmetry as

asym’' = (v/r)— 1, (2.27)

the latter can be deduced from asym, Eq. (2.24), by applying
I [in view of (2.26¢)]."* As a first alternative realization of
(2.25), we have, in view of (2.12) and (2.18),

I: C(r)—C(r)* . (2.28)

3. GENERAL THEORY

It proves advantageous to express the correlation func-
tion (2.13) as

C(r)=e%", G(r)=InC(7) (3.1)

In general, physical systems are free of discontinuities,
so that C(7) and G (7) are C ® on [ — o0, o0 ). This implies, by
general properties of Fourier transforms,'? that P (w) ~o ~ =

as @— 4 0. Then, all the moments of P (w) exist, and are
generated by the Taylor expansion of C (7):

Clr=(ey=14 § LY. 32
k=1 :

One then has'?

, = () Uy,
G prseny ‘“T——~l == S ———————
()= (e Y. ‘Z,‘ o

where (u* Y, denote the cumulants (or semi-invariants) of
P (w); these are essentially defined by (3.2) and (3.3), each
(u* Y. being a real polynomial in moments of order <k; the

first few have the explicit expressions [taking account of
{2.10)]

, (3.3)

(.uyc = (:u')/ = O’ (l‘l’zyc = (!l’zy’ <.u3yc = <#3)”

e = @ty = 3™, (3.4)

Although, strictly speaking, G (7}is C * for real physical
systems, there are systems which closely mimick a discontin-
uous behavior, and true discontinuities may in fact appear
mathematically when, e.g., a bulk limit, volume — o, num-
ber of particles — w0, is taken; also, certain models may con-
tain discontinuities (e.g., the square well model in pressure
broadening’). In order to cover such cases, we will allow for
possible discontinuities in the third and higher derivatives of
G (7). Because of (2.18), implying

G(—T1)=G(1)*, (3.5)
the points of discontinuity are disposed symmetrically about
the origin 7 = 0, which may itself be such a point. We shall

assume, however, that 7 = 0 is not an accumulation point of
points of discontinuity, so that there are (symmetric) open
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intervals{ — 6,0)and (0,6 ), > 0, wherein G () may be Taylor
expanded:

v

G(r20)= — 47 W, + Z . (33)
where
WYE =G+ opik (3.6)

Discontinuities at 7 = O translate as complex valued “cumu-
lants” (3.6): indeed, (3.5) implies (u* Y.~ = (u* Y. *, so that
(3.6) is real if and only if G *(r) is continuous at 7 = 0 [i.e.,
G*(+0)=G*(— O (u Y = (Y. = (Y- *) Of
course, (u*¥* = (u*Y, if G(r)is C*at = 0.

Because P (w) is normalized and centered [Egs. (2.6) and
(2.10)], implying G (0) = G (0) = 0, G (7) is completely deter-
mined by its second derivative:

G(n)= — J;Tdr'('r — 7)), (3.7)

where we denote
Y(r)= —G(r)= —(d/drIn C (7). (3.8)

The quantity ¥ (r) completely determines the spectrum P (w),
and plays a central role in the theory. It has, in certain cases,
a direct physical meaning (see below).

In order to motivate certain properties which will be
assumed of ¥ (7), let us refer to model (2.1) and (2.14), for
which case

G(T):(CXp{idet U(t)] - 1>

z dtlf dty- J.dtk(U(t WU (8)U(t)) s
“ k 59

where the “generalized cumulants” (U, U,--U, ), are essen-
tially defined®'® by (2.14) and (3.9); the first few have the
explicit expressions [taking account of (2.10)]

(Ul)c = (U1) =0, (U1U2>c = <U|U2> ’
(U1U2U3>c = <UlU2U3>, (3'10)

(U1U2U3U4>c = <U1U2U3U4> - (U1U2><U3U4>

—(UU3) (U, Uy) — (U, U (U,Ty).

Such *“mixed” cumulants have the notorious cluster property
of vanishing whenever their arguments separate into two or
more statistically independent, i.e., uncorrelated,
subsets.'®!’

Consider now'®

¥(r)= <U(0) exp [ iJ:dt U(t)] U(*r))c
=(UOU) + S FeH), (3.11)

where o

W () =J:dtk olkdtk_,--- 031:,(U(O)U(tl)...U(tk)U(T))c.

(3.12)
Note that if the frequency modulation U (¢) is Gaussian, !°
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¥ (1) = (U (0)U (7)) is just the autocorrelation of U (¢ ), and is
thus of direct physical import.

We make the important assumption that U (¢) has a fin-
ite correlation time 6.%° Then, if 7 > (k + 1)@ in (3.12), the set
{U(0),U(ty)s..., Ulty),U(r)} separates into at least two uncor-
related subsets, as there is at least one gap larger than @in the
sequence 0 <, < - < t; <7;thisimplies, by the cluster prop-
erty of cumulants, that (3.12) vanishes. We thus conclude
that

W(r) >0 ast— + co. (3.13)

We argued (3.13) on the basis of model (2.1); but (3.13) largely
transcends that model, and is presumed to usually be the
case whenever P (w) consists of a single line, or of several
mutually “interacting” lines (i.e., the physical system under-
goes transitions between the different line frequencies as
time proceeds).>' How fast ¥ (7) tends to zero depends on
each particular problem and is usually not easy to determine.
We shall assume that

]J- dr ¥ (1)| < =,
o

which happens, e.g., if ¥ (1) S 77" as 7— 0. Assumption
(3.14) is instrumental for the weak broadening limit shape to
be Lorentzian, and is justified a posteriori whenever this
shape is effectively observed to be approached experimental-
ly. In cases where (3.14) does not hold, the weak broadening
limit and expansions discussed in this paper do not apply.*

(3.14)

A. The broadening strength A and scaled function )

It is useful to distinguish between the size and shape of
¥ (7), as these two qualities reflect on P (w) in quite different
manners.

The size of ¥ (7) may be characterized (vertically) by its
amplitude £2 ? taken, e.g., as the initial value

0= (0) = (u?y = (U?), (3.15)

and (horizontally) by its characteristic time scale ©. The lat-
ter may really be defined from two different points of view: ©
may be the decay time of ¥ () taken, e.g., as**

o, f dr| 20 "
v(0)
with m > 0 chosen such that the integral exists; or, @ may be
a typical time interval over which ¥ (7) varies significantly
given, e.g., by**
6, ' =Max|¥(r)/¥(0)| (variation time scale).
(3.16v)
The times 6, and 6, will usually be comparable, and we
shall not distinguish between the two for simplicity; in cases
where they are very different [which may happen, e.g., if ¥ (7)
is strongly oscillatory, or if (3.14) does not hold, usually im-
plying ©, = =], itis better to take © = O, for dealing with
weak broadening [if (3.14) holds] and © = 6, for dealing
with strong broadening. At any rate, since O is introduced
mostly for formal purposes, i.e., to get dimensionless quanti-
ties and make relative orders of magnitude self-apparent, a
rough estimate of it suffices in practice (see Sec. 6 A).

(decay time scale), (3.16d)
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Within model (2.1), © may sometimes be comparable to
thecorrelationtime§of U (¢ ) [in particularif U (¢ )is Gaussian
or approximately so], but these two times may also be quite
different: e.g., in the static case U (¢ )=U (0), 6 = « while O
could be anything, finite or infinite. In general, we tend to
expect 6<0.%

Taken individually, £2 and @ are not very determinant,
as their numerical values depend on the choice of units (i.e.,
they only set the scale). What is significant is the dimension-
less product

A =06, (3.17)

which may be regarded as an absolute size parameter charac-
terizing ¥ (7) [this interpretation seems especially appropri-
ate when m can be chosen | in (3.16d), for then
A = fedr|W(r)|"/? is just the “area” of |¥(7)|'/3].

As to the shape of ¥ (7), it may be represented by

We) = ¥(6r)/¥(0), (3.18)

a dimensionless function of dimensionless time, of unit size
[i.e., of unit amplitude and characteristic time scale].>® We
shall also need the Fourier transform of ¥(z ), J(v), which is
real [since ¢( — t) = ¢(t )* by (3.5)] and normalized:

j do Plv) = 9{0) = L.

In the case of model (2.1) with a Gaussian modulation U (z),
¥(t ) and ¢(v) are the (normalized and scaled) autocorrelation
and power spectrum of U (¢ ), respectively—very important
objects indeed.

Defining [compare (3.7)]

(3.19)

glt)= — fds(t —s)fs) = A 3G (1O), (3.20)
we rewrite (2.21) and (3.1) as
P (w)= Qdet exp[ — i(@O )t + A %g(t)] (3.21)

or, equivalently,

P (0)=10 -'th exp[ — dw/2)t + A gt /A )].
’ (3.22)

The shape of P (w) is seen to be entirely determined by A
and ¢; @ or 2 ~ ! merely scale P (w), and the explicit appear-
ance of either may be eliminated by simply taking it as unit of
time.

Weak and strong broadening correspond to smail and
large values of the “broadening strength” A, respectively,
and our main purpose is to construct expansions in powers of
A 2and of A ~! for P (w) and its shift, width, and asymmetry.
Inso doing, we shall formally treat A as a free parameter that
can be varied at will, independently of ¥; in particular, we
shall contrive weak and strong broadening limits A—0 and
A— « . However, one should be aware that in reality, A does
not always enjoy such freedom: for one thing, A will often
not be an experimentally controllable parameter; more so,
even in theory A cannot always be varied arbitrarily, for this
is likely to destroy the positivity of P(w). It is only in those
special cases where ¥ (v) is itself positive that A may be varied
freely without risk as to the positivity of P (w) (see Sec. 6 C);
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and indeed, in the familiar examples where A is variable (the
Gaussian approximation in magnetic resonance,'™ the An-
derson~Talman approximation in pressure broadening®”),
¥(v) is the power spectrum of a physical observable, and evi-
dently positive. Still, for convenience of discussion, we will
allow A to vary freely, as already said; but we keep in mind
that in any concrete case, A has a specific value, and only in
special cases is it actually variable, experimentally or
theoretically.

B. Small and large time behaviors of g(?)

In weak (A €1) and strong (A > 1) broadening condi-
tions, P (w) is mostly determined by the behaviors of g{t) at
large and small times, respectively.

Let us start with the large time behavior. Assumption
(3.14)implies g(r ) ~tas t— + . Todisplay this explicity, let
us rewrite (3.20) as (the following results are for £>0)*’

gle)=g*t)+ B, (3.23)
where

B=id —b= — J:th Y(t) = g(e), (3.24)
b and d real, and

ghe) = [ sdstutsl vl +1)) (3.25)

increases slower than ¢, i.e., gt )/t—0 as t— « . Inequality
(2.19) implies >0; we shall assume more restrictively that

b>0. (3.26)
When this is not the case, the weak broadening results dis-
cussed in this paper do not apply.

If the integral of each term in the integrand of (3.25)
exists separately [which happens, e.g., if Yt ) St ~?ast— 0],
we have

glt)=ht)+a+pr, (3.27)
where

a=ig —c = st dsyis)= — h(+0) (3.28)
a and ¢ real, and

hit)= — fs dsiis +1). (3.29)

Because #(s) is of unit size, @,5,g* and 4 are of order 1 in
magnitude, and # {t }—0 with decay time or order 1.

It is useful to have some of the above functions and
constants expressed directly in terms of #(v), especially since
the latter may in certain cases be directly accessible experi-
mentally (see Sec. 6 C). We have, firstly,?®

glt) = f ay €= L= )

= (3.30)

Note that this is already in the form (3.27), if only we inter-
pret v~ as the generalized function (v + i0) 7, thereby giv-
ing meaning to the separate integral of each of the three
terms in the integrand [provided '(v) is not singular at

v = 0].>* We deduce from (3.30) with v~ ? interpreted as
above, or directly from (3.24) and (3.28) (¢’E dy/dv),
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b=m(0), d= —r du@,
_°°A (3.31)
a=mZ’(O), c=fw du—'él—(—li)-.
— > v

Let us note, for later use, the following realizations of -

the inversion (2.25):
I. g—g* d— —d, (g#_’g#.),
h—h*). (3.32)

As to the small time behavior of g(), it is conveniently
exposed as

or (a— —a,

glt)= — 42+ 13I(t) (3.33a)
2y & T 3.33b
= —it +k=3 20 , ( . )
where
)= _5fds(1 — s)%4d(st) (3.34)

is-of non-negative order in ¢. In {3.33b), equivalent to (3.3'),
we denoted

I, = ¢*( + 0)/ik. (3.35a)
Ify(t)isC*att =0,
I, = r dv v () (3.35b)

is the k& th moment of ;Z(v), and real [in concordance with
(3.3)]. Note that expansion (3.33b) with (3.35b) is immediate
from (3.30).

Condition (2.19) implies Re g(¢ )<Re g(0) = 0. We shall
assume more restrictively that

Reg(t)<0 fort>0, (3.36)
i.e., the value Ois attained only at = 0. This is a rather weak
assumption, as it is clear, on considering (2.14), that in only
rather special cases will C () reassume the value O outside
7 = 0.3° Whenever (3.36) is not the case, the strong broaden-
ing results discussed in this paper do not apply.

Thebehaviors g(t ) ~t as t— oo and g(t ) ~¢ 2 as t—0 [and
(3.36)] lead to Lorentzian and Gaussian spectral profiles in
the respective limits A—0 and A— .

C. A—0: Weak broadening or strong narrowing limit

Consider (3.21) with g(z ) given by (3.23) or (3.27). As
A—0, A %g(t }—>A *Bt and [in view of (2.20)]

A%
P P =7"'0 )
(a))_> WB(w) T (we_Azd)2+(A2b)2
(3.37a)
with corresponding shape parameters
shift = Af2d, width =2A40b, asym=0. (3.37b)

When (3.27) holds, Pyy(w) constitutes a good approxi-
mation to P (w) for

A«¢l, |08 |«]; (3.38)
the first condition ensures that only A 28t in A %g(t ) ever be-
comes appreciable [recall that all quantities in (3.27) are of
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order 1], the second that the Fourier operator fdr e ~ ¢
does not ““see” details on a time scale less than 1, so that it is
blind to the fact g(t ) # 8t when f < 1. Note that the frequency
range of validity, |o| €O ~', covers the important part of the
spectral profile, since width ~A£ = A 26 ~'«¢O ~! when
A 2«1, this often prompts omission of the second of condi-
tions (3.38). Validity conditions for the approximation
P (@)~Pyp{(w) when (3.27) does not hold are given in Sec. 4.
In (3.37), the width is much less (since A €1) than the
mean deviation 2; this means that most of the “energy” is
spread out in the wings of P (w), which are indeed far extend-
ing in (3.37a). Recall though, from the discussion following
Eq. (3.1), that for real physical systems, P (w)~w ~ © as
|@|— o0, i.e., P (w) eventually decays much faster than (3.37a)
in the far wings |0© | > 1.

D. A— «: Strong broadening limit

When A— w0, €* #/4) in (3.22) becomes vanishingly
small, because of (3.36), except in the vicinity of # = 0, where
A%g(t /A }— — it ? in view of (3.33); thus

P(w)—Pgy (@) = (2702)~ /2 e~ V/2Ne/ Y (3.39a)
with shape parameters

shift =0, width = 2«2, asym =0, (3.39b)
where®!

k=(21In2)"2=1.17741.... (3.40)

Here, the width is roughly equal to the mean deviation £2.
Pgg (w) constitutes a good approximation to P (w) if (loosely)*?
A>Max|¢(t)|~1. (3.41)

The main purpose of the paper is to extend the limit
results (3.37) and (3.39) by means of two kinds of expansions
for P (w) and its shape parameters: one in powers of A  start-
ing with (3.37), the other in powers of A ~! starting with
(3.39).

4. WEAK BROADENING EXPANSIONS
In this section, we construct expansions in powers of
y=A2 (4.1)

for P(w) and its shape parameters. As we here deal with the

weak broadening regime A <1, it is appropriate to use the
weak decay time (A£2b)~" of C(7) as basic time scale. We
accordingly re-express (3.21) and {3.27) as

w—Afd

o (4.2)

P. (o) =(ARb)"'P ), v=
where
P ()= j “dtexp[ — (1 + v}t + ya + yh (¢ /y6)143)

For simplicity of notation, we use (3.27) whether a and A (¢)
exist or not, it being understood that in the latter case,a = 0
and # (¢) stands for g¥(¢ ), Eq. (3.25).

In the weak broadening limit y—0,

P (v)—(1 + iv) ™ (4.4)
and the (scaled) spectrum
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Poj=r""Re P (0)>Pyp W) =71+ 1)~ (4.5)

equivalent to(3.37). Our intention is to express P +(v) and P (v)
as products of their weak broadening limits times bivariate
expansions in powers of » and v. As a first step, we rewrite
(4.3) as

Pio)=(1+ i) (e[l + (1 +0)TE)),  (46)
where

T (v) =ybrdte—rb“+"v" [ — 1]. (4.7)
There remains tc(: expand {--} in ¥ and v.
A.Case h(l)~t~~ as t»w

It is conceptually simpler to first assume that ¢(¢ ),
thence A (), vanish faster than any power of ¢ ~' as t— o0 . We
may then expand the exponentials in (4.7), obtaining

2 & (w—ify'Ty
= z ; I A AL (4.8)
where the
T,=T; +iT};=b'" ‘f dt(—itVh(t)* (4.9)
0

areof order 1, since b is, as well as A (¢ ) in both amplitude and
decay time.

1. Expansion of ﬁ(v)

Introducing (4.8) into (4.6), expanding e [recall:
a = ia — ¢, Eq. (3.28)], and rearranging, we obtain P (v) as
e~ "(1 4 iv)~ ' times a bivariate expansion in powers of ¥
and yv. The corresponding expansion of P (v) is readily de-
duced; to second order in ¥ (see Appendix B for the third
order terms)

Poj=m1 407

x[1+ (wa + (T — 4a°) + (T o + ].(4.10)
The validity conditions of the weak broadening approxima-
tion (1 + v?) ™' are again seen to be

r<l, |w|<], (4.11)

equivalent to (3.38). In (4.10), we kept e ~ "“ unexpanded, as it
does not affect the shape of P (v), and moreover, there are
cases where e ~7(1 4+ v?)~ ' is a much better approximation
than (1 4+ v?)~!, valid outside conditions (4.11).%*3*

By retaining in (4.10) terms up to orders k and jin y and
v, respectively, we obtain higher order weak broadening

approximations P‘\,’;‘Q, valid over wider ranges in ¥ and v;
e.g.,

POUw) =7l ——1117;”2" (4.12)
and35.36
—1
Pesiw)=e—72 b ury, fi’b") (4.13)

The numerator of (4.13) may also be viewed as the first term
of an expansion in ¥ alone. Approximation (4.13) is valid at
all values of v, to lowest order in ¥, in contrast to (4.5) or
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(4.12) valid only in the line center. However, one should be
aware that, although P (v)—>P ‘\‘,’V,‘?'(v) rigorously as y—0,
there may be, at finite values of y however small, frequency
ranges wherein P (v) is dominated by higher order terms in ¥;
this is because z}(v) may vanish very rapidly beyond some
frequency, while higher order terms, which involve convolu-
tion powers of ¥(v) (see Sec.6 D), may extend much farther in
frequency and thus eventually dominate, however small y.

2. Expansions of shape parameters

We next construct expansions in powers of y for the
shape parameters of P (v). We first postulate for v, and v ,
[see (2.23)] expansions

b =00+l + PR (4.14)
where v'” = 0and 'Y = + 1, as determined from (4.5). To
determine the v, , we introduce (4.10) into (2.23), then
(4.14), and expand throughout in y. Setting to zero the coeffi-
cients of successive powers of ¥, we obtain relations between
the ¥, which are solved recursively. The expansions of
width, asymmetry, and height are then deduced by use of
(2.24). We get®78

shift, = lya + (¥*/24)(@® + 12T7,) + -,

width, =2 + 1¥(@® + 4T },)

+ ¥ (T5 —2aT +2T4,) +
asym, = — ya + }y*a* (4.15)
— (¥*/12)(@® + 12aT5, + 36T7%,) + -
height, = 7~"e = "*[1 + ¢’ — 4a° + T';) + - ]
=77 [1—ye+ (e’ —4a® + T{o) + ]

The subscripts v indicate that these are the shape parameters
of P (v), from which those of P (w) are trivially deduced.

The above results were obtained under the assumption
h(t)~t~ = ; more generally, they are valid provided the
asymptotic behavior of 4 (¢) is such that the T};, Eq. (4.9),
exist for all k and j.*

B. General case

But if, e.g.,

hit)~t =7 {—l<o<w) (4.16)
(if — 1< <0, h stands for g* and @ = 0 as we convened),
the T; are ill defined whenever j — ko> — 1. This means
that only the finite form of the Taylor expansion (4.8) can be
used [up to order ko — 1 in ¥{v — i) for each value of k }, and
likewise for (4.10). The remainders may be expanded in ¥ and
v, but the result is no longer in integral powers of ¥ and yv;
rather, we get nonanalytic expansions in y and v; likewise,
expansions (4.15) are valid only up to order o + 1in 7,*° the
remainders again being expressible as nonanalytic expan-
sions in 7. Let us see this explicitly.

ast—w

1. Expansion of ,5( v}

Let us go back to (4.7) and, keeping e ~ 7** unexpanded,
obtain in lieu of (4.8),

=33 vrSy

j=0k=1 k!j!

, (4.17)
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where we define (the dependence on x is introduced for later
use)

=(ybY+'f dte "0 +0(_jt)ype).  (4.18)
0

The factor e ~ * guarantees the existence of S}, for all k and
J, but at the cost of a generally nonanalytic ¥ dependence:
indeed, it is shown in Appendix A that if 4 (¢ ) behaves asymp-
totically like (4.16), then (for k> 1)

87 =y’ " 'Pol(y) + (constjy
[1, ifj — ko> — 1 or not integer
In (), integer< — 1
where Pol(y) denotes some polynomial in y. If more general-
ly, A (t) behaves asymptotically as a sum of terms ¢ ~" [and
t ~"lInft), etc.), then

Sk =v"SH) + VIS, (4.20)

where o is the lesser of the exponents 7, and (S'};)' and (S'%;)”
are of non-negative ordersin y, (S §;)" generally bemg nonan-
alytic in y. Expansion (4.17) thus becomes

(o T USG) + v TS E)

)= ,2012’ 1 klj!

The first sum is similar to (4.8), to which it must become
identical if o = « and the S'§, are expanded in y [for the
second sum is then of order = = 0 (since ¥ < 1 here)]. The
second sum is of a very different nature, being in powers of
¥' * 7 and v rather than of ¥ and yv.

Equation (4.21) is to be substituted into (4.6), the S,
replaced by their (nonanalytic) expansions in 7, and the re-
sult rearranged; this will yield P +{v)and P (v) as products of
their weak broadening limits times nonanalytic expansions
in y and v [of course identical to (4.10) up to terms containing
ill-defined T,,’s].

,(4.19
ifj — ko = “19)

.(4.21)

The validity conditions of the weak broadening ap-
proximation (4.5) are again (4.11) if >0; butif — 1 <o <0,
we have the more stringent requirements*!

yirogl, oyt togl (4.22)

as one would expect, since 3t then has a harder time domi-
nating g(t ) [consider (3.27) with (4.16) and — 1 <o <0].

2. Expansions of the shape parameters

We now construct the expansions of the shape param-
eters for the above case that the T}; do not all exist. Because
of the second sum in (4.21), the expansion of P(v) deduced
from it [akin to (4.10)] is no longer convenient for deducing
the expansions of v | .*> We rather use the following expan-
sion in ¥ and v — x, where x is to be assigned yalues in the
neighborhoods of which we need to evaluate P(u)43

B 2 & [v—x)prk;;
-1 ; ;0 AR . (4.23)
where we define
p=7v, Ki;=ReS¥, ifo>0,
(4.24)

pP=7'""% K=y *ReSY if —1<0<0,
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the S ¥ being given by (4.18), but with 4 replaced by g* [or by
ia + h if (3.27) holds]. The K §; are hereby defined of non-
negative order in y.

We may now expand each term of (2.23) about the value
taken by its argument as y—0, i.e., we use (4.23) withx =0
for expanding P(v ), and with x = + 1 for expanding
P(v + ).** We then introduce (4.14) with y replaced by p, ex-
pand throughout in p, and set to zero the coefficients of suc-
cessive powers of p. We thereby obtain®”*°

shift, =4 pK§, +p*K %, K% +K3) + -,
width, =2+ 20(K 5 + K 5 — K %) + -
—2K 5 +2K )+

(4.25)
asym, = p(K {,

where K & =K 2 '. There remains to replace each K §; by its
own expansion i m ¥, and regroup terms of same order Note
that if — 1 <o <0, the expansion parameterp = y' *“isa

fractional power of y [compare (4.22)].

Incase(3.27) holds, and moreover h (¢ ) S ¢ ~'ast—co, it
is more convenient to have the contributions froma and A (¢
separated out; also, the K, or S;; are then of needlessly high
order in y.*S Referring back to (4.18) and (4.19), we rather
define

ry=rg+irg=y"'s; (4.26)

of non-negative order in ¥ (since o> 1 here) and obtain, in lieu
of (4.25),*

shift, = {ya + 4y’ + (*/24)(@* + 613

+ 6al’Y; — 12al%) + -,
width, =2 + W a> — 4y + 40 57+ 40 5 + -,
—va+ e’ + 20 — 40§+ 40 ) + -

(4.27)
asym, =

Clearly, once the §'; are replaced by their (nonanalytic) ex-
pansions in ¥, and (4 27) is properly rearranged, the latter
must become identical to (4.15) up to terms containing ill-
defined T,;’s [i.e., up to order o + 1 in ¥]*; of course, if
ht)~t =, (4.25) and (4.27) are equivalent to (4.15).

Let us note finally the realizations of the inversion (2.25)
relevant here [I below is inversion about v = 0; to get inver-
sion about @ = 0, add d— — d in view of (4.2)*%4°]:

Ty—(— VT3 —~ )55
Y[ 5™ Ki—{(— (4.28)

I.a— —a, or Si—(

or I'i—{— VK %

These may be used to the ends mentioned in Sec. 2.

5. STRONG BROADENING EXPANSIONS
We will now obtain expansions in powers of
e=A""! (5.1)

for P(w) and its shape parameters. As we here deal with the
strong broadening regime A» 1, it is appropriate to use the

strongdecay time {2 ~' of C (1) asbasic timescale. We accord-
ingly re-express (3.22) and (3.33) as

P (w)=02"'P, (/1) (5.2)
where
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ﬁ_,,(y):foodtexp[ — iyt —t* + e’ (et)]. (5.3)
The (scaled) spectrum
Ply)=n""Re P, (y) = Prob{ji =y} (5.4)

is the probability density of the normalized variable [recall
(2.7)]

A= — @)/ @y (5.5)
satisfying

| #Poi=1 @y=o @r=t (5.6

In the strong broadening limit e—0

P y)=Ey), Py)—{2m)="2%e- 1 (5.7)

equivalent to {3.39); we denoted™°

()

— (17'/2)1/23 — (12 _
=E"y) + iE ),

212D (y/2'}) (5.8)

where
Dx)= —D(—x)=e—*’f dre”
0

is Dawson’s integral (tabulated®'). Note that E "(y)~y ~ >
and Ey)~y~'asy— + oo.

A. Expansion of 2(y)
Let us now keep € finite and, using (3.33b), expand

. , €T, (it )< +2 ]

— €t (et) __

F(it)=e = exp kZ—l k12 {5.9)
=14 eb,(it) + €b,(it) + €bs(it) + -,  (5.10)

where the b;(z) are polynomials in z {extensively studied in

Refs. 10):
bo=1, by2)= (/32
(5.11)

baz) = (Fy/ 402" + 4T\ /3)2°,

We thereby obtain P (y) as an expansion in powers of €:
P {)=F(—d/dyE(y)

= Ze’ b, ( )E(y)

The derlvatlves of E (y) and E {(y) contained in (5.12) are
expressible as’>

(5.12)

(—d/dy)E"y) = H,(E ), (5.13a)

(—d /dy)E y) = H.(Y)E ) + B 1 ) (5.13b)
where

H, (y) = &V (—d /dy)e— (5.14)

are Hermite polynomials, and B;(y) are real polynomials of
orderjiny, e.g.,

Hyy)=y*—3y, Bly)= —y*+2. (5.15)
Note that {5.13b) is useful at moderate values of y, as we
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require below; but for large y, at which

(d /dy)*E p)~y —*~!is small, (5.13b) is clearly not practi-
cal, as it then expresses a small number as a difference of
large numbers.

If y(t) is C = at t = O, as is the case for real physical
systems [see discussion following Eq. (3.1)], the I',, are real
[Eq. (3.35b)], and F( — d /dy)is a real operator, so that E { y)
does not contribute to the real part of (5.12). the € expression
of the spectrum P y) is then

Ply)=(m)~ "%~ (1 + $ /b, [7—H, )]}
= (27)—1/2e~(1/2)y’{ 1 +1€(—[‘ /3!)(},3 — 3y + }’
(5.16)

where b; [2"—H, ] is obtained from b,(z) by replacing each z"
by the Hermite polynomial H, (y),i.e., writing (5.11) as
biz)=2,b,2", b;[z"—~H,]|=Z2b,H,.

If ¥{t ) has discontinuous derivatives at points ¢, #0,
(5.16) still applies; but note that by general properties of
Fourier transforms,'? P () then has slowly decaying oscilla-
tory tails ~y ~ "cos[yt; + (const)], not visible on (5.16)
[which rather gives the impression that P( y)~y ~ = ; this,
however, is the case only if #{¢) is C* on ( — «,00)].

If ¥(t ) has discontinuous derivatives at ¢ = 0, this leads
to complex I',’s [see discussion following Eq. (3.6)], so that
in (5.12), the slowly decaying E {(y) contributes to P (y)
= Re P}(y) aswellastoIm ﬁ+ (v),i.e., P(y)has tails ~ y— ™,
as of course expected.'?

B. Expansions of shape parameters

We now obtain expansions in powers of € for the shape
parameters of P (). The procedure is quite similar to that
used for obtaining (4.25). We first require an expansion of
P(p) in powers of € and (y — Y), where ¥ will be assigned
values in the neighborhoods of which we need to evaluate
P(y). We have, from (5.12),%

P(y)= zze*(y Y)PY,

k=0j=

(5.17)

where
Py =(1/)d /dYYnr~'Relb,(—d /dY)E(Y)]. (5.18)
We next postulate for y,,y , ,andy_ [see (2.23)] expansions
Vor =Wy O +EYD, 4o, (5.19)

with y® =0and y = + , as determined from (5.7) [and
of course leading to (3.39b)]. We insert (5.17) into (2.23), us-
ing Y=0andY = + « for expanding P(y,)and P(y , ), re-
spectively [using (5.13)], then substitute (5.19), and expand
throughout in €. There result relations between the y
which are solved recursively. We finally obtain, by use of
(2.24),54.37

shift, = — jel'} + €(— 0.531922I"; T}
+0.265961T°%) + «-r,
width, = 2.35482 — €(0.8254137"%) + €3(0.4073441 2

=0.452683I"; — 0.485461I" 2 + ... (5.20)
asym, = — €(0.3924707"}) + €(0.0770164I"
— 0.8002427; " + 0.290650I"%) + -
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where I"; and I} denote the real and imaginary partsof I, .
The subscripts y indicate that these are the shape parameters
of P (y), from which those of P () are trivially deduced.

Let us also display these expansions for the case of real
I',’s [so the I'{ —01in (5.20)}, this time not replacing irratio-
nal constants (x in the present case) by their numerical
values:

shift, = — eI, —€(— i} + &0, — A0s) + -,

width, = 2¢ + €[ L1 — 6 + ) + Dol — )] + =,
(5.21)
asym, = — €l'\(k/3) + €1 (K/18) + -,
height, = (21r)—1/2[ 1+ (=8I +40)+ =F
Expansions (5.12) and (5.20) formally apply to any func-
tion P (y) satisfying (5.6) (which can always be achieved by
suitable rescalings) and (3.36). In practice, € and I, need not

always be defined as in (5.1) and (3.35); they need only satisfy
the open relation

€T, = TR+ 0)/i* = (@*+2¥ 7, (5.22)

where ¥ (r) = — (d /d7)*In{e**"¥ [compare (3.8) and (2.11)]
and (@Y. are the cumulants of P(y) (real or complex as the
case may be); e.g., one might havee = 1, I', = (4**2¥,.In
principle, one would like € to be small and the I'; of order 1
over some appropriate range of physical conditions [ideally,
the I, to remain bounded and €—0 as some physical limit is
aproached].

Let us note finally the realizations of the inversion (2.25)
relevant here:>

LI, —(—)}r'* or (5.23)
In the case of real I',’s, I: € — ¢, implying, in view of
(2.26b), that the expansion (5.21) of shift (width) contains
only odd (even) powers of €.

(e—=—¢ I =T}

6. DISCUSSION

The expansions obtained in Secs. 4 and 5 are our main
results of practical interest. Let us add a few remarks.

A. Concerning 6

Let us stress again that the time @ need not be taken as
in (3.16) (given as appealing choices, but possibly hard to
evaluate}, but may be just a crude estimate of the time scale
characteristic of ¥ (7). In fact, since all results are evidently
independent of @ (all factors @ would cancel away if rein-
serted), one may in practice simply do away with 6, i.e., take
O = 1, in whichever units are being used (note that the latter
are usually adapted to the time scales involved); then,

A= (u*¥"? = ¢(0)'2andy(t) = ¥(t)/¥ (0)(Aandrarehere
dimensional). This is the procedure used in Ref. 7.

B. A likely form of G(7)

In many concrete cases, G (r) = In C(r) is only known
approximately, e.g., as the first few terms of an expansion in
powers of some parameter p (e.g., an interaction strength or a
particle number density):

G (1) =pG\(1) + P’Gyfr) + P*Gi(7) + - (6.1a)
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and correspondingly

V(r)= —G(r)=p¥(1) + p*Wlr) + p*¥s(r) + -,
(6.1b)
where ¥, (r) = — G, (7). This situation will be met in Sec. 7,
and is that prevailing in pressure broadening (p there being
the gas pressure).” The weak and strong broadening regimes
here correspond to small and large values of p, respectively.

Clearly, the characteristic time scale 8 of ¥ (r) depends
on p. However, it is more convenient to take for © some
(average, say) value independent of p; for simplicity, we
choose © = 1 in the present discussion.

As concerns the weak broadening expansions, it may be
useful, especially if p is an experimentally accessible param-
eter against which it is feasible to plot data, to transform the
¥ expansions (4.10), (4.15), etc., into expansions in p; this,
however, may not always be easy, for although G () will
usually have the same asymptotic properties as we presumed
of G(7) (simply because G—pG, as p—0), this may not be the
case for G,,G;,..., and certain delicate resummations (renor-
malizations) may have to be performed.>®

As to the strong broadening expansions, their relevant
parameters are here (with © = 1)

e=[¥(0)] 2
= [p¥,(0) + p*W,(0) + p*¥3(0) + -1~ /? (6.2a)
p o= RO pETO AP0
y ¥ (0) p(0) + p2(0) + -

One can see that the strong broadening expansions are now
usable only if ¥ (7) is well approximated by the first few terms
of (6.1b) even when p is large enough that the strong broaden-
ing regime obtains. In particular, if the latter obtains while
Y~pW¥,, then P (w)is a Gaussian of width ~ ¢~ proportion-
altop!/?; if the second term of (6. 1b) strongly dominates over
part of the strong broadening regime, then width ~p there;
likewise, there can be a p range wherein width ~p*/?, etc.
One may also have, e.g., width ~ [p¥,(0) + p*¥%,(0)]"/2 over
some range, with both terms inside the square root impor-
tant. Some of the above behaviors are actually observed on
certain pressure broadened spectral lines.” The behavior of
the width here provides clues as to the relative importance of
the terms of (6.1).

C. Infinitely divisible cases

As was already mentioned in Sec. 3 A, A (or y or € is
not, in general, a free parameter than can be varied at will,
independently of the function (¢ ). In concrete cases, it is
often a parameter such as p in (6.1) which can be varied ex-
perimentally, and one can see that varying p alters both A
and ¥. But even in principle, A cannot always be varied arbi-
trarily. For let us consider [taking @ = 1 in (3.21)]

P(a))=(2frr)_‘f dr e e 8

=P (0;7, ), (6.3)
g(t) being given by (3.30) in terms of IZ; the fact that
P(a3y,4)>0 ' (6.4)
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is a probability density constrains yg(t ): in particular, the
positivity (6.4) is preserved under arbitrary variation of ¥,
ie.,

Plwyy,$)>0 for any y >0, ¢ fixed (6.5)
if and only if 1Z(v) is itself a probability density, i.e., iff
#(v)>0. (6.6)

This is a well known result of probability theory, usually
stated as''

Theorem: A normalized and centered probability densi-
ty (p.d.) is infinitely divisible (i.d.) if and only if the logarithm
of its characteristic function is expressible as (3.30) with (6.6)
and f* _dv ()< .

A p.d.issaidtobei.d. ifit is the N th convolution power
of another p.d., for any V. Clearly, infinite divisibility is equi-
valent to (6.5): for if (6.5) is satisfied, then for any value of ¥
and any N, P(w;y,9) = P (@;y/N,J)"™, where P (w;y/N,§)»0
is also a p.d.; conversely, if P(w;y,¥) is an i.d.p.d., it is ex-
pressible as (6.3) and (3.30) with {6.6) and no restriction on ¥,
i.e., it satisfies (6.5).

A simple way of seeing the necessitX of (6.6) [in the case
(3. 14)] is to note that as y—0 (¢ fixed), P (v) tends rigorously
to P‘&’,;’(u) Eq. (4.13), and for this to be positive requires
(6.6). The sufficiency is proved'' by expressing the integral
(3.30) as a Riemann sum, and then noting that this corre-
sponds to a multiple convolution of Poisson and normal
p.d.’s, both of which are known to be i.d. (by direct verifica-
tion).>” This also shows that the Poisson and normal laws are
the basic elements comprising every i.d.p.d.

A simple i.d. example is provided by model (2.1) with a
Gaussian U (¢ ), for which case z/:(v) is the (scaled) power spec-
trum of U (¢ ), and evidently positive [here A = (U2)'/24,
where @ is the correlation time of U (¢ }]. Another well known
i.d. example is the Anderson-Talman-Baranger model of
pressure broadening’: there, ¥ is essentially the gas pressure
and ¥(v) the power spectrum of d,(t ), where d,(¢ ) is the dipole
moment of the radiator in the presence of a single
perturber.”*?

Also, case (6.1) with p freely variable, experimentally or
theoretically, is approximately i.d. (rigorously so as p—0)
over the range in p wherein only p¥, is sizable in (6.1b); this
implies

¥,(0)>0 (6.7)
[alternatively, as p—0, P(v)—»P Py, '3 (v), Eq. (4.13), with ¥ e-
placed by Wl(v)/ ¥,(0), again implying (6.7) since P(v )>0}.

Ini.d. (or approximately i.d.) cases, ¢(v) [or 7 1(v)]canbe
determined directly by observing P (v) at small y (or p) and
using (4.13); one may therefrom deduce P (v) at any value of ¥
[or of p over the approximately i.d. range].

D. Intermediate values of A

Outside the regimes A €1 and A» 1, P{w) can have a
fairly complicated shape. The following expansion, obtained
by expandin&e”" in (4.3), may be useful for analyzing the
structure of P (v), and visualizing its shape in terms of that of

Plv):

P)=e TP, (/yb)*[8 + vh + PR ** + ~1(vbv), (63)
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where®

AN o« N N
P (v)=7m" ‘Rej dte—ttira—t
0

_ 1 cos{ya) + v sin(ya) (6.9)
1 + v?

and £ (v) has the following expression in terms of ¢(v)

(o) = v~ 2[g{v) — $(0) — v (0)] (6.10)
{f(./yb) is the function whose value at v is f(v/yb ); § is the
Dirac function]. Note the Poisson factor e — ek /k | weight-
ing each convolution power Ak Inid. cases, (6.8) allows one
to mentally visualize the evolution of P (v) as ¥ varies. The
above expansion has a nice physical meaning in pressure
broadening, besides its mathematical and heuristic
utility. 3

E. Finite (uY

We assumed the first moment (uY = fwP (w)dw =0
[Eq. (2.10)]. When this is not the case, P () is simply shifted
by (u¥. This mean shift may sometimes be important; e.g., if
inmodel(2.1) Uis small (weak broadening), then (uY = (U ),
being of first order in U, may be much larger than the terms
displayed in expansions (4.15), which are of second or higher
order in U (since ¥ is); in particular, the shift {¢) may be
much more important than the width, as is sometimes ob-
served.” In case (6.1), i{uY = pG,(0) + p>G,(0) + - is itself
an expansion in p.

F. Remark

A welcome feature of the shape parameter expansions is
that some of their coefficients are interrelated, as is apparent
on inspection of (4.15) and (5.21). This can be very useful for
analyzing and understanding experimental data.’

7. ILLUSTRATION: A-BODY

To illustrate the results of the preceding sections, we
consider the case that P (w) depends on N “things”, e.g., par-
ticles, in a symmetric manner. We will first assume, within
model (2.1), that

Ult)=u,(t) + u{t) + - + uylt), (7.1)
where the u,(t) are identical mutually independent random
processes. We will then progressively complicate by relax-
ing, first, independence, then the strict additivity of Uin the

u;, and finally consider the general case, transcending model
(2.1), wherein U (¢ ) need not be defined.

A. Independent additive case

We suppose U (t) given by (7.1) with the u,(¢) identical
and mutually independent. Welet P,, C,, G,, A, etc., denote
the same objects as P, C, G, A, etc., but with U (¢ ) replaced by
u(t), the subscript 1 indicating that a single “particle” is in-
volved. For instance

C,(7) = (exp[if3dt u(t)]) (7.2)

(because the u; are all identical, the subscript on ¥ may be
omitted when a single u; appears inside { )). The additivity
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(7.1) and independence imply the following relations be-
tween the N-particle and single particle quantities:

Cin)=I[Cn]", G(r)=NG(r),
(7.3)

P(o) =Pt w), ¥(r)=N¥()
where P *" is the N th convolution power of P,.®° There fol-
lows that © = 6,, 2 = N /202, [see (3.15) and (3.16)],
whence the relation

A=N"'"4, (7.4)
connecting the “broadening strengths” of U (¢) and u(?).

Usually, A, is a given fixed quantity; (7.4) thus implies
that the weak broadening expansions (4.10) and (4.15) are

here in powers of N, and the strong broadening expansions
(5.12) and (5.20) in powers of N ~'/2,

B. Dependence

Letagain U (¢ )begivenby(7.1) wheretheu, (¢ ) areidenti-
cal, but not independent, as expressed by the nonvanishing
of mixed cumulants. For simplicity, we assume symmetry
(or uniformity)in the u;, in the sense that a moment or cumu-
lant involving u, ,u, ,...,u; is independent of the particular

set of k indices /|, #5,..., ix; €.8.,
Qu, ()u;, (21 )uy, (t2}ui,(t3)>c = (u\(t,Ju,(t ] Jua(to)us(25)) -
(7.5)
We then have, from (3.9) and (7.1) [notation:
¢, = Sodtu(t)],
Glr)=([[e*~ 1.
= <1'[( 1+ £)-1).
=N (e + NN =1{fi f2). +(1/3)
XNN = )N =211 fp.fs)c + (7.6)

where we denoted f; = ¢” — 1 (Mayer trick). In the indepen-
dent case, all the mixed cumulants vanish, so only the first
term of (7.6) survives, yielding (7.3). In the dependent case,
the important new feature is that G (7) is now an expansion in
powers of N, which brings us to the situation envisaged in
Sec. 6 B,with /¥ playing the role of p.

C. Nonadditivity

Now let U (¢) be only approximately additivein the «, (¢ ),
ie.,

Ult)= zu(t)+2uu(t)+ S uplt)+ o (1)

i=1 i<j i<j<k
where the 4, ; _, (#) are nonadditive corrections. We might
here proceed similarly to (7.6); but let us rather directly pass
on to a more general case, covering (7.7) as well as (7.1).

D. General case

We now no longer limit ourselves to model (2.1). We
assume that P (w) depends on N “particles” in a symmetric
manner. We denote P, ; ;. , C,, ., , etc. quantities corre-

sponding to the presence of only particles i,,i,,...,i,. The
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symmetry assumed means that C, = C, =« = Cy,
C,;, = Cyy, etc. We suppose that to a first approximation
= [[ Cir) = (G,
i=1
N
G(r)= Y G,(r)= NG,(7). (7.8)

i=1
This may be based on physical intuition, or perhaps motivat-
ed by a model of the type discussed in Sec. 7 A approximat-
ing the physical system considered.
We now seek corrections to (7.8) in the form of an ex-
pansion in powers of & for G {r). This is constructed as fol-
lows. We first write

GlZ = Gl + G2 + K12, (7.93)
where K, is the correction to the additive approximation
(7.8). We next set

Gi=G +G+ G+ K+ K3 + K3 + Ky, (7.9b)

which expresses the correction to (7.8) as a sum of pairwise
corrections plus a final triplewise correction. Continuing in
this manner, we ultimately obtain

G(r) =Gy
—ZG +ZK.} + Z Ky + -+ Kppn
i<j i<j<k
= NGI +IN(N = 1)K, +(1/3)
XN(N—1)N—-2)K 3+ + K.y (7.10)

The K ’s are obtained by inverting (7.9):
K,= G12— Gl - Gz»
K123=G,23—G12—G|3—G23—+—G1+G2+G3, (7'11)

The K, may be shown to be a sort of “additive cumulants”,
adapted to the case that we have additivity rather than fac-
torization as some “independence” condition. If a bulk limit,
N— 0, Volume— w0, is taken, the K ’s become expressible as
ordinary cumulants.’

In {7.10), G {r) appears as an expansion in powers of N,
so the situation is that discussed in Sec. 6B, with N playing
the role of p. Pressure broadening provides an interesting
example, in that the correlations between, and nonadditivity
in, the effects of different perturbing atoms, are of a size such
that the various possible behaviors for the width mentioned
at the end of Sec. 6B [proportional to N !/?, or N, or
(@N + bN %'/, etc.] are actually observed.’

E. Discussion

Gaussians, as appear in the strong broadening limit,
naturally evoke the Central Limit Theorem (CLT) of prob-
ability theory'?: The probability density of a sum of N inde-
pendent random variables tends to a Gaussian as N— w0, of
width ~N'/2. Now, the decomposition (7.1) implies the like
for the (static) random variable u [see (2.7)]:

M =p, + ts + - + iy Itis then easy to see that in the inde-
pendent additive case discussed in Sec. 7A, the strong broad-
ening Gaussian limit is just a case of the CLT; the corre-

sponding expansion (5.16) of P (y), in powers of N~ /2, is well
known in probability theory (Edgeworth—Cramer asymptot-
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ic expansion'®). As to the strong broadening Gaussian limits
in the nonindependent cases discussed in Sec. 7B-7D, they
may be considered generalizations of the Central Limit
Theorem. Such generalizations may be of interest in them-
selves, especially since they effectively materialize in pres-
sure broadening; they will be discussed in more detail in a
separate paper.

APPENDIX A

In this appendix, we demonstrate (4.19). We first re-
write (4.18) as

X =yt lf dte="h (1), (A1)
0

where z = b (1 + ix). Since we are only interested in the ¥
dependence of S,;, we do not keep track of overall multipli-
cative factors independent of y.

We will assume various simple behaviors of % (¢ ) for ¢
larger than some time 7, which may be taken as 1 for sim-
plicity. We presume that a realistic 4 (t ) behaves asymptoti-
cally as a combination of the cases considered below.

Casel{i):h{t>T)=0,0rh(t)~t = ,orh{t)~e"t ~°.
Here, we can expand S;; in powers of 7, and get

S =" Polly), (A2)
where Pol{y) denotes any polynomial or series in non-nega-
tive powers of ¥ [in the case 4 (£ ) ~¢""'t ~7, we get integrals
of the form fFdte ~*t™ = m!/A ™+, where A = yz + ik W,
which may then be expanded in ¥, provided W #£0]. When
{A2) is substituted in (4.17) and (4.27), we recover (4.8) and
(4.15) [e.g., to order ¥°, S, =0,and S|, =S 5, so the sec-
ond order term of asym in (4.27) becomes 1y°a?, as in (4.15)].

To discuss other cases, weset (& = f} + = in{Al); the
term f, yields (A2), so that we have

Case (ii): h(t> 1) =1t~ 7. We write (A4) as

S’?jzyj+11‘~ka(l9°°;7’z), (AS)
where
b
I, (abAi)= J dte %™, (A6)

The y dependence of I,, depends on the value of m:
Ifm> —1,
I, (1,005v2) = I,,(0,0572) — I, (0, 1;72)
=y~ "7 '1,(0,00;z) — Pol(y)
=y "=+ Pol(y). (A7)

If m< — 1, an integration by parts gives

I (Lwosyz)=[—e~ " +yzl,  1(1,005¥2)]/(m + 1).
(A8)

Using this — (m — 1) times if m is an integer, — [m] times
([ ] = integral part) if not, we get

L. (1,c057z) =Pol(y) + ¥ ="~ I _,(1,00;72), (A9)

wherea = lif misaninteger, @ = m — [m]if not. For m not
an integer, we have I _, = Pol(y) + y* ', i.e,,

I,.(1,e;72)=Polly) +y "L (A10)

For m an integer, we must evaluate / _, for a = 1: an inte-
gration by parts gives

0

I (l,o;yz)=7vz| dte " Int
1

) 1
.—_yzU —J ]dte"’z’lnt
0 (0]

=yz| y 'due *Inu —Iny)+ Polly)
0

Sy =v""Polly)+ Sz, (A3) ( " Polly)
= (const)in ¥ + Pol(y).
where (Al1)
Sp=y'* 1f dte "'th(t) (A4) Collecting results, we have
1
]
1 if m> — 1ornot an integer
) — -m—1 Al2
L (1, a0572) = Polly) + ¢ {lny if m = integer < — 1 ’ (Al2)
|
whence (4.19), in view of (A3)—AS) [note that we may add 1. Weak broadening expansions
factors such as In (¢ ) to the # ~ “ dependence without altering [We here denote g(t )=g() — (idf — c).]
(4.20)]. -
ﬁ(v)zﬁ_‘e‘V‘Re{f dte"”’*yg"/”‘”], (B1)
(1]

APPENDIX B

This appendix contains additional details concerning
the weak and strong broadening expansions. In particular,
we here display the expansionsof v , andy , ,and also high-
er order terms excluded from the main text to avoid clutter-
ing. Some of the definitions are repeated for easy reference.
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where ¢,b,y are real constants, and g(t )~ — bt as t— o,
b>0. We set

— yc

_B() (B2)
v

Ppy=m"1-2
1
which defines B (v).

Antoine Royer 392



a. g(t) = — bt + ia + h(t)

B(v) =Re{e”[1 —iv + (1 + )T )]}, (B3)
where
TO)= § 57+ 0= T/ k1, (B4)

Expansion (4.10) (to order 7).

T,=Ti +iT} =bf+'f de(—itVh(t) (BS)
0

The following expansions are valid up to terms containing
divergent T};’s.

Bw)=1+wa+ (T —1a®) +yVTio + ¥ (—aT, +4T5 + T4,)
+ =3+ T+ Vv (—aTio +4T5% + T,) + ¥v’TT, + - (B6)

Expansions (4.15) (v , and higher order terms).

shift, = ... + ¥} — 4aT}, + 1T, +1T5,) + (¥*/240)(@® + 180aT;, + 60aT}, — 60T [, + 60T%, + 20T'5,) + -,
vy = + 1+7a 704’ + Tio)+ (r/12)@ + 12aT ', F 12aT, + 1275, £ 6T 5 + 24T7,) + -,

. : (B7)
width, = ... + (/*/48)(a* + 24a°T ', + 432aT;, — 96aT, + 48T 7 + 48T 7, — 48T}, + 16T %) + -,
asym, =... — ;‘—4 (@* —24a°T, — 24a°T"', — 48aT, + 12aT;, — 72aT 7}, + 72T, + 36T5,) + -
|

Inversion I: a— — a, Tj;—( — JT'%. B8) p —pitik !ﬂ)“Re{rdt( it YIge Y — lia — b ) ]}
An alternative procedure. In lieu of (B3), we may use / o
B (v) = cos(ya) + v sin(ya) + (1 + v*)D (v), (B9) (B11)

where

D)= Re[J- dte ™ [e"ﬁ’/'i’bi_eiya—r]}
0

00 o0

= $ Sy,

k=1j=0

(B10)

(note that D,; = T'};/j1). the expansion of b (v), immediate
from (B9}<{B10), and those of the shape parameters in terms
of the D,;’s, are somewhat simpler than (B6) — (B7):

shift, = Jya + (*/24)(@® + 12D,,) + 4¢*D,, + (¥°/240)(a® + 60a*D,, + 120aD,, + 120D,,) + -,

v, = +1l+4+yat 7’2(502 + Do) + (¥*/12)(@’ + 12aD,y + 24D, + 12Dyg) + -,

(B12)

width, =2 + §p(a? + 4Dyo) + 29°Dyo + (¥*/48)a@* + 72a°D,o + 336aD,, + 192D, + 48D %, + 96D0) + -,
asym, = — ya + }2a* — (*/12)(a® + 12aD,o + 36D,,) — (*/24)(a* — 24a>D,, — 72aD,, + 24aD,, + 72Dy;) + -,

Inversion I: a— — a, D;;—( — }’D,,. (B13)
In case the T}; do not all exist.
Tw)= S $y*rwiry/uem, (B14)

k=1/=0

ry= yibi+ IJ. dte ="+ 2_jryh(r)k, (B15)
0

Expansions (4.27) (v, and higher order terms).

vy =va+ P £ 1P FI% + 20 &)+ (/1206° — 120 % F 6I'% F 6al%, + 12l

+24al " + 121 7 + 24al" " F 24al" ) + -,

= +I'x"
—2al "+ +2al '+ g))+

width, = - — 1’ [ +al'}; — 2aI'% — 2a(l" 5" —

(B16)

asym, = - + (¥*/12)( — a@® + 12al"Sy — 12aI'Y; + 6"y, + 6al’; — 12al’%, + 12al 5" — 12 5" — 24al & *
+24al b —36al 5"+ 12 5" + 24al’ ;" — 24al” 5%) + -,
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Inversion I: a— — a, I';—( — VI ™*. (B17)  Wedefine

—_— x‘= w 1
b.3() = — b+, ) ~t=7 85 t—sco, — T<O< oo p=v, Kiy=ReSy ifo>0,

(here ¢ =0) p=v""% Ki=y *“ReS7 if —1<0<0,(B19)
ﬁ(v) = w“‘ReU dtexp[ — ivt — ¢t + yg*(¢ /vb )]}. where
0 ©
(B18) S = (yby'“J; dte=™U+ (_jrygMe)k. (B20)

Expansions (4.25) [notation: K # =K &', K¥=(K3},)’, K > =(K &), etc.].
shift, = ... + (0*/8)2K §} + 1K1K + K KDY + KK + K5 K, +3KS,) + -,
vy =p(FK% +2K$)+4p (£ 2K F8KGK § —8K K f F2K5 FKY +8K 5%+ 16K $K (f + 4K 55) + -
width, = ... + }p?[2K®2 — 4K (K 5 + K 5) — 4K (K (5 —K 1) — 2K % — K ®
+HK §7+K o) + 8K GK T — KoK 1)+ 2K 56 +Kg5)] + -, (B21)
asym, = ... + }p?2K QKO + 4K %K 1 +4K%K 7 + K2 + KO K% — 6K K 5 +2K0,K 13
+K5, +4K 5P —8KFK L —8K 1Ko —2K5 +4K 5° — 8K oK [T +2K 55) + -,
Inversion I: K {;—( — YK ; *. (B22)

2. Strong broadening expansions
Py)= 1r“ReU dte— "~ /27" exp i M (it +2/k + 2)!”. (B23)
(4] k=1

If the I", are real:
Expansion (5.16) (to order €°).

Ply) = 2m) 12 V(1 + €T /3)0° — 39)+ ElT/4)3 — 677 + ) + (Fy/3P(— 15+ 452 — 1594 4 ] + ],

(B24)
Expansions (5.21) (v, and higher order terms).
Ve = £+ eNed —1) £ D — 4 + ) + Do — I
+ (@3 T — 3 + )+ N0 — e + 12 =)+ D — 6+ )] + -,
asym, =... — € I3} — 1) + Tilo( — 51 + 36) + Daley® — 3] + -, (B25)
where
— 1/2 _
k= (21n2)'"? =1.177410--, (B26)
Inversion I: € —» — €. (B27)
In case the I',=I"; + il"} are complex:
Expansions (5.20).
y, =tk+e[ L’ —4) + i psk’ —ps—ipx+14p)] + €2(28 terms) + -, (B28)
where
p=@2/m"? s=2"2D(2"?) =2"%0.536196), D (x)= e—"’f dte'’, (B29)
0
shift, =... — (=} P+ {7 'y + 08924490 [ I'? — { ' — 0.4462245" ') + -,
width, = ... — €¥(— 1.23104I" ?I"{ +0.636072I" | T"; + 0.758722I'5I"% + 0.530579I % — 0.209756I"%) + -,
asym, = ... — €)( — 0.520574I" 7 — 0.314070" ’I"§ + 0.724368I" [ I"; + 1.81145I %
+0.114072r s —0.169031"; — 0.7673614 'S + -, (B30)
Inversionl: e — —e¢, I, > T'F. (B31)
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*Let us recall a few well-known results concerning Fourier transforms and
dispersion relations: given

foy=en [ dre i) fuio)= f die=“f1),
— a0 0
we have the dispersion relation

Folw)= — ,f"’ do'f(')/ (o ~ o — i0)

= —i f - do'flo — o'/ — i0),
where T
@—0)"'=0""+ irdlw).
If f( — t) =f(¢)* so that f(w) is real, we get

Ref, (@) = rflw), Imf,(0)= — f do'flo)/(w — ).
Note that  f'=df/dw)

~

Pl = — ifwtdze—"wf(:)
= iJ'm do'flo\/lo— o' — 0P =— iJ.m dw'fle — o'Vl — D),

where (@ — 0)72 = — (d /dw)(w — 0)~" is essentially defined by the last
equality.

13 Also, relations (2.26) will provide simple ways of testing the correctness of
the various expansions we shall obtain for P () and its shape parameters.
Such checks are most welcome, in view of the tediousness of the algebra
involved (mostly performed by computer).

'R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962); A. Royer, Phys. Rev. A 6,
1741 (1972), Appendix A.

Cumulants are defined, in general, by posing In{exp(Z;4,U,)}

= (exp(2,;4,U,) — 1), (A, arbitrary constants), expanding both sides and
equating corresponding terms. If we let the variables U, be independent of
thevariables V},sothat(exp(ZU + ZV)) = (exp(ZU)){exp(ZV)), weget
In{exp(EU + Z¥)) =In{exp(ZU)) + In{exp(ZV’)), whence

(exp(EU + ZV)— 1), = (exp(2U) — 1), + {exp(ZV} — 1), showing
that all cumulants mixing U’s and ¥’s vanish (cluster property).

'®This is obtained by using time-translation invariance inside ¢ )_, which
follows from Eq. (2.3). We have [denoting ¢ (a,6) = f¢dtU (t)):

G(r) = ie*OU(r)), = i(e'~"OU(0)),, whence
G(r)= — (U(—rje* =" OU(0), = — (U(0)e¥*"U (r)..

'®A stochastic process U (¢) is called Gaussian if all the cumulants
(U(t,)U(ty)--Ult,)). vanish for k> 3; see, e.g., Ref. 13,

2°As a counterexample, suppose that U (¢ ) can assume values in the vicinities
of two well-separated frequencies v, and v,, without transiting between
thetwo, i.e., if U{t }is near v, initially, it stays so forever; P (w) then consists
of two “noninteracting” lines. Let us denote v; + AU,(¢ ) histories in the
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vicinity of v,, call ), the average over such histories, and assume
{4U;), =0. We then have (U) =1Z7_ ,(U),
=43Z{v, + AU,), = }{v, + v,) = 0 if we assume v, = — v,. The auto-
correlation (U(0)U (1)) = 1Z{UO)U(¢)),
=12({v, + AU,(0)][v; + AU,{1)]);
=12{v} + (AU,(04U,(1)),] >4} + +3)#0 as t—co, i.€., the correla-
tion time is infinite.
2'This means that x(¢ ) in (2.13) must be suitably chosen, e.g., as a dipole
operator sandwiched between projection operators eliminating undesired
frequency components (see, e.g., Ref. 7).
2Ifwe had, e.g., ¥ () ~ constant as 7— c0, then G (7) ~ 7* as 7— o0, and the
weak broadening limit shape would be Gaussian. Or, if ¥ (7r)~7"¢,
0 <€< 1, then G (1)~ 7~ © and the weak limit profile would be

dt exp[ — iwt + (const)t >~ €]. We do not consider such possibilities.

BQther possible definitions are {provided the integrals exist): (i)

6, = fgrdr|¥(r)|"/S5dr|W(n)|™; (ii) O, = {5 rdT ¥ (r)|/|S5dT P(rl],
in which case |a|/|f | = 1 [a,8 defined in (3.24) and (3.28)]; (iii)

6, = Refydr ¥(r)/¥(0), in which case b = 1 [see Eq. (3.24); if 6, =0,
b =0 and the weak broadening limit as discussed in this paper does not
exist]; (iv) @ ~' = [* _ dw|wV¥ (0)|/¥(0), etc. The optimal choice should
make most constants (a,8,T};,I",...) of order 1; e.g., ©; is sometimes used
(e.g., Ref. 3); however, if ¥ () is strongly oscillatory, &, will be much
smaller than the decay time of ¥(7), and some of the T}, Eq. (4.9), may
then be inordinately large. [To see this, denote

H(r) = §gtdt ¥ (¢ + 7)/¥(0); then, in view of (3.18), (3.29), and (4.9),
h(t)=OH(18),T,, =b/*'0 ~%* /=" seridr H(r)* Suppose ¥ (7}
oscillates with a period O, and vanishes beyond 7 = 6, with 6,>6,.
Then H (7) is of order 62 in amplitude and 8, in decay time. If ¥ (7},
thence H (7}, are real, H (r)* does not oscillate for k even, so that

feridr H(r)*~08 %04, thus, if @ = 6;~6, (=b = 1),

T, ~(6./6,/" '>11

2That is, Max|d¥ /dr| = ¥{0)/6,, so that ¥ (7) varies by roughly ¥ (0}
during an interval of order 8,. It might be more proper to use Max| ¥ (7}|
instead of ¥ (0) in (3.15)—3.18); however, this should make little difference
for we generally expect | ¥ (7)] S | (U (0)U (7)) | < ¥ (0), because of the expo-
nential in (3.11).

Z5This is because we expect the exponential in (3.11) to cause ¥ {r) to vary
and decay more rapidly than (U (Q)U ().

*That is, ${0) = 1; decay time = 1 or Max|¢{¢ )| = 1, according to whether
(3.16d) or (3.16v) is used.

ZEquation (3.23) is obtained by setting f§ = & — f° in (3.20). Each term
in (3.23)~(3.29) may be continued to negative times in two different man-
ners: (i} analytically, which will be indicated by a subscript “a”; thus g#(z),
h,(t),c,,(Bt),are given by (3.24)3.29) for both positive and negative val-
uesof't; (ii) by requiring that the symmetry f{ — ¢) = f(¢ }* be obeyed,; thisis
what will always be understood except when the subscript a appears);
thus,e.g., / (¢ Jatnegativerisdefinedbyh ( — ¢) = h (2)*,¢ > 0;likewisefora,
B, etc. Note that dg*/dt and A (¢ ) are discontinuous at ¢ = 0, so that their
FT’s have slowly decaying tails [see (6.10) for 4 (v)]; by contrast, k,(t) is
continuous at ¢ = 0, but does not satisfy #,( — ¢) = h,()*. The decompo-
sitions (3.23) and (3.27) with analytic continuation to negative ¢ are of no
interest, since, e.g., /(¢ ) does not vanish as t— o0 [contrary to 4 (t)), as is
desirable, but rather becomes linear in ¢ [to see this, assume for simplicity
that (¢ ) vanishes outside ( — 1,1); then, for T 1,

(= T)~fT*\sdsfs — T)=T 5* ,ds is).]
%More generally, for any function f{¢) = = _ dv e*f(v):

fer="S epovit + [ dvoffe =S ey,
wherein f(v) may be replaced by F (w)/(iv) for any k<n [since .
SEeY =57 dv e ) fo)=f v)=2m7)~ ‘ffkm dte”Mif(e)= (i) v)] .
In (3.30},g{0) = ¢(0) = O and 9(t) = — (¢ |=>fo) = v4{o).
®Defining ¢, (v) = SFdt e ~ ¢t ), and using the formulas in Ref. 14, we
have, from (3.24}3.29),

(A)B= —§.(0)= —ff dv o)/ (o + 10) = —ff " dv dol/o — mH0),

B)h(t)= — i, (0)= r dv e {v)/(v + 10)?
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- fm dv & [§(0) + itdi{o)] /(v + 0),

Ca= —h(+0) =i, (0)=imd(0)— f dv §'(v)/v.

We denoted ¢/ (s) = {s + ¢) the translate of ¢{s) by ¢, so that
Y (v)=(2m) 5= _ ds e "9 (s) = e™{v). Equations (3.31) follow from (A)-
{C). Equations (A}~{C}, together with (3.30), yield (3.27). Note that (B) and
(C) exist only if '(v) is nonsingular at v = 0, i.e., if | [T #d? (¢ )| < o, as was
assumed for obtaining (3.27); if this is not the case, but l2'(U) is nonsingular at
v =0, as implied by (3.14), we rather have (3.23) with

gYt) = 5= dv(e™ —1) Y{v)/(v + {0) not separable into 4 (t) + a. As said

in Ref. 27, the above expressions are of interest only if continued to negative
tbyrequiringf( — ¢) = f(¢)*,i.e.,by replacing (v + i0)by (v — /0). Note from

(B) that A, (v)=FT{h,(t)} = {v)/(v + i0)?, the singularity at v = O reflect-
ing the linear divergence of 4,(¢) as f— — o« (see Ref. 27); by contrast,
A {W)=FT{h(t )} = 7~ Ref§& dt e~ ™ (t)is regular [see (6.10)], since
h(t)=h(—t)* vanishes as t— + .

% An example where this occurs is the square-well model of pressure broad-
ening (Ref. 7) in the static approximation — a rather artificial case indeed
[there, ¥{t) = V,W %' where W is the well depth, ¥, the interaction
volume].

311n Ref. 7, we defined « = 2(2 In 2)'/?, i.e., twice (3.40).

32The approximation (3.39) is good if, loosely, |A %(t /A )T (¢ /A )| <1 for
|t| %1, i.e., within the interval wherein e ~ """ is sizable. Now,
| (r)| <Max|¢t)|/3! < 1[sinceMax |¢{ )| = 1ifOisdefinedby(3.16v);see
Ref. 26]. We thus get (3.41). Much more sophisticated and rigorous valid-
ity conditions for the related “normal approximation” in probability the-
ory may be found in Refs. 10.

3A. Royer, Acta Phys. Pol. A 54, 805 (1978).

34 According to (4.10), the validity conditions of the approximation
e~ (1 4+ v*)~'are |yv| <1 and 7«1 [rather than <1 in (4.11), required to
make e~ "~1].

33]. Szudy and W. E. Baylis, J. Quant. Spectrosc. Radiat. Trans. 15, 641
(1975); see also Ref. 33. .

36To first order in v, Y(v) = Y(0) + v¢'(0) = 7~ (b + va), in view of (3.31),
leading back to (4.12).

3The tedious algebra was performed by computer in the ALTRAN lan-
guage [W. S. Brown, ALTRAN User’s Manual, 3rd ed. (Bell Laboratories,
Murray Hill, NJ, 1975). Higher order terms are displayed in Appendix B,
to avoid cluttering the main text.

*¥Numerical evaluation of the coefficients up to 8th order in ¥, using the
square-well model of pressure broadening (Ref. 7), indicates a radius of
convergence of order 1 (as one would expect since g and the T,; are of
order 1).

3*We may have, e.g., i (t)~¢ ~ """ with o>0and W #0 (see Appendix A).

*Let 0>1 in (4.16); T, Eq. (4.9), exists if j < ko — 1, i.e,, if j<o — 1 since
k>1.In{4.15), T,; appears only in terms of order »j + 2, since T}; always
appears in the combination y* +/*+'T,;, k> 1, in (4.8). Thus, ill-defined
T,,'s appear only above order o + 1 in (4.15). (This remains true if

—l<co<l)

41To determine the validity conditions of (4.5), let us write the real part of

(4.3) as

B)=(14v3~'[1 + (1 + v*)Re T*0)],

where T ¥(v) is given by (4.7), but with 4 (t ) replaced by g*(¢) = a + A (t). We

have g¥(t)~¢ ~“as t—~o, where € = 0 if 030 in (4.16), and e = ' if

— 1 <0 <0. Defining S ¥ by (4.18), but with 4 (¢ ) replaced by g*(¢ ), we have

again (4.21) with the replacements T—T¥, S—S¥, g—¢. There follows, to
lowest orders in ¥ and v, and neglecting constants of order 1,

T*)=(yS%' + VoS + )
+ TS vy SWT 4 )y (1 4 o)),

whence P(u)~(1 + v3)~'[1 + ¥ * {1 + |v])]. Thus P(o)}=(1 + v}~ if
Y+ <1 and 7' * “|v| €1; these become (4.11} if 030—€ = 0, and (4.22) if
—1l<o<0=€e=0.

“2If we were to substitute (4.14) and (4.6) with (4.21) into (2.23) then, because
(4.21) contains an expansion in powers of v [rather than of yv as in (4.8)],
and v9 70, each power of ¥ would appear in infinitely many terms of
(2.23b). Although such series could presumably be evaluated, the above
method is clearly not pleasant.

43Equation (4.23) is obtained by setting v = x + (v — x)in (4.3), and expand-
ing in v — x and g*. Note that such expansions do not provide practical
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approximations to P (v) itself, as they are usable over frequency ranges
|v — x| €1 much smaller than the width of P (v) [unlike (4.10) which pre-
serves (1 + v?)~! unexpanded].

“‘We thereby obtain: 2, ,julp*K §,/(k }ft) = 0 and

vy — (£ D)IPK S/ 1k W) = 12 vip"K /(K ).

“*Note that S5} = Refgdre "+ ™ ( — it} = Re[il[(i — x}* 'k 1]} are
just numbers. In all results, the S3¥ are given their numerical values.

4%This makes them appear needlessly early in the expansions; we rather
want such quantities to appear in terms of the order in ¥ at and beyond
which they actually contribute, once they are themselves expanded in .

“7Equations (4.27) are deduced from (4.25) by substituting
IS % = v[cos(ya)'§; — sin(ya)I";; ], which follows from expanding (4.3) as
Pv)=m""e "I _o(v — xP¥*Re{e™yI};}, and comparing with
(4.23).

*5These follow by applying (3.32) in (4.9), (4.18), etc. The realization
Ki—(— VK ;*also fogows directly from expansions (4.23), since we
hive, setgng x= —y,Pv)=Z@+ylp*K 5’ and
IP() = P(—v) = 3(— v+ yp*K * = Z(v — yp*( — VK ;7 *, whence
LK{—(—YK « ~ on comparing with (4.23). There are still other realiza-
tions, e.g., I: y— — v, Ty—{ — )*+/+'T%.

49As mentioned in Ref. 15, these realizations, together with {2.26), provide
welcome tests for the exactness of our expansions. They imply, e.g., that in
(4.25), shift consists of terms o™ [, K, ; with Zj; odd, and that in width, the
K ;5 appear in combinations, e.g. K [/ + K i, of definite parity under 7.
There are some other useful tests: e.g., since only the combination p*K,,
appears in (4.23), all terms in (4.25) must be of the form p™ I1,X 4, With
Zk; = N;likewise, all terms in (4.15) must be of the form ¥*a™1, T, , with
m+ 2k, +j +1)=N.

5We used [see Ref. 51, p. 302, Egs. (7.4.6) and 7.4.7)]
sedt eV cos(yt ) = (w/2)} 2e — 1/,

J-Sedt e (1/2p :sin(vt) e~ (1/72)* _f&v,ds e(l/l).s-z = 21/2D (y/zl/2)'

S'M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1964).

52Equation (5.13b) follows from repeated use of
(d/dy)E(y) = — yE'(y) + 1, as compared to (d /dy)E "(y) = — yE"y).

BP_ ()= fedtexp] —iYt —it* — iy — Y 1F (it)

=F(—d/dY)eY~"E(Y) =27_o€eb,(—d/dY)Z7,
(v — YY(d /dYYE(Y )/}, whence (5.17}{5.18).

3*Numerical examples of these expansions, using the square-well model of
pressure broadening (for which the I', are complex) are found in Ref. 7.

35 As mentioned in Ref. 15, these provide welcome tests for the exactness of
our expansions. There are other useful tests: e.g., since only the combina-
tion €I", appears in (5.9), all expansions must consist of terms €*I1,I"
with 2k, = N.

36See, e.g., Sec. VI of Ref. 7.

57See Ref. 11, Chap. 9. Poisson laws have g{t} = ¢,(¢**' — 1) + ic,t, and nor-
mal laws have g{t) = ¢,¢?, ¢; constants. A normal term arises in the Rie-
mann sum (3.30) if 12/(:)) has a & singularity at v = 0, since
Lim, o5 . dvfe™ — 1 — ivt)J{u)/v* = — t2Limf* _dv {v). Note that
the weak broadening limit profile is a Poisson law, while the strong broad-
eping limit profile is a normal law.

8P ,(v) is sometimes proposed (Ref. 5) as an improvement to the pure Lor-

entzian (1 + v?)~". The shape parameters of P, (v) can be found in closed
form:

shift,, =4, (v, ), =24(1 £4B),
asym,, = [(B+ 1)/(B—-1)] -1,

width,, = 243,

where 4 = [ — cos(ya))/sin(ya), B = {[3 — cos(ya)}/[1 — cos(ya)]} /2.
These may be expanded in powers of g, of course yielding (4.15) wherein
h (¢),i.e,allthe T, , aresetto zero. Theapproximation P, (v)is useful ifh(t)is
small, making the T, (and also 2 and d) small. But in general, it is more
consistent to use (4.12), since T};’s appear at order 7* in (4.10) (see Ref. 33).
Conversely, one might choose not to expand e in obtaining (4.10) and
(4.15), which will then contain cos(ya) and sin(ya) instead of powers of a.

39E.g., pressure shifted hyperfine lines; see, e.g., R. R. Freeman, D. E. Prit-
chard, and D. Kleppner, Phys. Rev. A 13, 907 (1976).

SNote that P{w) = P #Mw)is infinitely divisible (i.d.) if and only if P(w) is.
But if a bulk limit, N— 0, Volume— 0, N /Volume = 7 finite, is taken,
as, e.g., in the Anderson-Talman-Baranger treatment of pressure broad-
ening (Ref. 5), there of course results an i.d. spectrum.
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Recursive formulas for Morse-oscillator matrix elements of arbitrary powers

of1 —exp[—a(r—r.)]
Loc Binh TranandJ. N. Huffaker
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The variable y = 1 — exp[ — a(r — r,)] is a natural one to use in connection with a Morse
oscillator. A simple formula is derived via the factorization method relating the Morse matrix
element {0y "|0) to (O|y" ~!|0) and (O|y" ~*|0). Another simple formula is derived, with which
all matrix elements (v'|y"|v) can be calculated recursively, starting from values of {0y "|0).

PACS numbers: 34.20.Be

1. INTRODUCTION

Eigenfunctions of the Morse oscillator are solutions of
the Schrédinger equation

d*y,/dr + (u/fNE, — V', =0, (1a)
where

y=1—-exp(—ag),
andy, V,, a, and r, are parameters describing the oscillator.
The standard way to solve this eigenvalue problem is to treat

it as a class I, B-type factorization problem.! When we de-
fine the dimensionless Morse parameter”

q=r—r,, (1b)

o= (2uV.)"*/(ah), (2)
the energy eigenvalues are
E,°=V.[20v +§)/o — (v + }*/d?], (3)

the physically normalized ground-state eigenfunctions are
given by?
¥,°lr) = [a/T"(25)1"*(20)e ~ *“exp( — ge ~“), (4)

where s = o — 4, and the normalized excited-state eigen-
functions may be calculated recursively from lower-state ei-
genfunctions for other Morse oscillators by the raising and
lowering operators %, * (o), as follows:

'pva:‘%u_(a)wu—la_l’ (Sa)

Yoor°T =4, oW, (5b)
where the operators may be written in the form
B, *0)=[v20 —v—1)] 7 "*[}e* — s + d /dx], (5¢)
where

e =20ge . (5d)

Using Eqgs. (5a)—(5d) one can also obtain the recursion
relation

ex¢ua=ca¢va+Dva¢’uAla']+Du+la+l¢u+la+1’ (63.)
where
C°=20, D,°=uv20—v—1) (6b)

Because Eq. (5¢) contains an external positive sign, the rela-
tive phases of the eigenfunctions are fixed: they are all posi-
tive at the inner “classical turning point.”

An alternative way to solve Eq. (1) is via class I, F-type
factorization®: Eqs. (3) and (4) are again obtained, but now
normalized excited-state eigenfunctions are calculated from
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lower-state eigenfunctions of the same Morse oscillator by
the raising and lowering operators & , * (o), where

1/'u-+— 10= gu +(a)¢va9 (73)
¢va= yv _(a)¢u+ 109 (7b)
and where the operators are given by

9, +lo)=(He=e 1 llo oIy
(c—v—11420—v—1)v+1)
1 flo—v—144) o’ d
% 20’( 1—y (a——v—l):de)’
(7c)

where y was given in Eq. (1b). In addition, one obtains the
recursion relation

(eaq_ 1)¢06=AUU¢UU+BUU¢U-10+Bv+la¢u+la’ (sa)
where

A= 2000+ 4) — (v + 1)’ (8b)
(c—vffo—v—1)
4 g {

(8c)

v

_ v(20 — v) )1/2
2(a—v)\(a—v—§)(a—v+5) '

The use of Eq. (7c) produces eigenfunctions all of which are
positive at the outer ‘“‘classical turning point.”

The variable y of Eq. (1b)is a very appropriate one to use
in connection with a Morse oscillator. For example, expan-
sions in powers of y can provide very accurate models of
actual vibrational potentials for diatomic molecules.>*~ It
has also been suggested'® that dipole moment functions be
expanded in powers of y. Morse matrix elements of powers of
y can thus be useful for several different purposes: First,
where a realistic vibrational potential is expressed as a Morse
potential plus terms in higher powers of y, energy eigenval-
ues can be obtained, along with eigenfunctions expressed as
linear combinations of Morse eigenfunctions, by matrix dia-
gonalization.® Second, using such eigenvectors, one can cal-
culate matrix elements of any function that is a power series
in y via matrix multiplication.

In Ref. 9, Morse matrix elements of y were obtained by
calculating the matrix for ¢*? using Eq. (8), then subtracting
the inverse matrix from the unit matrix. Matrices for higher
powers of y were then obtained by matrix multiplication. All
matrix operations were performed in a truncated Morse ba-
sis, which introduced some error. Reference 10 gives formu-
las for all Morse matrix elements (v’|y"|v) for n<4.
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In this paper we derive recursion formulas that permit
the step-by-step recursive calculation of (v'|y"|v) for arbi-
trary power n. The derivation divides into two parts: that for
(0|y"|0), and that for (v'[y"|v) itself.

Il. RECURSIVE FORMULA FOR (0}y"|0)

Our derivation of the formula for (0|y"|0) makes use of
the technique of class II, B-type factorization.' Defining a
variable

W =20 —¢e" =20y, {9)
we obtain from Eq. (6a) the recursion formula
W¢Oa= _D‘a+l¢]a+l. (10)

Multiplying by W "~ ! where (n> 1), then by ¥,°, and inte-
grating, we obtain

/w0y = —Dla+‘f¢0"W"—‘¢,°+'dr. (11)

Wenextreplace ¢, ° * ' with #, ~ (o + 1)¢,°, using Eq. (5a),

to produce

©OIw"0) = —J¢OUW” ' [ie" — (s + 1) — d /dx]¢,%dr.
(12)

Integrating the right-hand side of Eq. {12) by parts and re-

arranging the terms, we obtain

w0y = — fz/Jo”W" ~ e — s +d /dx)y,° dr

+ f:ﬁo"(W”“ —dWr—Vdx),cdr.  (13)
B

Wy =@ o) + (4, e =1

The first integral on the right-hand side vanishes, as the inte-
grand contains the application of a lowering operator to 1, °.
Using the identity

dW"~ Ydx=(n—1)W""' —20W" "3, (14)
we obtain from Eq. (13) the recursive formula,
(0| W"[0) = 20{n — 1){O| "~ 2|0} — (n — 2)(O|W"~|0).
(15)
Dividing by (20)", we obtain the desired result,
(0]y"[0) = [{n — 1)€0]y" ~?|0) — (n — 2){O|y"~ |0} 1/20.
(16)

11l. RECURSIVE FORMULA FOR (V'|y"|v)

We now apply techniques of class I, F-type factoriza-
tion* to obtain the formula for (v'|y"|v). Multiplying Eq. (8a)
by e ~ “? and rearranging terms, we obtain
Yy =4,y +B,Jv—1) + B, [v+1) —4,p|v)

—Bylv—-1)—B,, ylv+1). (17)
(Since all quantities in this equation refer to the same Morse

oscillator, we suppress the label + (o) Multiplying by y” — !
and again rearranging terms, we can write

Bu+ 1y'1|v + 1)
=B,y v+ 1)+4y" o) +By " v—1)
—(14+4,p"v) — B,y v —1). (18)

Replacing v + 1 by v, multiplying by (v'|, and solving for
(v'|y"|v), we obtain the desired recursive formula, which
holds for v > 0:

+B, Wy " o—=2)—(1+4,_ )P lv—1)—B,_, {'|y"lv—2)]/B,. (19)

If we think of the matrix element (v'|y"|v) as lying on
the (v’ + 1jthrowand (v + 1)th column of the (n + 1)th sheet
of a three-dimensional matrix, the recursive procedure for
calculating the elements of the matrix can be outlined as
follows. First, the bottom sheet (for » = 0} is simply the orth-
onormality condition,

W) =8,,. (20)
Starting with (0|y°|0) = 1, one can then use Eq. (16) repeat-
edly to produce values of (0[y"|0) for successively higher
sheets. If the nth sheet is already known (for whatever num-
bers of rows and columns are desired, subject to the restric-
tionv,,, <o — }), then the first row of the (n + 1)th sheet can
be calculated from Eq. (19), starting with the known value of
(0|y"|0). Since each sheet is a real, symmetric matrix, one
can produce the first column of this sheet by reflecting the
first row. Elements of each additional row may now be ob-
tained by use of Eq. (19} (or by reflection, if v’ > v).

Since the derivation of Eq. (19) is based on class I, F-
type factorization, the phases of the matrix elements pro-

398 J. Math. Phys,, Vol. 24, No. 2, February 1983

[
duced by the above procedure are fixed by the convention
that all eigenfunctions are positive at the outer turning
points.'® Matrix elements corresponding to the other con-
vention differ by a relative phase ( — 1) * V. Of course, Eq.
{16) is independent of convention.

As a verification of Egs. (16) and (19), we used them to
calculate a number of matrix elements for n<4, which were
found to agree with the formulas of Ref. 10.

'L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 {1951).

2], N. Huffaker, J. Chem. Phys. 64, 3175 (1976).

P. H. Dwivedi and J. N. Huffaker, J. Chem. Phys. 66, 1726 (1977).
4J. N. Huffaker and P. H. Dwivedi, J. Math. Phys. 16, 862 (1975).
%J. N. Huffaker, J. Chem. Phys. 64, 4564 (1976).

©3. N. Huffaker and P. H. Dwivedi, J. Chem. Phys. 68, 1303 (1978).
7J. N. Huffaker, J. Mol. Spectrosc. 65, 1 (1977); 71, 160 (1978).

8J. N. Huffaker, J. Chem. Phys. 70, 2720 (1979); 72, 2601 {1980).
°J. N. Huffaker, J. Chem. Phys. 74, 1217 (1981).

195, N. Huffaker and L. B. Tran, J. Chem. Phys. 76, 3838 (1982).
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Path integral approach to multiple scattering
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Multiple scattering of a wave in a system of scatterers with random, uncorrelated positions is
studied with path integrals. The Edwards—Gulyaev expression for the position averaged Green’s
function is used to find the density expansion of the complex optical potential. The expansion is
in terms of exact medium propagators and scattering matrices in the medium. The first term is
the coherent potential approximation. A source dependent generalization of the path integral is
used to derive a functional equation for the optical potential. This leads to a hierarchy for
correlation functions that involves exact medium propagators and scattering matrices. The
simplest truncations yield new integral equations that are generalizations of the coherent
potential approximation and are compatible with the density expansion.

PACS numbers: 42.20. — y, 03.40.Kf, 03.65.Nk

I. INTRODUCTION

Our interest is in the characteristics of waves interact-
ing with discrete scatterers with random site positions. For
concreteness we deal with a Schrédinger wave, i.e., a quan-
tum mechanical particle in a random medium. There is a
vast literature dealing with this problem, particularly from a
multiple scattering viewpoint.! This approach uses the site
or “atomic” scattering matrices and makes possible a suc-
cinct treatment of strong scattering (including hard core in-
teractions) and resonant scattering (including bound state
effects). In addition, in the coherent potential approxima-
tion, one uses the scattering matrix in a medium character-
ized by the exact site averaged propagator. The result is par-
ticularly simple in the case that the sites are completely
uncorrelated.? If v is the potential operator and G (k|E ) the
momentum diagonal site averaged propagator in energy
space, we have for the atomic scattering operator.

t=v+ vGt. (1.1)

The complex optical potential X (k | E ) enters into the aver-
aged Green’s function as

G '=G;'-2. (1.2)
It is given in the coherent potential approximation by
Z(Kk|E)=n<k|t k) {1.3)

This is just the density » of scatterers times for forward scat-
tering amplitude.

It is a nontrivial matter to improve the coherent poten-
tial approximation in a controlled manner, even for the com-
pletely uncorrelated case. One definite question is to ask for
the density expansion of 2 (k | £ ) in a form involving atomic
scattering matrices and the exact averaged propagator. The
result for the first term beyond the coherent potential ap-
proximation is contained in the two body additive approxi-
mation in our recent work on multiple scattering.® Of course
the main focus in that work and in other condensed matter
studies® is on the case of arbitrarily correlated scatterers in
dense systems. Still the density expansion provides a test for
such theories and the results should have practical implica-
tions for dilute impurity systems in solid state physics, for
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electromagnetic wave propagation in gases, and other such
problems.

Here we study the density expansion from the very dif-
ferent path integral viewpoint. The path integral representa-
tion emphasizes the space-time aspects of the propagator, in
contrast to the momentum-energy emphasis of the multiple
scattering approach. However, the natural approximation
schemes treat strong potentials in only indirect, cumber-
some ways. The role of complex optical potentials and exact
medium propagators is unclear. On the other hand the path
integral representation has definite virtues. If the character-
istic function for a random process is explicitly known, one
can do the impurity averaging first, and one obtains a single,
multitime path integral for the averaged propagator.’ This is
the case for the Gaussian random process. It is also the case
for the Poisson process describing uncorrelated sites. The
resultis a path integral studied by Edwards and co-workers,®
and by Jones and Lukes’ for the real time case and by Fried-
berg and Luttinger® in the temperature density matrix form.
It has been used to study the Lipschitz deep traps that arise
from large density fluctuations,” and lead to an infinite tail in
the density of states. In the Friedberg—-Luttinger paper, a
systematic cumulant expansion based on a trial potential
was developed. (See, however, our article'® for a discussion
of the implications of breaking translation invariance.) The
deep traps are not treated in the multiple scattering ap-
proach. Even in cluster extensions of the coherent potential
there are only finite low energy tails in the density of states.

The present work is devoted to developing a formalism
that combines the strong points of the two approaches. We
find that progress can be made in the uncorrelated site prob-
lem. There is a strong incentive to pursue this. In the path
integral representation it is easy to write explicit multipath
integrals for the averages of products of Green’s functions.
These quantities are needed in the study of transport phe-
nomena. This has been exploited in the theory of random
continuum fluctuations,!' as in sound transmission in fluc-
tuating media, or laser scattering from turbulent eddies. It
has been possible to study the so-called strong fluctuation
regime, i.e., transmission over long paths.

Essentially arbitrary time and space correlations of the
wave field can be computed. It is true that these results rely
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on special features of the problem. In particular the wave-
length is short compared to the size of the fluctuation. There
is negligible back scatter and strong forward scatter so that
the parabolic approximation is valid. It is also true that the
same results can be obtained somewhat more cumbersomely
by other methods. Still the results for the continuous fluctu-
ations are impressive, and one would like to have a corre-
sponding theory for discrete scatterers.

Here we deal with the simplest situation, viz., the deter-
mination of the average propagator for the case of uncorre-
lated discrete scatterers. The detailed outline is as follows.

In Sec. 2 we construct the Edwards—Gulyaev path inte-
gral. Noting that the density appears as an explicit param-
eter, we find the density expansion of the average propagator
in terms of bare Green’s functions and bare atomic scatter-
ing matrices. By explicit inversion, term by term, one finds
the optical potential X in terms of the same quantities. Con-
tinuing in the most straightforward way, the bare scattering
matrices are expressed in terms of scattering matrices in a
medium characterized by the exact site averaged propaga-
tor. This yields the explicit representation of the optical po-
tential in terms of medium scattering matrices, exact propa-
gators, and in powers of the density. The usual coherent
potential approximation is the first term in the series.

In Sec. 3 we generalize the path integral to include a
space dependent source J (x). In the limit of zero density the
source generates the bare atomic scattering matrices. An in-
tegration by parts technique is used. It converts the path
integral into a hierarchy of equations for correlation func-
tions. With the source generating function one finds an
equivalent functional equation for the source dependent, site
averaged, Green'’s function. The source function is different
from the one introduced in the standard Schwinger ap-
proach to quantum field theory. It uses the explicit charac-
teristic function of the Poisson process. There follow two
illustrations of the use of the functional equation. First we
check that successive functional derivatives yield the expan-
sion of the optical potential in terms of the bare scattering
matrices obtained in Sec. 2. Second, the space-time cumu-
lant expansion is obtained.

In Sec. 4 the standard machinery of quantum field the-
ory is put to work to yield a functional equation for the
source dependent optical potential. It involves the exact
propagator. A hierarchy is obtained by taking successive
functional derivatives and evaluating them in the limit that
the source vanishes. The hierarchy has the feature that a
truncation involving neglect of a given order functional de-
rivative yields results accurate to a corresponding power of
the density. One obtains a number of integral equations in
terms of exact propagators and scattering matrices, depend-
ing on the precise truncation. These may have some validity
at higher densities in the same sense that the coherent poten-
tial approach may be more accurate than is justified by its
agreement with the perturbation expansion to only low
order.

Il. DENSITY EXPANSION OF THE PATH INTEGRAL

Let the particle impurity interaction be v(x — R,), with

the impurities at site positions R ,...,
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R, . The Green’s func-

tion for a given configuration is given by the path integral
(x|8( |R,~Ry)|x")
= —if(t }fD, x6(x(t) — x)8(x(0) — x")

Xexp(-zz

g=1

!

v(x(u) - R, )du). (2.1)
Here

D,x = Dx exp ( —% J-xzdu). (2.2)
4]

The end point conditions are included by using the delta
functions. 6 (¢ ) is a step function and units have been chosen
sothat# = m = 1. Time dependent Green’s functions have a
caret.

We have the abbreviated notation

{exp ( —i 2 v(x(u Rg)a'u)] (2.3)
g=1J0
for the right hand side.
The average oversite position is performed with the
weight function 7y _, (d R, /£2), corresponding to uncorre-

lated scatters. The site averaged Green’s function is

G0y =P (f oo o[t - 1))

(2.4)

by virtue of the interchangeability of the site averaging and
path integral operations. Let

fexp( Jv(x(u R)du)—— =1+ NF( ) (2.5)
with
J'(exp [ fu(x(u) R)du] — DdR,

n=N/0. (2.6)

In the limit of large NV, with » finite, one finds the Edwards—
Gulyaev functional

(x|G(t)]x") = P{exp (nF(t))}. 2.7)

The density of impurities appears as an explicit parameter so
that the density series for the Green’s function can be found
by direct expansion of the exponential.

The path integral

Plexp(— iJ:u(x(u) — RJdu)]z)(x{hA (tR)x") (2.8

is the Green’s function for a particle with a single impurity at
R,. Introduce the energy representation as the Fourier
transform

1 + o

Alt)= —

2T J -
In the energy representation, the single site Green’s function
obeys

(x| (E |Ry)[x)

— (|GyE)x") + j<x|Go(E>1x,>v(x. _R)
x (x, 1 (E 1R )Ix|Ydx,.

~iE4 (E)dE. (2.9)

(2.10)
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We use a matrix notation with

v,—v(x — R)8 (x — x'),

hi—(x|h (E |R,)x"). (2.11)
Then

h, =Gy + G,h,. (2.12)
The bare scattering matrix ¢ (E ) is defined by

hy = Gy + Got 1 Gy,

t =v, +0v,Got9. (2.13)

The superscript 0 indicates that it is the scattering matrix
associated with the free particle propagator G,. (We hope
that no confusion results from using the symbol ¢ for both a
scattering matrix and the time variable.)

The first order in the density, the path integral yields

x| (0)Ix") = (xIGyr) + f (5 (£ |Ry) — Gofe N R, [x1).

(2.14)
In energy space
G(E)= G0+nGoft(Rl)dR1Go. (2.15)
We next examine the n” terms. The path integral
involves
[[araRotxtiteix)
=P [f dR,dR,;exp [ - iJ. v(x(#) — R,)du
0
—i I —R du] }
i ofx(u) Ry 216

h 12(2 )is the Green’s function when there are two impuri-
ties, one at R, and one at R,. In energy space the two site
Green’s function obeys

hioE) = Gy + Golv, + vy)hy, (2.17)
and the associated bare scattering matrix satisfies
1 =V 4 v) + (v, + v)Got Y, (2.18)

Multicenter bare scattering matrices were used by Luttinger
and Kohn'? in a study of the density expansion of the
conductivity.

To order n?

2
GIE) =G, + nGojt?dR,Go + fz-GO

xff(t?z —t° —t9)dR,dR,G,. (2.19)

It is straightforward to extend this expansion in powers
of density with bare propagators and scattering matrices to
general order. However, the preceding expression involves
cancellations from large regions of space where there is no
interaction. To avoid this and still have expressions in terms
of scattering matrices, one uses the identity

[1— (o) + v))Go]
=[1-v,Go] ™ '[1 —13G78,] ' [1 — v,G,] !
=[1+20Go][1 — 135G G,] 7' [1 +£9G,].  (2.20)
Using also (1 —x)™' =1 4+ x(1 — x)™}, it is seen that there
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are terms cancelling the term #9 + ¢J in the n? coefficient
Gy =Gy + nGoft,dR,Go + nZGOJ dR,

t3G,t9G,

OGt9Gy + 109Gy — L0
[ M [1—19G,t9G,]

(1+ tOGO)]
(2.21)

The individual terms are now independent of the vol-
ume of integration.

The next step is to expand the spatial potential
3 = G ' — G ~'as adensity series in terms of bare propa-
gators and bare scattering matrices. Write the above series as

G=G,+ ncoft?deGO + n2f Go,4%G,dRdR,.

(2.22)
Then by direct expansion of G ~ !,

S=n|t%dR, + ni”(A 5 —t9Gt3)[dRdR, + -
(2.23)

Finally we express 2 in terms of the scattering matrices
in the medium and in terms of G. To order n? it is only
necessary to expand ¢ in the first term to first order in the
density. Since

= _1le T —lle (G = Gole3,
G—G,= nGﬁzd R,G, + -, (2.24)
we have
10 =1t — nthftzd R,Gt,. (2.25)
This leads to
F=n|tdR +n f” l—tzGtG]
X 1,Gt(1 + Gt,) — thtzGt,:]d R dR,. (2.26)

In fact the third order term in ¢ is seen to cancel, so that the n®
term starts with the fourth power in ¢.

We now exhibit the explicit expression for the case of a
one dimensional delta function and make contact with our
earlier results from the multiple scattering approach.

For the one center case when v(x — R,} = vd(x — R))
the scattering matrix is

(x|t)|x') = t8(x — x'}6(x — R)), (2.27)
where ¢ is the energy dependent quantity

t =v[1 —v(0|G |0}]. (2.28)

In view of the overall translation invariance
(0|G |0) = (x|G |x) for any x.

The two center scattering matrix is given by
D (R, — R ){x|tpa]x") = [v(1 — v(0|G|0})

+ V{R,|G |R,) [*18 (x — R,) 8(x' — R,) + 1552],(2.29)
Here

D (R, — R} =[1~v(0|G |[0)P[1 — 22|(R,|G |R,)|?]. (2.30)
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With R =R, —

[ [ar.ar, el —
1OIG IR )P

__+3

=18(x —xl)de T ¢3(0|G R
t2(0|G |x — x')

1—12[{0|G |x — x")|*

Subtracting the other terms needed to construct .2,

R, we find

t, — t]x")

“+

(2.31)

2="t6(x_x')+"2[5(x'x')t5f 4R 1_?‘2‘]‘;:5)(1%)!
4 (x|G|x)|G |x")|?
+14G _t2|<0|G|x—x')|2]' (2.32)
The Fourier transform X (k |E) is
Sk |E)=nt+n2{t5 1_%
af e _G )G )
T fe 1—22|G ) dx}’ (2.33)

where the second term is & dependent. This result can be
obtained from Eq. (73) of the third paper of Ref. 3.

lil. INTEGRAL EQUATION FOR THE GENERATING
FUNCTIONAL

Consider the functional,
5(x|t)= —it9(t)J.D,xe””, (3.1)
0
where

1) = [(n+I(R)Q( [RIER,

QiR = —1+ exp(i J: v(xu) — R) du). (3.2)

At zero density the J dependent term generates combina-
tions of the bare atomic scattering matrices.

Note that
6 I(t) I(t)
e =eg ) (3.3)
sJg)
There is an identity
60(x|t)d§= dG (x|t) (3.4)
SJ (&) dn
and further identifies of the form
2G t) d 8G (x|t
ST(E)ST(E) 5J(§) dn 8J(£)
which hold even for J #£0.

The functional equation for G is obtained by using the
integration by parts'?

””-—e""’)—jds {e!®)
—jds e’} (3.6)

In our case
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égs_) - _,-jdmnw(nnv(x(s)—kl

X[l 4+ Q(S|R)]. (3.7)

The integral is broken up into paths running from 0, 0 zo

y, s and others running from y, s to x, ¢. The part fromy, s to
X, tis governed by the free particle action. The part from 0, 0

toy,s is a correlation function expressible in terms of
6G /8T (£).

We find the functional equation
G (x 0|t0) — Gy(x 0]20)

= jfdy dR,{n+ J(RI)}J:é\O(x ylt —sply — Ry)

6 A
X{l + 57 (R) ]G(y 0|s0)ds. (3.8)

In matrix form, with * denoting time convolution,

G-Gy=(n+ J,)éou,*(1 + -5—) G. (3.9)
8J,

We use a summation convention. An index such as 2 (stand-

ing for R,), that does not occur on the left hand side, is to be

integrated. The Fourier transforms of time varying quanti-

ties (energy representation) are denoted by ordinary letters

without carets.

G(E)= fj " =8 (¢ )dt. (3.10)

In the energy representation, the functional equation is
G(x0|E)—G(x0|E)

=f dy dR,{n +J(R.)}[1 + aJ?R,)}
XGolxy|E oy — R,)G (y O|E), (3.17)
or more succinctly,
G—Gy=(n+ Jl)[l + —5—] Gy, G. (3.12)
6J

1
As a first application of the functional equation we de-
rive the density expansion of G in terms of the bare scattering
matrices. Introduce

H(E)= G(E)exp(J.J(g)dg). (3.13)
The functional equation becomes
oH
H—Gyexp| [J(E)E)=(n+J )G, A (3.14)
i
There is a hierarchy of equations. The typical one is
6"H
(1= Gl + o)) 5= — Goenp{ [716¢)
5m + IH
=(n+Jp )GV 41 YT (3.15)

On the right hand side, only the index m + 1 is summed.
This yields the density expansion. For example, at J =0,
neglecting the third derivative
&°H
8J,6J,

—[1 = Gyv, +v,)]17'G, (3.16)
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Since G and H coincide at J = 0,

G—G, + nGyp, —gﬂ

Gy + 1Gopy ——— G
1 -Gy,
8°H
+ n’Gy,(1 — Gov,) G 3.17
Ol( Ol) 025‘,25.,l ( )
or
GG, + nGyt |Gy + n*t SGyva[1 — Gylv, + v))] 7'Gy + - .
(3.18)
Using the identity (2.20)
G—G, + nGy9G,
+n°Gyt (Gt 5(1 — Gyt Gt 3) (1 + Gyt 9)G,. (3.19)
Moving the denominator to the far right
G=G,+nGyiG,
+ 121 4+ Gt 5)Got OGut 3(1 — Gyt Gyt 3) G,
(3.20)
This is the same result obtained in Sec. 2 direct expansion of

the path integral.

As another illustration of the use of the functional equa-
tion we obtain the cumulant expansion of the space-time site
averaged Green’s function G (x| ). Of course it can also be
obtained directly from the path integral in the absence of a
generating source. In the present problem the cumulant
form

G (x|t) = Gyfx|tjer ™ (3.21)
has F(x|¢) as a series in the density
F(xlt)= S noF,(x|1). (3.22)

g=1

The F,(x|¢) are in terms of the free particle 60 and bare

scattering matrices. So the series can be constructed by brute

force from the direct expansion of Sec. 2. However, it is

worthwhile to exhibit how the series arises from the generat-

ing functional equation so that we may regard the latter as

the common starting point for a variety of approximations.
The differential form of the functional equation is

(i;;’; + 3 V36 (x 0]¢) — 8(¢)8(x)

=f{n +J(§)}[1 +
Write
a(x 0)z)= 6o(x 0)z) expf

Po) A
5J(§)lv(x —_gGx0jt). (3.23)

(3.24)

with the condition L (t—»()) = 0. The delta function contribu-
tion is accounted for by G(x,0]z). For ¢ #0

(i;% + IV VInGV)L + yVL)?

= [&Epx—gf1 +
Here

K(E)=J(E)+n
We look for a solution of the form

]E (x|t)dE. (3.25)

)
K (&)

(3.26)
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£= [k ee
+ 1 [[xEiom gk Eusds + - 527

Since K (E)—n asJ (§}—0, this becomes the cumulant density
expansion. Matching powers of X yields a first equation

(,-:% + 1V?In GOV) Ou(x1]g) = vix — )1 + Qu(x 1]g)}.
(3.28)
With

®(x 1|§) = Gy(x 0]t)Q,(x ¢ |&),

[i-(% + 4V —u(x — g)]¢,(x t€) =v(x — E)Gy(x 2).
(3.30)
The solution in terms of the single site bare Green’s function
is
Qi(xt|E)
- o) [Aexylgle — sty — 816y O'S)d(deI)

The first cumulant approximation is » times the integral of
this expression over &. The direct path integral evaluation
without a source gives the expression

f{h (x 0[]r) — Gofx OJE |1 M &,

(3.29)

3.32
GO 432
The two expressions are equal in view of the integral equa-
tion obeyed by 4.

The next equation comes from matching quadratic
terms in K. It is

[i?j‘t £ 2 (V4 VI G¥) = (v — &) + vlx — &)
X Ol t16,62) = — VO, (x Ot [,V (x O]t [&,). (3.33)

Again this simplifies with

@, = Gofx 0]1)Q(x 1 [§,65) (3.34)
to
[i% + 1 v2—(v<x—§1)+v(x—s‘2»]¢

= VO\(x 1 [§,)VQ,(x £ |&,). (3.35)

"~ Gx0jr) 0|r)

The solution is in terms of the two site Green’s function.
After multiplying by n?/2 and integrating over &, and £, one
has the second cumulant contribution. This shows explicitly
that all of the specific path integral techniques needed have
been incorporated into the functional equation. The series is
similar to the improved perturbation theory of Fradkin'* for
quantum field theory that he derived with operator tech-
niques. However, we have a density rather than a potential
expansion.

For comparison with the theory of the next section in
terms of the self-energy (in energy space), we note the type of
truncation implied by the cumulant method. We have

=1In {G(x 0]¢)/Gyx 0]t))] (3.36)
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and
5in G(x 0)¢)
(eoje g = ST 22
Q,(x 0z |§) 576 o
_ &G (x0))
Qz(xﬂltiﬁlgz)—~———5J(€1)6J(§2) i (3.37)

Thus the first cumulant approximation is equivalent to the
truncation

8Gx0)r) _ 8G(x0r) 5G(x0ft)
8J (§,)67 (&) 8J(E)  SJ(E)

The natural truncations in the cumulant method are simple
in the space-time description. This method gives a good de-
scription (including some but not all features of traps) in the
limiting case of almost constant potentials. The self-energy
approach of the next section leads to truncations of function-
al derivatives in energy momentum space and does not treat
traps. The relation between the two approaches has never
been adequately clarified. Perhaps the functional equation
may provide a good language to explore the question.

G(x0|t) . (3.38)

IV. EXPANSION OF THE SELF-ENERGY

We start with the functional equation for G, i.e., Eq.
(3.12), and multiply on the left by G ;' and on the right by
G ~'. Using the definition =G, ' - G ',

G
S=(n+J ), +(n +J1)v1)§—~G“. (4.1)
67,
We next use the relation GG ~! = 1 to obtain
S
— (GG 1) =0, 42
57 ( ) (4.2)
-1
86 _ g8 .62 43)
8J, 8J, 8J,

This gives the basic functional equation for 2 in terms of the
exact propagator G,

62
= J 1+ G—}.
vin+J {1+ 511}

The first functional derivative of this equation yields
(1 —sz)a—Z- —v2=le1—5—(G 52)+nv 6 (G 62).

(4.4)

EYA 8, \ 8J, AN
(4.5)
The zero density limit of 62 /6J, at J=01s
62
- =t, 4.6
6-]2 J=0 g ( )
Then, atJ =0,
2 = nvy(1 + Gt,) = nt,. (4.7)
The second derivative yields
6= 5 ( 62 ) 6G 6%
1—0,6—0,G)—— —v,— G| =)~ v,——
(1 =vG—=0G) s ~ %7 “\ar,) ~ 57, 57,
52 ( 62 ) &2 ( 62 )
=Jp, — |G = G—} 4.8
575 \5r) T ™ aren G ) HY

To find the self-energy to order n° one needs 83 /8J, to order
n.Inturn one needs {(8/8J,)(G 62 /6J ) in the limit of vanish-
ing density. There are a number of possible truncations that
yield integral equations that have a self-energy accurate to
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order n?.
One truncation (at J = 0} is
£3__ 86 83
84,87, > 87, 8J,

6G 62
Uz — —_,
6J, 6J,
(4.9)
which is accurate to n°. Here we have neglected the entire
dependent term on the right hand side of Eq. (4.8). In terms
of the quantity

®,=6%2,
oJ,
the truncation is
5P, ~
81,87, T
We then have, atJ =0,

(1 —0,G —v,G)

(4.10)
(4.11)

_U2
J=0

62
1 —v,G)—
( Uy )5J

1

=i @@+ G =
— U2 g |

0, PP, + v,9,9D,).

(4.12)

Inserting @, = Gt,, @, = Gt, gives @, to order n when in-
serted in 2 = nv,(1 + @,). This leads to an expression alge-
braically equivalent to the result of Sec. 2. The n? correction
to the self-energy starts as the fourth power of the atomic
scattering matrix.

Another truncation is obtained by forming an equation
for @,,

50, +nGv,———5¢'.
J, éJ,
One functional derivative yields
(1 —Gv,) 80, _ Gv, 60,
éJ éJ.

3 2
=(n+J) 2 (Gv1 i )
éJ, 8J,
Write the equation with 3 and 2 interchanged, and eliminate
5P,/6J,. TheresultatJ =01is

2% — 0,Gull + @) + Goyll + By
3
6 5P, S 6P, )

n 1_5.—[; (le A ) + nGt, A (Gv1 57, )
Neglect of the term proportional to # on the right hand side
means

5, ®,G 5P,

6J56J, 8J,
showing that the truncation is different from the first one.
Inserting 6&,/8J, into Eq. (4.13) gives a new integral equa-
tion for &,.

One can also make more accurate truncations, based on
retaining part of the n proportional terms. Thus

8 6P\ _ 8P, 5,

A (G”‘ A ) BT AT ¥ T2
One can retain the first term, since it still leads to a closed
equation for §@,/56J;. In the second term a zero density

(l - GU2)¢2 - GUZ - JIGU (4.13)

— D)1 + D))

(4.14)

(1 — Gv; — Gt;,Gv,)

(4.15)

=0, (4.16)

. (4.17)
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accurate expression can be used, viz.,

2
(1 — Gvy — Gt,G,) 5P,
57,57,

= % {P3Gv,(1 + D,) + G1,P,6v5(1 + P3)}.- (4.18)

4
Then the error in §¥,/8J; is ~n?, thatof @, is ~n’,and Tis
of order n*. The price paid is 2 higher degree of nonlinearity
in the @.

We have not studied any of the integral equations in
detail. In particular, as emphasized by Dallacusa'® (for the
Gaussian random case), it is desirable to maintain agreement
with identities such as (3.4) and (3.5). The relation to the
multiple scattering theory of Ref. 3 is unclear.

V. SUMMARY

We have shown that the functional equation for the
source dependent Green’s function can be used as a bridge
between the path integral and multiple scattering ap-
proaches to the uncorrelated impurity problem. The key
point is that a path integral has been used as a starting point
in which the characteristics of the random process are fully
incorporated. This is a unique feature of path integrals that is
not possessed by the standard multiple scattering formula-
tion. The source is introduced so that it generates scattering
matrices of various orders. Thus there is no difficulty in
treating strong potentials and scattering resonances. With
the standard field theory machinery we are then able to ob-
tain equations for the complex optical potential. This has
been tested by using the first nontrivial truncation beyond
the coherent potential approximation to find the next termin
the expansion of the optical potential in powers of the
density.

In subsequent papers we exploit these results to find
transport equations for the averages of higher order pro-
ducts of Green’s functions. This is relatively straightfor-
ward. Another line of development is to use Feynman’s
method of trials actions for path integrals as explored by
Edwards, Jones, and Lukes and by Friedberg and Luttinger
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s0 as to obtain theories that include both the Lipschitz deep
traps as well as the detailed multiple scattering effects.
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Exact solutions to the valley problem in inverse scattering
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Standard approximate methods involving the Abel integral equation do not allow the ionospheric
electron density to be determined in the “valley” between two electron density peaks. Here we
present analytic solutions to the Gel'fand-Levitan equation, which occurs in the exact full-wave
inverse scattering theory. These exact analytic solutions exhibit multiple peaks in the electron
density as a function of height and provide a solution to the valley problem.

PACS numbers: 94.20. — y, 41.10.Hv, 03.40.Kf

I. INTRODUCTION

If a projectile is slid up a hill with different velocities,
and a chart is made of the initial velocity versus time to
return, it is possible to determine the shape of the hill from
the delay time, by solving the Abel integral equation.' Un-
fortunately, no information can be obtained beyond the peak
of the hill because, once the projectile passes the peak, it does
not return.

Similarly, the shape of the ionosphere (electron density
as a function of height above the earth’s surface) below the
electron density peak can be determined by reflecting elec-
tromagnetic waves from the ionosphere. When the Abel in-
tegral equation involving the reflection coefficient is solved,
the approximate electron density profile is obtained.? To ob-
tain information beyond the first ionospheric electron densi-
ty peak, topside scattering has been used. With this method,
signals from a satellite are reflected from the top of the ionos-
phere back to the satellite. Unfortunately, if the ionosphere
has more than one electron density peak, no information can
be obtained in the valley(s) between the peaks.

To obtain exact information for all heights, even be-
yond the first electron density peak, a full-wave method has
been developed™~® which involves the Gel’fand-Levitan
equation for a potential corresponding to the electron densi-
ty. Because of difficulties in solving this equation, the full-
wave method has not been extensively utilized. Recently,
our generalization” of Kay’s method*® has allowed an ex-
act analytic solution to the problem.”"” In this paper we em-
ploy our method to treat the valley problem by exactly solv-
ing the Gel’fand-Levitan equation even for potentials with
multiple peaks.

Il. EXACT INVERSE SCATTERING SOLUTIONS

In previous communications’™ we presented proce-
dures for finding exact solutions to the Gel’fand—Levitan®
equation in inverse scattering theory, for the case in which
the reflection coefficient r(k ) is a rational function of the
wave number k.

The reflection coefficient is assumed to satisfy the fol-
lowing requirements™>'%:

® Present address: General Electric Co., Space Systems Division, Valley
Forge, PA.
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@ 0= —1,
(b) [rk)]* =r— k) for all real k,
(c) |r(k)|<1 for all real £,

and (d} rlk)is analytic for all k in the upper half-plane.
In Refs. 7 and 8 we assumed that
rik)=N(k)/D k), (1)

where N (k) and D (k) are polynomials in k, with
Dk)= 1] k—k), )

i=1
where the k, are distinct complex numbers in the lower half-
plane; the &, are the n poles of the reflection coefficient. In
Refs. 7 and 8 we used our procedure to calculate the poten-
tial V (x) for a variety of reflection coefficients. Here we give a
brief summary of the procedure.
One first solves the following equation for the a,

(a: il, iz,...,in;aiaz_aa)
ria ) —ia,) = 1. 3)
Next, forj=1,2,...,n,and @ = 1, 2, ..., n, one defines
Fa =la, — k)™ )
G. =1l —ia,)/(a, +ik), (5)

and solves for the £, (x) (@ = 1, 2, ..., n) in the following set of
n simultaneous equations (one equation for each value of j):

L4 3 (Fue™ +Gue “)fulx)=0. (6)

a=1

Then, K (x, x) is given by
Kixx)=|3 [ —r—iae " 1fax){0x), ()

a=1
in which 6 (x) is the step function defined by 8 (x) = 1 for
x>0, 8{x) =0 for x <0. Finally,

d
Vix)=2——Kxx) (8)

The potential ¥ (x) is zero for negative x, as can be seen from
Egs. (7) and (8).

When r(k ) is written in the form of Eq. (1), the zeros of
the numerator NV (k ) are the zeros of k), and, because of
requirement (a), r(k ) is completely determined by its poles
and zeros. If the zeros are denoted by /;,i = 1, 2, ..., m, then

_ Clk—1)k—1,)
Tk —ky)(k — k)

rik) &)
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co kil —-k) (10)

(= L)l —=1,)

If r{k ) is a rational function reflection coefficient satisfy-
ing (a), then if we multiply the poles and zeros of r{k ) by a
common factor £, assumed to be a positive real number, the
potential changes in a simple way. In determining this effect
on the potential, we will insert new arguments of k; and /,
into rk ), a,, and other quantities, to indicate their depen-
dence on the poles and zeros of Hk ). Thus we write n(k; k;, 1),
a, ki, 1), ...

From Egs. (9) and (10), we see that

rek; &k, &1) = rk; k;, ). (11)
It follows from Egs. (3) and {11) that

aq (ki 81) = gaq (K, ). (12)
Because of Eqs. (4), (5), and (12),

Fio(§ki, §1) = £ ~'F(ki, 1)) (13)
and

Gja(gki’ gli) = 5 _lGja(ki’ I,~). (14)
From Egs. (6) and (12)—(14),

Salx/&; 8k, EL) = € falx; ki ). (15)
Then, from Eqgs. (7}, (12), and (15),

K (x/&, x/&; £k, §1) = EK (x, x; k;, 1,). (16)
Finally, from Egs. (8) and (16),

Vix/& &k, &L) = 2V (x; ki, ). (17)

Thus, if the poles and zeros move farther away from the
origin by acommon factor of £, then any particular feature of
the potential V, such as a maximum or minimum, moves to a
value of x which is smaller by a factor £, and also becomes
higher by a factor of & 2.

It is important to notice that if the original reflection
coefficient satisfies the requirements (a)—(d), then the new
reflection coefficient also has these properties.

To use our procedure to find ¥ (x) we choose a set of
poles and zeros for r(k ). Because of requirement (d), the poles
must be in the lower half-plane. Requirement (a) will auto-
matically be satisfied provided that 7{k ) has the form given by
Eqgs. (9) and (10). We can easily ensure that requirement (b) is
satisfied by requiring that each pole is either purely imagi-
nary or is one of a pair of poles: k,, k;, with k,* = — k;, and
similarly for each zero. Thus, the set of poles of r(k ) is sym-
metrical with respect to a reflection in the imaginary axis,
and the set of zeros is similarly symmetrical.

It is more difficult to determine whether requirement (c)
holds for a given set of poles and zeros. However, there are
several methods for finding particular reflection coefficients
satisfying (c). For instance, we have already pointed out that
if a specific reflection coefficient is known to satisfy require-
ments (a)-(d), then the reflection coefficient obtained by mul-
tiplying all poles and zeros by £, a positive real number, will
also satisfy (a)—{d).

It is easy to see that if /{k ) has no zeros, all poles are
purely imaginary, and (a), (b}, and (d) are satisfied, then (c) is
always satisfied.
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In addition, if we are given two reflection coefficients,
r,(k )and r,(k ), eachsatisfying (a)~{d), then the reflection coef-
ficient k) = — r,(k )rytk ) will also satisfy (a)—{(d). Further-
more, if 4 is a positive real number with 0<A4<1, then

rk)=Ark)+ (1 —A)ryfk) (18)

will also satisfy (a}—(d).
If k) has exactly two poles and no zeros and satisfies

(a), (b), and (d), and if k, = — k*, then requirement (c) is
satisfied if and only if
Im k,|>|Re k,|. (19

Equation (19) defines an “allowed region” for k,.

If r{k ) has exactly three poles and no zeros and satisfies
(a), (b), and (d), with k, = — k,* and k, = — k,*, then for
each (purely imaginary) value of k|, there will be an allowed
region for k,. Requirement (c) is satisfied only for k, in the
allowed region. With no loss of generality, as we have seen,

we may let ki, = — [; then the allowed region for &, consists
of the region
y<—14 (20)

(y=Im k,), together with the region between the lemniscate
of Bernoulli:

r* =2 cos 20 (21)
and the straight line
y= -4 (22)

which is tangent to the lemniscate.

Using the above theorems, we find that the 3-pole re-
flection coefficient, r4(k ), with the following poles (and no
zeros) satisfies the necessary requirements:

k, = —0.4300i
k3 = +0.7871i — 0.2203i.

Furthermore, the 10-pole reflection coefficient, r,,(k ), with
the following poles (and no zeros) also has the required
properties:

ki = _1.1083;

k, = —1.0100i

ky = —1.1900i

ki = —1.2513i

T T T T T
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g i
}._,
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(o] | 2 3 4 5
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FIG. 1. Potential ¥ (x) vs distance x for 4 = 0.05.
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FIG. 2. Potential ¥(x) vs distance x for 4 = 0.1.
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FIG. 3. Potential ¥ (x) vs distance x for 4 = 0.15.
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FIG. 4. Potential V'(x) vs distance x for 4 = 0.175.

kse = +0.0950 — 10502

k,s = +0.1504 — 1.0960i

koo = +0.1030 — 1.1510:.
We now take a linear combination of r,(k ) and r 4(k ):

rk)=Ark)+ (1 — 4)rolk). {23)
The reflection coefficient defined by Eq. (23) has the required
properties, provided that 0<A4<1. By applying our proce-
dure’® to this reflection coefficient (with several values of 4 ),

we obtain graphs of potential versus distance (Figs. 1-7)
which are similar to graphs of electron density (in the ionos-
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FIG. 5. Potential ¥ (x) vs distance x for 4 =0.2.
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FIG. 6. Potential ¥V (x) vs distance x for 4 = 0.25.
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FIG. 7. Potential V(x) vs distance x for 4 = 0.26.

phere) versus height above the earth’s surface. At night the
ionosphere often contains an F 1 and F 2 layer, while in the
daytime it often has an E and Flayer?; similarly, each of our
graphs has two peaks. In Fig. 1, where 4 = 0.05, the first
peak is much smaller than the second. As 4 increases

{4 =0.1in Fig. 2 and 4 = 0.15 in Fig. 3}, the first peak be-
comes higher and the second becomes lower until, for

A = 0.175 (Fig. 4), the two peaks have nearly equal heights.
As A increases further (in Figs. 5-7, 4 = 0.2, 0.25, and 0.26
respectively) the first peak continues to grow and the second
continues to shrink; for 4 = 0.26, the first peak is 80 percent
higher than the second. In addition, as 4 increases from 0.1
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to 0.26, the potential at the relative minimum between the
two peaks decreases; for 4 = 0.26 the potential almost goes
to zero between the peaks.

HIl. CONCLUSIONS

In this paper we have used the exact full-wave theory of
inverse scattering to treat reflection coefficients which yield
multiple peaks. As can be seen from the graphs, our method
allows the potential to be determined even in the valley
between the peaks. Our method should prove useful in deter-
mining the ionospheric electron density even in the valley
between the nighttime F 1 and F 2 layers, or in the valley
between the daytime £ and F layers.
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