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Hamed and Salingaros construct the real and complex algebras with three anticommuting 
elements which can arise in physics. It is shown here that the "algebra of color" can be similarly 
constructed with six anticommuting elements. As a consequence of this construction, these 
algebras are all simple, quadratic algebras. 

PACS numbers: 02.1O.Tq 

1. INTRODUCTION 

Hamed and Salingaros l have determined the structure 
of all possible algebras with three anticommuting elements 
over the real and complex fields Rand C that can arise in 
physical descriptions. In Sec. 2 we continue the study of alge­
bras with anticommuting elements by looking at all algebras 
with at least three anticommuting elements and determine 
some properties of those algebras. In Sec. 3 we show that the 
"algebra of color" fits into this larger class of algebras that 
generalizes and contains those algebras constructed by 
Hamed and Salingaros. 

2. THE CONSTRUCTION 

Consider an algebra A over lR or C with a basis 1, e l , e2, 

... , en where 1 is the scalar unit. These elements are defined to 
anticommute. Define a scalar square for each element, 

ejej = aj, i = 1,2, ... , n, (1) 
where the a j 's are each equal to + 1 or - 1. 

Hamed and Salingaros, I considering only the case 
n = 3, construct all algebras with three anticommuting ele­
ments which can arise in physics. They are (i) the quater­
nions, Iii) the dihedral Clifford algebras N I , which is related 
to the reaI2-spinors, and (iii) the algebra of Pauli matrices SI' 
which is related to the complex 2-spinors. 

Theorem 1: Each algebra A constructed above is qua­
dratic, that is, if xEA, then ! 1,x,x2J is a linearly dependent 
set. 

Proof Let 

x = a ol + ayey (2) 

with l<r<n; summation over repeated Greek indices is un­
derstood. 

x 2 = a~ 1 + 2ao{ayey ) + a;ay 1, 

x 2 = 2ao(aol + ayey ) + (a;a y - a~)I, 

x 2 = 2aoX + (a;a y - a~)l. 

We can rewrite (5) as 

x 2 
- 2t(x~ + q(x) 1 = 0, 

(3) 

(4) 

(5) 

(6) 

wheret(x) = aoandq(x) = a;ay - a~ are scalars. Thequan­
tities t (x) and q(x) are called the trace and norm of x, respec­
tively. The trace is a linear functional on A.2 The norm q(x) 
defines a symmetric bilinear form q(x,y) on A via 

q(x,y) = q{x + y) - q{x) - q{y). (7) 

Any quadratic algebra A is power associative, i.e., the subal­
gebra generated by an element xEA is associative; all qua­
dratic algebras are Jordan admissible. The classical treat­
ment of quadratic algebras is given by Braun and Koecher.3 

Let x be any element of an algebraA. The right multipli­
cation by x, Rx is defined by 

Rx: a-ax for all aEA. (8) 

Similarly, the left multiplication Lx is defined by 

Lx: a-+xa for all aEA. (9) 

Each of R x and Lx is a linear operator on A for all xEA. Let 
M (A ) denote the (associative) algebra consisting of all finite 
sums of products of right and left multiplications of A; M (A ) 
is often called the associative multiplication algebra of A. 

A subset of B of A is called an ideal of A if it is an 
invariant subspace under M (A ). An algebra A is called sim­
ple in case 0 and A itself are the only deals of A. Thus A is a 
simple algebra if and only if M (A ) =1= 0 is an irreducible set of 
linear operators. Knowing that an algebra is simple often 
helps to determine other aspects of its structure. For exam­
ple, if A is a simple, finite-dimensional associative algebra, 
then there is a division ring D and a positive integer n such 
that A is isomorphic to the ring of n X n matrices over D.4 

Theorem 2: Each algebra A, n>2, constructed above, is 
simple. 

Proof Suppose A is not simple andxEA is contained in a 
proper ideal of A. Then 

{to} 

For some k = I, 2, ... , n, ak =1=0. Then 

(11) 

is an element of the ideal. Hence a o =1= O. Pick some e I ,I =1= k. 
Then 

(12) 

is in the ideal. Hence e1el is in the ideal. But then 1 is the 
ideal. 

A simple, finite-dimensional alternative algebra is ei­
ther associative or an octonion algebra.s Since an octonion 
algebra is eight-dimensional over its center, all four-dimen­
sional alternative algebras constructed in this manner must 
be associative. Hence the algebras of Hamed and Salingaros 
must be associative. 
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3. THE ALGEBRA OF COLOR 

Domokos and Kovesi-Domokos6 have constructed an 
algebra of dynamical variables which describe the color pro­
perties of quarks and leptons. We will review this "algebra of 
color," give its multiplication table, and, finally, show that 
one can choose a basis for the algebra of color such that the 
algebra is a generalization of the construction of Ilamed and 
Salingaros. 

As is usual, it is assumed that quarks are triplets (3), 
antiquarks are antitriplets (3), and leptons are singlets under 
the color group SU(3)c. 7 The multiplication rules should be 
such that mesons and baryons, being observables, are both 
singlets under SU(3)c' Multiplication must then obey the 
triality rule, which can be symbolically written as 

(3)X(3)-(1), (3)X(3)-(3). (13) 

In addition, Domokos and K6vesi-Domokos introduced an 
exact superselection rule between hadrons and leptons. 

Define the fundamental dynamical variable t/J by 

(14) 

with 1 <;a<;3; summation over repeated Greek (color) indices 
understood. The coefficients I and qa are to represent lep­
tonic and quark variables, respectively. These are anticom­
muting Fermi variables with space-time and flavor labels 
suppressed.8 All the color properties of the algebra must be 
realized in the basis elements Uo and ua • 

1. Quarks and antiquarks (leptons and antileptons) are 
distinct. Both leptons and antileptons transform as - ( 1) un­
der SU(3)c' Quarks (antiquarks) transform as - (3) [- (3)]. 
Hence we have a vector space with basis elements Ua span­
ning (3) and ua spanning 3 ofSU(3)c' Write the conjugate of 
t/Jas 

If = uJ + uaqa' (15) 

where both Uo and Uo are singlets under SU(3)c' 
2. We assume that there are exactly two superselection 

sectors, i.e., hadrons and leptons, and that every observable 
fl may be written as a direct sum 

fl=LflL+HflH, (16) 

such that 

L 2=L, H 2 =H, (17) 

L+ =L, H+=H, (18) 

LH=HL=O, (19) 

where the projections Land H are singlets under SU(3)c' 
Since we want to identify I with a leptonic variable, Uo may be 
identified with the projection L, provided that Uo = Uo; this 
is permissible since both Uo and Uo are color singlets. Hence 
we can write 

E=L+H, (20) 

where E is the unit element of the color algebra. We have the 
obvious 

L = uo=uo, (21) 

and 

LUa = uaL =Lua = uaL = O. (22) 
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3. The triality rule requires that 

uaup = uaup = {japH, (23) 

where {j ap is the Kronecker delta symbol. Likewise, baryons 
(antibaryons) are observables, and keeping (23) in mind, we 
define 

(24) 

where €aPr is the totally antisymmetric unit tensor. 
4. Any observable and a quark (antiquark) must carry 

the same color as the quark (antiquark) does. Hence 

(25) 

and 

HUa = uaH = ua . (26) 

In summary we give multiplication Table I . 
Theorem 3: The algebra in Table I has a basis 

{H,el,e2,e3,e4,eS,e6l with the e/s anticommuting and e; 
± 1 for each i. 
Proof Let 

ea = (l/v'2)(ua + ua ), (27) 

ea + 3 = (l/v'2)(ua - ua ), (28) 

a = 1,2, 3. Direct computation verifies that 

e;;, = H, a = 1,2,3, 

e;;, = - H, a = 4,5,6, 

eaep = - epea if a#P. 

(29) 

(30) 

(31) 

All of the four-dimensional algebras and the algebra of 
Table I constructed in this manner are flexible; that is, 
(xy)x = x( yx) for all x and y in the algebra. However, not all 
algebras constructed in this manner are flexible; Braun and 
Koecher provide the example. Take as a basis {I, e l, e2, e3l 
and multiplication 

ei = e~ = e~ = 1, 

ele2 = e3 = - e2e l, 

ele3 = e2e3 = e3e2 = e3el = O. 

(32) 

(33) 

(34) 

For a further discussion of the algebra of color see Do­
mokos and K6vesi-Domokos9 and Wene. lO 

4. CONCLUSION 

This paper, along with Ref. 1, shows that each of the 
quanterions, the dihedral Clifford algebra N I , the algebra of 
Pauli matrices S, and the algebra of color can be constructed 
as an algebra over lR or C with a basis 1, e l , ... , en where the 
e/s anticommute and e7 = aj> i = 1, 2, ... , n (no summation 
intended) and each ai is equal to ± 1. 

Salingaros II extends the construction of algebras with 
three anticommuting elements and a unit given in Ref. 1 to 

TABLE I. 

H Up 

H H Up 

Ua Ua Ea/3vU v 

ua ua 8ap H 
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the case where the underlying field is the ring n (that is, the 
Clifford algebra generated over R by the elements 11, (() I 
with (()2 = + 1). 
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The explicit expressions for the infinitesimal operators and the (finite) matrix elements with 
respect to a U(n) basis are obtained for the representations of the most degenerate series ofSp(n,R ) 
and for the irreducible unitary representations ofSp(n) with the highest weights (M,O, ... ,O). 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

The groups SpIn, R ) and Sp(n) have found wide applica­
tions in physics. 1-6 The infinitesimal operators and the finite 
matrix elements of the group representations are of great 
importance for physical applications. We need different 
bases for different problems. In this article we consider the 
representations ofSp(n, R ) and Spin) in a U(n) basis. Here n 
denotes a rank of the groups SpIn, R) and Spin). In some 
papers these groups are denoted by Sp(2n, R ) and Sp(2n), 
respectively. 

The formulas for the infinitesimal operators derived 
here correspond to any reductions 
Spin, R )::) U(n)::) G'::)G "::) ... and 
Sp(npU(nPG '::)G" ::) .... The formulas contain the 
Clebsch-Gordan coefficients of a tensor product of the re­
presentations of U(n) with the highest weights 
(m l , 0, ... ,0, m2) and (2, 0, ... ,0) for the reduction 
U(n)::) G '::) G " ::) .... These Clebsch-Gordan coefficients are 
well known7

•
8 for the Gel'fand-Zetlin basis. 

The matrix elements of the representations ofSp(n, R ) 
and Spin) are found in the basis corresponding to the 
reduction 

U(npU(n - Ip··.::)U(l). 

In order to find them in other bases we have to use the matrix 
elements ofthe representations ofU(n) with the highest 
weights (m l , 0, ... ,0, m2 ) for this other basis. The matrix ele­
ments of some representations ofU(n) in a U(n - p) ® U(p) 
basis are obtained in Ref. 9, and in a SO(n) basis in Ref. 10. 

To find the infinitesimal operators of the representa­
tionsofSp(n, R) ina U(n) basis we use Lemma 5.2 of Ref. 11. 
The infinitesimal operators are used to calculate the inter­
twining operators for the representations. In tum, they are 
used to find the infinitesimal operators of the representations 
ofSp(n). The method of calculation of the infinitesimal oper­
ators and the matrix elements of the unitary irreducible re­
presentations of a compact Lie group with help of infinite 
dimensional representations of a corresponding noncom­
pact Lie group are described in Refs. 12-14. 

II. THE MOST DEGENERATE SERIES 
REPRESENTATIONS OF THE GROUP Sp(n, R) 

ThegroupSp(n, R ) consists of all matricesofGL(2n, R) 
which lea¥e invariant the form 

The Lie algebra spin, R ) of Spin, R ) consists of all matrices 

where XI' X2, X3 are real n X n matrices such that X2 and X3 
are symmetric. Here T denotes a transposition. 

A maximal compact subgroup ofSp(n,R) is U(n). This 
subgroup is imbedded into Sp(n,R ) in the following manner. 
If A + iBEU(n), A and B are real, then 

A+iB_(A_
B 

~)ESP(n,R). (1) 

Ifsp(n, R) = u(n) + ~ is a Cartan decomposition of 
spin, R ) then ~ consists of the matrices 15 

(Z21 Z2) (2) 
\z -ZI' 

where iZ IEu(n) and is a pure imaginary n X n matrix and Z2 is 
a symmetric real n X n matrix. 

Sometimes it is convenient to consider the algebra 
sp'(n, R ) which is isomorphic to sp(n, R ).ltisobtainedbythe 
transformation <p: g-ugu- I, gEsp(n, R ), where 

U=2- 1/2(Enn iEn ) 

\E - iEn 

and En is a unit n Xn matrix. Under<p the matrices (1) trans­
form into the matrices 

(
A - iB 0) 

o A +iB 
(3) 

and the matrices (2) into 

(0 Z\ + iZ2) 
\zl -iZ2 0 . 

(4) 

An Iwasawa decomposition for Spin, R ) can be taken in 
the form Spin, R ) = ANK, where K = U(n), A = exp nand n 
consists of the matrices 

diag(wl""'Wn , - WI , ... , - wn ), wjER. 

The notation diag ( ... ) is used for diagonal matrices. 
Let us consider the subgroup P = AN.U(n - 1) of 

Spin, R), where U(n - 1) is imbedded into Spin, R) as 

U(n - I)-diag(U(n - 1), 1) 

(5) 

using the imbedding (1). The subgroup P differs from the 
maximal parabolic subgroup ofSp(n, R ) by the discrete sub­
group Z2 consisting of two elements. The subgroup P can 
also be represented as P = A INI. Spin - 1, R ), where 
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SpIn - 1, R) is obtained from SpIn, R) by a deletion of the 
nth and 2nth rows and columns. The subgroup A I is defined 
as exp aI' where a l Csp(n, R) consists of the matrices 

diag(O, .. ,O, a, 0, ... , - a), aeRo (6) 

It is clear that the matrices of A I have the form 

diag(I, ... ,I, t, 1, ... ,1, t -I), O#teR. (7) 

The subgroup NI eN is generated by root vectors corre­
sponding to positive roots of the pairl6 (spIn, R ), ad. 

For hlnlmEA IN). SpIn - 1, R )==Pthecorrespondence 

h)n\m-exp(A. (In hd), (8) 

where A. is a linear form on a), defines a one dimensional 
linear representation of P. It is clear that A. is given by one 
complex number fl. If h) is of the form (7) then 

exp(A. (In hd) = tp.. 

The representation (8) of P induces the representation of 
SpIn, R ). We denote it by 11"p.' It acts on the Hilbert space 
L ~(K ),K = Urn), which consists of all functionsfromL 2(K) 
satisfying the condition 

f(mk) =f(k), meU(n - I}. (9) 

The operators 11" p. (g), geSp(n, R ) are given by 

11"p.(g)f(k) = exp(A. (In h)))f(kg ), (10) 

where h) and kg are defined in the following manner. kg is 
determined by the Iwasawa decomposition kg = h 'nkg , 

h 'EA, neN, kgeK; hI is defined by the decomposition 
h' = h2h), h2EA2' h)EA) [here A2 = expaz is a subgroup of A 
such that a2 consists of the matrices (5) with IiJn = OJ. 

The representations 11" p. are reducible. Every 11" p. is de­
composed into two representations ofSp(n, R ), which are 
induced by representations of the maximal parabolic sub­
group. This decomposition will be given in the following 
section. 

III. INFINITESIMAL OPERATORS OF THE 
REPRESENTATIONS 11"," 

Let B (.,.) be a Cartan-Killing form on spIn, R ) and 0 a 
Cartan involution. Then (x, y) = - cB (x, Oy), c> 0 and 
fixed, is a scalar product on spIn, R ). The adjoint representa­
tion ofSp(n, R ) in spIn, R ) will be denoted by Ad. In order to 
evaluate the infinitesimal operators of the representations 
11"p. ofSp(n, R ) we use Lemma 5.2 of Ref. II. For our case it 
can be formulated as follows. 

Lemma. The infinitesimal operators d11"p.(Y), YE.\lc (tlc 
is the complexification of tl), of the representations 11" p. of 
SpIn, R ) act upon the infinitely differentiable functions of 
L~(K) as 

d11"p.(Y)f(k) 

= «(Ad k )Y, H)A. (H)f(k) - «(Ad k )Y,p)f(k) 

+HQ, «(Adk)Y,h)]f(k), (11) 

where H is a normalized element of aI' h is an element of a) 
such that a(h ) = I [a is a simple restricted root'6 of the pair 
(sp(n, R ), a))] Q is identical to the operator Q) of the formula 
(5) in Ref. 17, andp is half the sum of the positive restricted 
roots of the pair (sp(n, R), atl represented as an element of a). 
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We need an orthonormal basis of L ~ (K ). According to 
the Peter-Weyl theorem the matrix elements of the irreduci­
ble unitary representations ofU(n) with the highest weights 
(m), 0, ... ,0, m2)' m,>O, m2<0, which are left invariant with 
respect to U(n - I), can be taken as a basis of L ~(K). We 
denote these representations ofU(n) by 
[m], 0, ... ,0, m2]==[ml>m~ Dm,.m,. In the space ofthe re­
presentation [m l ,m2J we choose two orthonormal bases: the 
Gel'fand-Zetlin basis, i.e., the basis corresponding to the 
reduction U(n) ::J U(n - 1)::J ... ::J U( I}, and an arbitrary orth­
onormal basis. The elements of this latter basis will be denot­
ed by II }. The Gel'fand-Zetlin basis element which corre­
sponds to the Gel'fand-Zetlin pattern 

o o 
o o 

(12) 

o 

where the first row is a highest weight of the representation 
ofU(n), will be denoted by In). It is clear that In ) is invar­
iant with respect to U(n - 1). The functions 

{dim[m l,m2]})12(n ID m,m'(k )II) (13) 

for all m), m2• and I, constitute an orthonormal basis for 
L ~ (K). The basis elements (13) will be denoted by 
1m), m 2,I). 

We shall find the infinitesimal operators d11"p. (Y) in the 
basis I m I> m 2, I ). The derivation is similar to the one given 
in Ref. 17 for the representations of the group U( p, q). 
Therefore, we omit here the details. 

The scalar product (.,.) on.p can be given as 

(X, Y) =!TrXyT. (14) 

Therefore, the matrices hand H of the lemma are 

h = H = enn - e2n• 2n' (IS) 

Here eij is a matrix with matrix elements (eij)st = 8is8j ,. A 
direct evaluation shows that p = nh, where h is defined by 
(15). This evaluation can be done with a help of the Araki 
diagram (see pp. 30-32 in Ref. 16). Now we can write 

«(Ad k )Y, H)A. (H) - «(Ad k )Y,p) 

= (p, - n)«(Ad k)F; h ). (16) 

Since we consider the degenerate series of representa­
tions the chain (2) of subgroups of Ref. 17 (see also Chap. 5 in 
Ref. 11) reduces to 

U(n) = K=KI ::JK2 = U(n - 1). 

Moreover, between K I and K2 there is the subgroup K ~ [see 
the chain (3) in Ref. 17], and 

K i = diag(U(n - 1), U( 1)1. 

This information is utilized to find eigenvalues of the opera­
tor Q. The operator Q acts upon the states 1m], m2, I) as 

Q 1m), m2' I) = q(m)lm" m2, I), (17) 

where q(m)==q(m), m2) is a number. 
From (16) and (17) we have 
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d1TI'(Y)lml, m2, I) = (,u - n +!Q - !q(m)) 

X«(Adk)Y,h)lm l,m2,I). (18) 

Now we consider the expression 
(Ad k )Y, h ) 1m I' m2, I). Thespace~c isacarrierspaceofthe 
representation of u(n) with respect to the action ad b, beu(n). 
This representation is a direct sum of two irreducible repre­
sentations ofu(n) with the highest weights (2, 0, ... ,0) and 

Thus, we shall obtain the operators d1T I' (Y +) and d1T /J (Y _). 
The other noncompact operators can be obtained by com­
mutation of d1T /J (Y +) and d1T /J (Y _) with compact infinites­
imal operators. We can also find them by utilizing the 
Clebsch-Gordan coefficients for U(n) (see Ref. 17). 

The matrices Y + and Y _ are elements of the carrier 
spaces of the representations ofU(n). They correspond to the 
Gel'fand-Zetlin patterns: 

(0, ... ,0, - 2). In order to prove it we use the algebra sp'(n, R ) 
for which U(n) and ~ are realized by the matrices (3) and (4), 
respectively. The matrices 

are transformed under the representation (2, 0, ... ,0), and the 
matrices These patterns will be denoted by (Y +), (Y _), respectively. 

The expressions 

«(Adk)Y+,h) = «(Adk)Y+, Y+), 

«(Ad k )Y_, h) = «(Ad k )Y_, Y_), 
under the representation (0, ... ,0, - 2). We shall find the in­
finitesimal operators of the representations 1T p- for the matri­
ces e2n,n anden,2n' Ifwe consider the realization (2) for ~ then 
these matrices correspond to 

e 2n, n~nn - e 2n, 2n + f(en, 2n + e 2n, n )==Y +' 

en. 2n~nn - e 2n, 2n - f(e n, 2n + e 2n• n )=Y_. 

are matrix elements of the representations ofU(n) with the 
highest weights (2, 0, ... ,0) and (0, ... ,0, - 2), respectively. 
The basis elements Im l , m2, I) are the functions (13). 
Therefore, 

«(Ad k)Y +' h) Im l , m2, I) 

I ( dim[ m l , m2] )112 (m l , m2, n;( Y +)Im;, m~, n )(m;, m~,I Im l , m2, I;(Y+)lm;, m~,..r), 
m;,mi dim(m;,m;] 

«(Ad k )Y_, h )Iml' m2, I) 

I ( dim[ m l, m2] )112 (m l , m2, n;(Y_)lm;, mi, n )(m;, mi, I 1m I' m2, I;(Y_)lm;, mi, I), 
m;, mi dim [ m;, miJ 

where (",1",) are Clebsch-Gordan coefficients of the tensor products 

[ m l , 0, ... ,0, m 2 ] ® [2,0, ... ,0], 

[ m l , 0, ... ,0, m 2 ] ® [0, ... ,0, - 2] 

of the representations ofU(n). Decomposing these tensor products we find that in the relation (19) 

(m;, mi) = (ml + 2, m2), (m l , m 2 + 2), (ml + 1, m2 + 1) 

and in (20) 

(m;, mi) = (ml - 2, m2), (m l , m2 - 2), (ml - 1, m2 - 1). 

(19) 

(20) 

This information is used for evaluation of eigenvalues of the operator Q - q(m) from (18). We evaluate them utilizing the 
considerations given in Sec. 4 in Ref. 17. Substituting the relations (19) and (20) into (18) and taking into account the formulas 
for eigenvalues ofQ - q(m) we obtain 

( 
dim[ m m] )112 ) 

d1TI'(Y+)lml,m2,I)=(,u+ml-m2) . [ I' 2] (m l ,m2,n;(Y+)lm l +2,m2,n 
dim m l + 2, m2 

X (m l + 2, m2,I Im l , m2,I;(Y+)lm l + 2, m2,I) + (,u - m l + m2 - 2n + 2) 

X . (m l , m2, n;(Y +) m l , m2 + , J.e ( 
dim[ m l , m2] )112 I 2 "..) 

dlm[ m l , m2 + 2] 
X (m l , m2 + 2,I Im l , m2,I;(Y+)lml, m2 + 2,I) 

+ (,u - n) I' 2 (m l , m2, n;(Y +)Im l + 1, m2 + 1, n) ( 
dim[ m m] )112 

dim [ml + 1, m 2 + 1] 
X (m l + 1, m2 + 1, I Im l, m2, I;(Y +) Iml + 1, m2 + 1, I), (21) 
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In this formula Clebsch-Gordan coefficients with 11 are 
known.7

•
S They correspond to Gel'fand-Zetlin bases. 

Clebsch-Gordan coefficients with I are known if 
1m I' m 2, I) are the Gel'fand-Zetlin basis elements. 

The infinitesimal operators d11'1'(Y +), d11'1'(Y _) (and, 
therefore, other noncompact infinitesimal operators) change 
the number m l + m2 by ± 2. Thus, the representations 11'1' 

of Spin, R ) are decomposed into a direct sum of two repre­
sentations 11'1'+ and 11'1'- • For 11'1'+ the numbers ml + m2 are 
even, for 11'1'- they are odd. It can be shown that the represen­
tations 11'1'+ and 11'1'- ofSp(n, R ) are induced by one dimen­
sional representations of the maximal parabolic subgroup 
related with the subgroup P. 

The representations 11'1'+ and 11'1'-, for whichJl - n are 
pure imaginary, are unitary. They constitute the principal 
most degenerate unitary series of Spin, R ). 

IV. STRUCTURE OF THE REPRESENTATIONS 11'; 

The multiplicity of the irreducible representations of 
U(n) in 11'1'+ and 11'1'- does not exceed 1. Thus we can deter­
mine the set of irreducible representations in the set of repre­
sentations 11'1'+, 11'1'-, Jl a complex number. We can also in­
vestigate the structure (the composition series) of the 
reducible representations 11'1'+, 11'1'-. The proofs are the same 
as in the case of the groups U(n, 1) and SOo(n, 1) in Ref. 11. 
Therefore, we list the theorems without giving proofs. 

Theorem 1: The representation 11'1'+ is completely irre­
ducible if and only if Jl t= 0, - 2, - 4, - 6, ... and Jl t= 2n, 
2n + 2, 2n + 4, .... The representation 11'1'- is completely ir­
reducible if and only if Jl t= - 1, - 3, - 5, ... and 
Jlt=2n + 1, 2n + 3, 2n + 5, .... 

Theorem 2: If Jl = P; P = 0, - 2, - 4, - 6, ... , then 
11'1'+= p contains two completely irreducible representations of 
Spin, R ), namely, the finite dimensional representation 
D _ p with the highest weight ( - p, 0, ... ,0) and the infinite 
dimensional representation, denoted by D d_ p + 2' These re­
presentations 11'1'+=p are indecomposable and the finite di­
mensional representations are realized in an invariant sub­
space. If Jl = P; P = 2n, 2n + 2, 2n + 4, ... , then 11'1'+= p is 
indecomposable and contains two completely irreducible re­
presentations ofSp(n, R), namely, the finite dimensional re­
presentation D p _ 2n and the representation D; _ 2n _ 2' The 
latter one is realized in an invariant subspace. 

The representations 11'/, 11' 2~ _ p' p = 0, - 2, - 4, 
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- 6, ... contain the same completely irreducible representa­
tions of Spin, R ). 

Theorem 3: Ifp = - 1, - 3, - 5, ... , then therepresen­
tation 11'1'-= p and the representation 11'2-:' _ p contain two com­
pletely irreducible representations of Spin, R ), namely, the 
finite dimensional representation D _ p with the highest 
weight ( - p, 0, ... ,0) and the infinite dimensional representa­
tion, denoted by D d_ p + 2' The representations 11'p- and 
11'2-:' _ p are indecomposable. For 11'p- the representation D _ p 

and for 11'2-:' _ p the representation D d_ P + 2 are realized in 
invariant subspaces. 

Using the infinitesimal operators (21) and (22), we can 
define which irreducible representations ofU(n) are included 
in the representationsD _ p andD d_ p + 2 ofSp(n, R ). We saw 
that the representations 11'1'+ and 11'1'- ofSp(n, R) under re­
striction upon U(n) are decomposed onto the irreducible re­
presentations of U(n) with the highest weights 
(m I' 0, ... ,0, m2) for which m I + m 2 are even and odd, respec­
tively. The finite dimensional irreducible representation DM 
ofSp(n, R) with highest weight (M = - p, 0, ... ,0) under re­
striction upon U(n) are decomposed onto those and only 
those irreducible representations ofU(n) which have the 
highest weights (ml' 0, ... ,0, m 2) for which m l - m2<M and 
m I + m 2 have the same parity (evenness) as M does. Now we 
can define irreducible representations ofU(n) which are con­
tained in the representations D d_ p + 2 of Spin, R ). 

V.INFINITESIMAL OPERATORS OF THE UNITARY 
REPRESENTATIONS OF Sp(n) IN A U(n) BASIS 

Let us consider the finite dimensional subrepresenta­
tions of the representations 11'1'± ofSp(n, R ) (see Theorems 2 
and 3). The Lie algebra ofSp(n, R ) has the Cartan decompo­
sition spin, R) = u(n) +~. The corresponding compact Lie 
algebra spin) has the decomposition 

spIn) = u(n) + i~. (23) 

Therefore, if we multiply infinitesimal operators YE~ for fin­
ite dimensional representations of Spin, R ) by i then we ob­
tain them for finite dimensional representations ofSp(n). Let 

J + = iY +, J _ = iY_, 

where Y + and Y _ are taken from (21) and (22). The infinites­
imal operators J + and J _ for the finite dimensional repre­
sentations D M' M = - p, of Theorems 2 and 3, given by the 
formulas (21) and (22), do not satisfy the unitarity condition 
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J~ = - J _. This condition can be satisfied for the new 
basis. This basis can be found with the help of the intertwin­
ing operators HJl for the representations 1T'Jl and 1T' _ Jl + 2n of 
Sp(n,R): 

(24) 

(see Chap. 5 in Ref. 11). In the basis 1m" m2' I) the opera­
tors HJl are diagonal and their matrix elements am,m, do not 
depend" onI. Let us consider the relation (24) for d1T'Jl (Y +) 
and d1T' Jl (Y _). Then taking matrix elements of both sides one 
obtains the relations for am,m,: 

am, +2,m,(.u + m, - m2) = am,m,( - fl + m, - m2 + 2n), 

am"m,+2(.u - m, + m2 - 2m + 2) 

= am,m, ( - fl - m, + m2 + 2), 
-Qml +I,m2 +1 =am,m1 ' 

Therefore, 

(25) 

a - a Ilk - fl- m, + m2 + 2j 
mi' m 2 + 2k - m.m2 . , 

j = 'fl - m, + m 2 - 2n + 2} 
(26) 

a - ( l)ka m l +k,m2 +k - - m,m 2 ' (27) 

Now we can fix some initial value of am,m, and find all matrix 
elements am,m, of HJl' The operators J +, J _ satisfy the uni­
tarity condition for the basis 

1m" m2, I)' = HJl -' 12 1m" m2, I) (28) 

(see Sec. 5 in Ref. 11). Taking into account the relations (25)­
(28) we obtain the formulas for the infinitesimal operators of 
the unitary irreducible representations ofSp(n) with highest 
weights (M, 0, ... ,0): 

J+lm" m2,I)' = [( -M + m, - m2)(M + m, - m2 + 2n)]'/2K::::~2,m,lm, + 2, m 2, I)' 

+ [( -M - m, + m2 - 2n + 2)(M - m, + m2 + 2)]'/2K::::::::+2Im" m2 + 2,I)' 

- j(M + n)K::::~"m,+ ,1m, + 1, m2 + I,I )', (29) 

J_lm" m2' I)' = - [(M + m, - m2 + 2n - 2)( - M + m, - m2 - 2)1'/2K::::~2,m,lm, - 2, m2, I)' 

- [(M + m, - m2 + 2n)( -M + m, - m2)]'/2K::::::::_2Im" m2 - 2,I)' 

- i(M + n)K::::~"m,_,lm, - 1, m2 - 1, I)'. (30) 

Here K ::: denote the products of Clebsch-Gordan coeffi­
cients (multiplied by dimensionality mUltiplier) of Eqs. (21) 
and (22). Other infinitesimal operators can be obtained by 
commutation of the operators J + and J _ with infinitesimal 
operators corresponding to the subgroup U(n). 

VI. MATRIX ELEMENTS OF THE REPRESENTATIONS 1T'Jl 
IN A U(n) BASIS 

Now we shall find the matrix elements of the represen­
tations 1T'Jl± in a U(n) basis. The Gel'fand-Zetlin basis will be 
taken as a U(n) basis. We shall use tbe formula (10) for the 
representations 1T'Jl and tbe formula 

(f" 1T')g)f2) = f[f,(k)]*1T'Jl(g)f2(k)dk (31) 

for tbe scalar product in L ~ (K), K = U(n). 
Any element geSp(n, R ) can be represented as 

g = khk', k', keU(n), heA. (32) 

The element heA is represented as the product of the matri­
ces (7), taken for the subgroups Sp(j, R ),j = 1, 2, ... ,n. Since 
the matrix elements oftbe representations ofU(n) in the 
Gel'fand-Zetlin basis are known, then we have to find the 
matrix elements of the operators 1T'Jl(h,), corresponding to 
the elements h,eA, given by Eq. (7). 

According to Eq. (9) elements of L ~ (K) can be consid­
ered as functions on tbe complex spbere 
S n - , = U(n - I) '\ U(n). Let us introduce a parametrization 
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on S n - '. For this aim we consider the decomposition of the 
elements k ofU(n) in the form [see Eq. (7.39) in Ref. II) 

k = h 'Pn (On jan (({In )Ii, h 'eU(n - I), 

an(({Jn) = diag(I, ... ,I, e-qon), 

Pn(On) = diag(I, ... ,I, R (On)), 

Ii = [tI~Pn - ,(On - ,jan - ,(({In _ ,) ]a,(({J,), 

O<({J; <21T', 0<0; <1T'/2. 

Here R (0) denotes a 2 X 2 matrix with the matrix elements 
a" = a22 = cos 0, a 12 = - a2 , = - sin O. Thus elements of 
L ~ (K ) can be considered as functions of 
On' ({In' On_I, ({In-' , ... ,02, ({J2' ({J, or as functions of elements 
ofU(n) of the form 

k' = [tI:Pn-,(On-,)an-,(({Jn-,)]a,(({J,). (33) 

This parametrization of S n - , corresponds to the reduction 

U(nj:)U(n - Ij:)···::JU(I). 

Now we find the action of 1T'Jl (h d on the functions 
f(On' ({In, ... ,02' ({J2' ({J,). The formula (10) has to be used. 
Therefore, we need tbe explicit form of the matrices nEN. 
Since h,eA" then the Iwasawa decomposition 
kg = h 'nkg, g = hi' containselementsn ofthesubgroupN, 
of N. Let us construct this subgroup. 

The linear forms on a [see Eq. (5)], 
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± {J)i ± {J)i' i#j, ± 2mi' i = 1, 2, ... ,n, 
are restricted roots l6 of the pair (sp(n, R ), a). The roots 
{J)i + {J)i' i>j, 2m i can be taken as positive roots. All roots 
have the multiplicity 1 (see pp. 30-32 in Ref. 16 and Table 3 
in Ref. 11). Let us construct root vectors corresponding to 
the positive roots {J)n ± (J)n _ I' 2mn _ l' 2mn. A direct verifi­
cation shows that they coincide with the matrices 

Ew.+ w._ 1 =el • 2n +e2. 2n - l , E2w._ 1 =en-I.2n-I' 

Ew._ w• __ , =en.n_ 1 -en+I.2n-I' E2w• =en.2n · 

The following one-parameter subgroups of SpIn, R ) corre­
spond to them: 

Nw• + w. __ 1 = e + s(e l • 2n + e2. 2n - I)' 

Nw._ w._ , = e + t(en.n -I - en + 1.2n-I)' 

N 2w• _I = e + pen - I. 2n - I' 

N 2w• = e + qen.2n , 

where e is a unit matrix and s, t, p, q are real numbers. A 
product of this subgroups coincides with the subgroup N I. 
Its elements have the form 

I 

I 1 

° I q s 
t tq+s ts+p - - - - - - - , 

I 

1 

° where other matrix elements are equal to 0. 
If k' is of the form (33) and hleA l then 

-t 

k 'hi = Pn(On )an(ipn)h{{(Pn _ ,(On _ ,Ian _ ,(ipn _ ,) ]al(ipl)' 

For the productpn(On)an(ipn)h l we have 

Pn(On )an(ipn )h l = dn.f3n(O ~ Ian (ip ~), nleNI , 

d = diag(l, ... ,l. t H, t'), t H, t'eR. 

Comparing the matrix elements for both sides of this relation 
we obtain 

(34) 

cos 0' = cos 0 [cos20 + t 2(COS2ip + t 4sin2ip)-lsin20] -1/2, 
(35) 

sin 0' = t (COS2ip + t4sin2ip)-1/2sin 0 COS-IO cos 0 " (36) 

t' = t(COS2ip + t 4sin2ip)-1/2 

X [cos20 + t 2(COS2ip + t 4sin2ip)-lsin20 ] -1/2. (37) 

We have omitted the index n at ip and 0 in Eqs. (34)-(37). It 
follows that 

1T" (hl)f(On, ipn' On - I' ipn _ I,"·'ip.) 

(38) 

where t '. 0 ~, ip ~ are defined by (34)-(37). We shall use this 
formula. 

Elements of the Gel'fand-Zetlin basis of the representa­
tion of U(n) with highest weight (m I' 0, ...• 0. m2 ) are denoted 
by the patterns 

m' I 
° 

° 

Let a o denote the pattern a with 

m; =m; = ... =mlln-II=O. 

° 
° m' 2 

All the matrix elements (multiplied by a dimensionality 
multiplier) 

(dim[ mi' m 2 ])
1/2D:.:';m'(k )=Im l • m 2• a) (40) 

of all the representations of U(n) with highest weights 
(m I' 0, ... ,0, m2 ) are the orthonormal basis of L ~ (K). For the 
matrix elements (40) we have 

D '::.am'(Pn (0 Jan (ip ))-D ;;:'(:;mil (0. ip ) 

=/<p(-m,-m,+mj+mildm,m; ,(0) (41) 
O.(mlm,1 , 

and there are two expressions for d (0): 

(42) 

d m,m, (0 ) = (cos 0 )m, + m, - mj - mi ~ N '(m m m' m' k )(sin Ll )mj + mi - 2k 
O. (mjmil £... !J 2' I • 2' {7 • (43) 

k=m2 

The explicit expressions for N can be taken from Eq. (46) of Ref. 13 and for N' from Eq. (47) of Ref. 13 (see also Ref. 18). 
The matrix elements of the operators 1T,,(h.) [and therefore. of 1T,,± (h.)] are defined by the formula 

( I (h )1 - - -) - d" (t) - (n - 1) (dim[ mi' m2]·dim[ mi' m2])1/2 i21Ti
1T12

d dLl . 2n - 3Ll m l , m 2• a 1T" I mi' m 2, a - (m m 1(';;';; l(m'm'l - , [ ip {7 sm (7 

" " I' 1T dIm m;. m; ] 0 0 

X cos 0 [D ;;:'I:;mil(O.ip)]*t '''D ;"I:;mil(O '.ip '), (44) 

wheret " () '.ip 'havetobetakenfromEqs. (34)-(37). The expressions (42) and (43) can be used for D functions in (44). IfEq. (42) 
is taken then we have that 
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d Jl (Q ~ ~ ( I I k - - , , , lJ.-m J - m i+ 2k ' Im,m,)I,;",;,,)lmjm,) t) = L L N m I' m2, m I' m2, )N (m I' m2, m I' m2, k )t 
k=mj k'=mj 

X 121T 11T/~cp d() ei'Plm, + m, - mj - m')(cos2cp + t 4sin2cp )1 - Jl +,;" +,;" - 2k ')12(cos cp + it 2sin cp ) -,;" -,;" + mj + m, 

X (sin () )21k + k' - mj - m, + n - I) - I(COS () )2lmj + m,) - m, - m, -,;" -,;" + I 

X [cos2() + t 2(COS2cp + t 4sin2cp )-lsin2() ](-Jl+';', +,;,,-2k')12. 

Here we have denoted the expression preceding the integral ofEq. (44) by Q. There is the multiplier 

(45) 

on the right hand side ofEq. (45). It appears because of the decomposition exp icp , = cos cp' + i sin cp' and Eq. (34). The number 
- ml - m2 + m; + m~ can be negative. Then this multiplier is not convenient to work with. We have to apply Eq. (34) to the 

decomposition exp( - icp') = cos cp' - i sin cp'. As a result we obtain a somewhat different expression in Eq. (45). We do not 
write it down here. The reader can easily obtain it. 

If the expression (43) is taken for D function (41) then we have that 
mi m' 

d Jl ( - Q" ~, I I k ' - - I , , Jl + m, + m, - 2k ' Im,m,)(,;",;,,)(m,m,) t) - £.. £.. N (m l, m2, m}! m2, )N (m l, m2, m l , m2, k )t 
k=m 2 k' =m2 

X 121T 11T/~cp d() /'Plm, + m, - m, - m')(cos2cp + t 4sin2cp( - m, - m, + (- Jl +"', + "',1/2 

X [cos1() + t 1(COS1cp + t 4sinlcp)-lsin2() ]1 - Jl- m, - m, + 2k V2(COS cp + it 2sin cp) - m, -,;,,+ m; + m, 

X (sin () )21k + k' + m, + m, + n - I) - I(COS () r' + m, + ,;" + ,;" - 21m; + m,l + I. 

If in Eq. (44) the expression (42) is taken for D ((), cp) and the expression (43) for D (()', cp') then we have 

X 121T 11T/~cp d() ei'Plm, + m, - m, - m')(cos2cp + t 4sin2cp )k' - mj - m, + 1- Jl +,;" + ';',)12 

X [cos1() + t 2(COS2cp + t 4sin1cp)-lsin2() ]k'+I-I'-';', - m,)/2(cos cp + it 2sin cp) -,;" -,;,,+m; + m, 
X (sin () fin + k - k' - 11- I(COS () I';"~ +,;" - m, - m, + I. 

If the expression (43) is taken for D ((), cp) and the expression (42) for D (()', cp') then 

mi m 
d Jl (t) Q" ~ N'( I I k)N( - - I I k')tJl-m,-m,+2k' Im,m,)(,;",;,,)lm,m,) = £.. L m l ,m2,m l ,m2 , m l ,m1 ,m l ,m2 , 

X121T 11T12dCPd()ei'P~:,:'~,'~:i- m')(cos2cp + t4sin2cp) -k' +( -Jl+';', + m,)l2(cos cp + it2sin cp) - m, - m,+m, +m, 

(46) 

(47) 

X [cos1() + t 2(COS2cp + t 4sin2cp)-lsin2() ] - k' + 1- Jl + m, + m,)12(sin () fin - k + k' - I) - I(COS () t, + m, - m, - lit, + I. (48) 

The remark which was made for Eq. (45) is valid for Eqs. (46)-(48). 
We do not calculate here the integrals ofEqs. (45)-(48). They can be calculated (at least for partial values of t ) with the help 

of the formulas 3.681(1) and 3.682 of Ref. 19. Let us show it for the integral ofEq. (48). It can be represented as 

1= t - 2k' + (-Jl +,;" + m2)12121T 11T/~cp d() ei'P(m, + m, - m; - m,)(cos cp + it 2sin cp) -,;" - m, + m, + m, 
X (sin () fin - k + k' - I) - I(COS () t, + m, - m, -,;" + I(t -2(COS1cp + t 4sin2cp)cos2() + sin2()) - k' + (- Jl + m, + m,)/2, (49) 

If m I + m1 - m I - m2 + 1 >0, and for all cp,t satisfies the condition 

t -1(COS2cp + t 4sin1cp) - 1 < 1, 

i.e., ! < t 2 < 2, then the integral over () can be calculated using the formulas of Ref. 19, mentioned above. Now we have to 
expand the hypergeometric function into the hypergeometric series, then to invert the order of summation and integration 
over cp and to integrate summands. 

VII. THE MATRIX ELEMENTS OF THE UNITARY 
REPRESENTATIONS OF Sp(n) IN A U(n) BASIS 

The matrix elements of the unitary representations of 
Sp(n) with highest weights (M, 0, ... ,0) can be found by the 
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method discribed in Ref. 14. This method presupposes utili­
zation of the integrals (45)-(48). The matrix elements will 
correspond to the reduction 

Sp(npU(npU(n - 1p···::)U(1). 
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According to this method we find the matrix elements of the finite dimensional irreducible representations ofSp(n, R ) 
with highest weights (M, 0, ... ,0), which are subrepresentations of the representations 17' _ M ofSp(n, R ). We saw thatthese finite 
dimensional representations ofSp(n,R) are decomposed onto irreducible representations ofU(n) with highest weights 
(m), 0, ... ,0, m2) for which m) - m2<.M and m l - m2 has the same parity as M does. 

For the matrix elements D M( I( - - I( , 'I (t ) of the finite dimensional representations of Spin, R ) with highest weights m)m2 m 1m 2 m 1m 2 

(M, 0, ... ,0) we have 

(50) 

If 

(51) 

then the formula (48) can be used for calculation of the matrix elements (50). The integral in (48) can be represented in the form 
(49). The powers - k' + ( - p, + ml + mz)l2 in (49) are a non-negative integer for the matrix elements (50). Therefore, 

where the notations 

(M + ml + m2)12 = a, m; + mi - ml - m2 = s 

are introduced. Therefore, for the integral in (49) we have 

['= -~+a f It 2,+4q-2P(-k'+a)(p)(S)r 
p=o q=O,=O P q r 

X 121T dqJ e"'I' (m, + m, - m, - mil(sin qJ)2q + '(cos qJ)2P - 2q + s - , 

i
"/2 

X 0 dO (sin 0 )2(n - k +a-p-II - I(COS 0 t, + m,- m, - m, +2p+ I. 

This integral can be calculated with the help of the formulas 3.621(2) and 3.892(4) of Ref. 19: 

i
"12 

o sinP -10 cosV
- 10 dO= VJ (p,/2, v/2), Rep, >0, Re v>O, 

i"e2iP'I'Sin2PqJ COS2v rp dqJ= 17'exp[i1T( P - v)lzFI( - 2v, P - p,- v; 1 + P + p, - v; - 1) . 
o 4JL + V(2p, + 1)B (1 - P + p, + v, 1 + P + p, - v) 

(52) 

(53) 

(54) 

(55) 

If the conditions (51) are not satisfied we have to use other integral formulas for the matrix elements d P(t). If the relation (45) is 
used then at p, = - M for the integral in (45) we have that 

a - k'.f. s (a - k ')(P)(S) 12
" [= L L L t4q-2p+2, r dqJei'l'(m,+m,-m,-mil(sinqJ)2q+'(COSqJ)2P-2q+S-, 

p=o q=Or=O P q r 0 

("/2 
X Jo dO (sin 0 )21k - m, - mi + a - p + n - II - l(COS 0 )2(m, + mi + pI - m, - m, - m, - m, + It - P + m; + mi - 2k', (56) 

where the notations (52) are introduced. This formula can be used for evaluation ofthe matrix elements (50) by Eqs. (54) and 
(55), if the conditions 

ml + mz - ml - m2>0, m; + mi - ml - m2>0 
are satisfied. 

At the conditions 

ml + mz - ml - m2>0, - m; - mi + ml + m2>0 
the formula (47) is used for evaluation of the matrix elements (50). For the integral in (47) we have 

[= ark' f i t4q- 2p+ 2r-p-m; -mi+2k,(a + k ')(P)(s)( _ i)' 
p=o q=O r=O p \q r 

X i 2
" dqJ ei'l'lm, + m, - m; - mil(sin qJ)2q + r(cos qJ)2IP - ql + s - r 

i
1T12 

X 0 dO (sin 0 )2Ik+a -p+ n - I) - I(COS 0 )m, + m, - m, -m, +2p+ 1, 
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where the notations 

(M - nil - ni2)/2 = a, nil + ni2 - mi - mi = s 

are introduced. Now we have to use Eqs. (54) and (55). 
At the conditions 

ml + m2 - nil - ni2~0, nil + ni2 - mi - mi ~O 
the formula (46) is used. For the integral in (46) we have 

(58) 

1= af' f. i t4q - 2p+ 2r-/1- - m; - mi + 2k.(a + k ')(P)(S)( _ i)' (21T dq; i'P(m, + m, - m; - mi)(sin q;fq +r(cos tpf(P- q) +s - r 

p=O q=Or=O P \q r: Jo 
(1T12 

X Jo d8(sin 8 )2(m; + mi+ k+a-p+ n - I)-I(COS 8 )m, + m, + m, + m,-2(m; + m2l+2p+ \ (59) 

where the notations (58) are introduced. Now we have to use 
Eqs. (54) and (55). 

The integrals (53), (56), (57), and (59) define all matrix 
elements (50). Let us note that in these integrals integration 
over tp leads to a hypergeometric series which is a finite sum 
[see Eq. (55)]. 

We have obtained the matrix elements (50) of the finite 
dimensional irreducible representations ofSp(n, R ). Analyt­
ic continuation of t to ei'P, O<tp < 211", leads to the matrix ele­
ments for finite dimensional representations of the compact 
group SpIn) with highest weights (M, 0, ... ,0). They corre­
spond to the following elements ofSp(n): 

diag(I, ... ,I, ei'P, 1, ... ,1, e - i'P). (60) 

The representation matrices, which are obtained are, howev­
er, not unitary. In order to make them unitary, we have to 
change the basis Iml' m2, a) to the basis Iml' m2, a)' with 
the help ofEqs. (25)-(28). As a result we have the matrix 
elements of the unitary representations ofSp(n) with highest 
weights (M, 0, ... ,0) in the U(n) basis: 

15 M (ei'P) - (a /a )1/2 
(m.m2)(m.m2)(mlmil - m.m2 '"1 m2 

xD t,:"m,)(m,m,)(m;mi) (ei'P), 

where D m is defined by Eq. (50). 
These matrix elements define matrix elements of an op­

erator, corresponding to any matrix ofSp(n). In reality, any 
matrix ofSp(n) can be represented as a product of elements of 
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the subgroup U(n) and elements (60), corresponding to the 
groups Sp(k), k = 1, 2, ... ,n. 
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Reduction of inner· product representations of unitary groups 
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A direct method for the reduction of inner products of irreducible representations (irreps) of 
unitary groups has been proposed using the duality between the permutation and unitary groups. 
A canonical tensor basis set has been used to obtain a closed expression for the Clebsch-Gordan 
coefficients ofU(n). This expression involves the subduction coefficients arising in the outer­
product reduction of S N, ® S N, -S N, + N, of the permutation groups, the symmetrization . 
coefficients ofU(n), and matrix elements of the standard representation of SN' The expression 
holds good for an inner-product reduction ofirreps ofU(n), and is independent ofn. The method 
has been illustrated with examples. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

The reduction of Kronecker products of group repre­
sentations is a problem of considerable importance in many 
physical applications. For finite dimensional irreducible re­
presentations (irreps) of unitary groups, this problem has 
been extensively studied by a number of workers. 1 The 
Clebsch-Gordan coefficients (CGq occurring in this reduc­
tion find many applications in both particle2 and nucleacl,4 
physics problems. The standard methods for determining 
the CGC consist of obtaining Isoscalar Factors (ISF) for a 
given group--subgroup chain and the CGC for the subgroups 
to generate the CGC for the groUp.5,6 These results on sub­
group CGC and ISF combined with Racah's factorization 
lemma 7 lead to a direct determination of the CGC for the 
group. If a canonical subgroup chain U(n):> U(n - 1) 
:> ... :> U( 1) is used for the unitary groups, the ISF follow 
from matrix elements of the generators ofU(n) [cf. Eq. (2,62), 
Ref. 1, for these matrix elements]. This was basically the 
method used for obtaining the ISF for SU(4)/SU(3)8 and 
SU(3)/SU(2)9 chains. Though programs are available for ob­
taining these matrix elements, 10 a drawback of these meth­
ods is that computational complexity increases rapidly with 
n so far as ISF determination is concerned. 

In view of the above difficulty, an alternative would be 
to consider a decomposition of the Nth rank tensor basis of 
U(n) into tensors of ranks N - 1,1 and diagonalize the per­
mutation operator, 

over a decoupled inner product basis. Such an approach was 
successfully used recently for the CGC in the subgroup 
chain SU(6)/SU(3) ® SU(2).11 Though the procedure is high­
ly recursive, the computational effort increases more with 
the rank of the tensors than with the dimensionality of the 
fundamental representation space. In a more recent note, 
Chen 12 demonstrated that the ISF resulting in the reduction 
of inner-product representations of the permutation group 
adapted to the chain S N :>S N, ® S N, are the same as those for 
the chain SU(nm):>Su(n) ®Su(m). This permits a direct de­
termination of ISF using permutation-group-based techni-

ques independent ofn and m. There are, however, some limi­
tations in this approach which are worth noting. Firstly, the 
complexity of the "eigenequations" to be solved [cf. Eqs. (20) 
and (22), Ref. 12] is considerable except when Nl = N - 1 
and N2 = 1. In this case the procedure becomes highly recur­
sive as in So and Strottman's approach.11 Secondly, the in­
ner-outer dualism 13, 14 between permutation and unitary 
groups leads to complete identity between the CGC and sub­
duction coefficients of S N and the subduction and CG coeffi­
cients ofU(n), respectively [cf. Eqs. (28) and (29) and the 
discussions preceding them in Ref. 12], only for special 
Gel'fand15 states ofU(n) which have all weights equal to 
unity. This, in tum, implies that either generator or some 
other algebra has to be used for obtaining the CGC for the 
other basis states in either a canonical or noncanonical sub­
group adapted structure ofU(n). This aspect of the dualism 
has been the subject of recent studies by some of us. 16,17 A 
nonrecursive procedure18 for determining the CGC of S N 

was successfully combined with symmetrization methods16 

for generating the canonical basis for U(n) to obtain the sub­
duction coefficients occumng in the subgroup adaptation 
U(nm):>U(n) ® U(m).17 

In line with the recent studies of unitary groups, 16,17 we 
have now attempted to use the outer-inner dualism between 
the product representations of SN and U(n) to obtain an ex­
plicit realization of the CGC for the canonical basis spanning 
the irreps of U(n) in terms of easily determined subduction 
coefficients l 9-21 of SN and the symmetrization coefficients of 
U(n). 16 We demonstrate that the compact list of subduction 
coefficients for S N can easily replace the ISF in determining 
the CGC ofU(n). The present scheme is outlined in Sec. 2 
and a number of illustrative examples are considered in Sec, 
3. A brief discussion is presented in Sec. 4. 

2. CLEBSC~ORDAN COEFFICIENTS FOR THE 
UNITARY GROUP 

Let (u j Ii = 1, ... ,n J define an ordered orthonormal set 
of basis functions spanning the fundamental representation 
space V" of the unitary group U(n). Using these basis func­
tions we can define sets of ordered tensor monomials of 
ranks N,N, ... spanning the tensor spaces V" ® N', V" ® N·, ... , 

respectively. Since the ranks of these tensors are distinct, 
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each of the sets is stable under the transformations induced 
by the generators [EijliJ = 1,2, ... ,n J ofU(n), which act as 
shift operators in each of the tensor spaces. The reduction of 
a given space Vn ® N yields a set of subspaces corresponding 
to irreps ofU(n), 

(m) = (mIn m2n ···mnn ) (1) 

such that 
n 

MIn >m2n >···>mnn >0 L min = N . 
;=1 

The above irrep is characterized by a Young diagram (YD) 
with mIn boxes in the first row, m2n in the second row, etc. 
Corresponding to each irrep (m) we can generatef:Z: sets of 
symmetry adapted tensors, each set spanned by f:Z: basis 
functions. Thef:Z: sets correspond to different coupling 
schemes used in generating the basis functions and are not 
related by any transformations induced by the generators E ij 
ofU(n). Using the index r to distinguish between the various 
coupling schemes and a Weyl tableau index (p) to distin­
guish among the orthonormal basis states spanning a given 
set, we can represent the tensor basis states as l6 

I (m)r(p); (NI N2· .. N n) , 

where (NI N2 .. ·Nn ) represents a primitive monomial belong­
ing to Vn ® N, and the index (p) characterizes an allowed 
distribution of NI entries 1, N2 entries 2, etc., in the Young 
diagram [m]. 

The above tensor basis can be readily generated using 
nonstandard elements e';j p)' of the algebra of S N' defined 
as l6,17 

m ~ m m 
eljp) = .c.. a,~p) ers , (2) 

SE(p) 

where the summation on the right is over all standard Young 
tableaux s corresponding to a given Weyl tableau (p) (in the 
sense used by Patterson and Harter22

) and e;: are standard 
Wigner operators of S N defined as23 

(
fm )1/2 

e;: = ;! i;N [P];: P (3) 

with [P ];: being the Young representation matrix element. 
The symmetrization coefficients a;' p) are determined using 
the right invariance of e';j p) under the elementary transposi­
tions belonging to the subgroup 
SN ®SN ® ... ®SN CSN •

16
,17 Using the operators defined in 

" . 
Eq. (2), the normalized tensor basis ofU(n) can be obtained as 

I (m)r(p); (NI, .. N n) 

( 

n ) - 112 

= iIII NI! e';jp) I(NI· .. Nn ) 

( )

-112 

= II NI! (a;'p))-I e;:I{Nc .. N n ) , (4) 

where the last step follows as in Eq. (6) of Ref. 17. 
Consider now the inner-product mapping U(n)XU(n) 

-U(n). If(m') and (m") are two irreps ofU(n) defined over 
the tensors ofranksN' andN", respectively, the reduction of 
their inner-product representation is given by the Clebsch­
Gordan series 

(m')x(m") = Lb:;:'m' (m), (5) 
m 
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where b :;:'m' is the mUltiplicity of (m) in the reduction 
(m') X (m") and is determined using Littlewood's rules. 2 

Equations (4) and (5) now yield 

I (m')r'{p');(N; ... N~) I (m")r"(p");{N;' .. ·N~) 

(6) 

where ® represents the outer multiplication for the Wigner 
operators of SN' ®SN' CSN, + N" Using Eq. (3) for the 
Wigner operators. we have 

(1m' fm' ) 112 
m' m' N' N' P' m' e ,®e" = , rs rs N''N''f ~ ,L [ ]'''s 

• • P ESN , P ESN , 

X [P"];.'!:, P'P" , (7) 

Since P , P " is also an element of S N' we have23 

IN (fm )112 
P'P" = L L ~ [P'P"];: e;:, 

m r,s~ 1 N. 
(8) 

Using the result from Eq. (8) on the right-hand side ofEq. (7) 
we obtain 

m' m' (/:Z:" f:Z:: )112 (f:Z: )112 
e rs' ®er,s, = N'!N"! ~ N! 

IN 
X L L [P']~~,[P"];.'!;, [P'P"];:e;:. (9) 

P',P" r,s= 1 

In order to evaluate the matrix elements [P 'P" ];:, it is con­
venient to use the nonstandard basis of S N adapted to the 
irreps of SN' ®Sn"' The transformation between the stan­
dard Young basis and the nonstandard ones is given in terms 
of a unitary matrix called "subduction coefficient" 
matrix 19,20,23 

k' 
t I 

(10) 
where 

s(7 k' 
k" I ) t" 7k" t I 

is a subduction coefficient. The index 7k' distinguishes mul­
tiply occurring irreps [k "] in the reduction of the skew re­
presentation [m] - [k'] over the lastN" entries.24 Using the 
result ofEq, (10) on the right ofEq. (9) and using the ortho­
gonality of the matrix representations of SN' viz., 

L [P];: [P ]~u = ( ~) 8" 8su 8mk , 

PESN f N 

(11) 

we obtain the result 

Nikam. Dinesha. and Sarma 234 



                                                                                                                                    

I (m')r'(p');(Ni ···N ~) I (m")r"(p");(N7 .. ·N;) 

= (UI N;! JUI Nj'!) -112(a;;» a:;;p,))-I 

X ( ~:IN ~,! )1/2 I I I (f7J )112 
\j N' f N' m 'Tm' r,'= I N 

(
m m' m" I ) (m m' m" I ) 

X S r r' r" T m' S S s' sIt T m' 

Xe~I(N; .. ·N~)(N;' ... N;) . (13) 
Before proceeding further with Eq. (13) we note that the 
monomial on the right is not in proper form as required by 
the ordering in (NI N2• .. Nn)E Vn ® N. Let P be the permuta­
tion which reorders the monomial. Therefore, using the de­
finition of e~, we get the result 

I (m')r'(p);(N; ... N~) I (m")r"(p");(Ni' .. ·N;) 

= ( ~'IN"! n ) 112 (a;;'p') a:;;p,))-I 

f7J', f7J: II N;! II N j'! 
;= I j= I 

X ~ t r,s~ I (f; y/2 S (7 7' 7,:' I T m' ) 

X s(7 :" ;:' I T m' )[P]~ e~I(N .... Nn) . (14) 

Using Eq. (4), we can re-express the above result in terms of 
the tensor basis ofU(n) as 

I (m')r'(p');(Ni .. ·N~) I (m")r"(p"); (Ni' .. ·N;) 

[ 

N'!N"! ]112 m' m' -I 
= n n [as'(p') as'(p') ] 

f7J',j';': II N;! II Ni'! 
;= 1 j= I 

IN (fm ) 112 ( n )112 
X~~r,s~l;' JJI Nk ! a~p)[P]~ 

XS(7 ~' 7:' I Tm' )XS(7 m' 

s' 

X I (m)r(p);(NI· .. Nn) . 

m"l ) Tm' s" 

(15) 

However, since the transformations induced by Eij on the 
tensor basis is independent of the coupling scheme index r, 
we can choose the tensor basis as 

I (m)T m' r'r"(p);(NI .. ·Nn) 

IN (m m' m"l ) =IS T 
r= 1 r r' r" mIt 

X I (m)r(p);(N .... Nn) . (16) 

It is also worth noting that the summation over the index ton 
the right ofEq. (15) can be factored into summation over all t 
defining a given (p) and summation over all possible distinct 
Weyl tableaux (p) occurring for each irrep (m). Using this 
result and Eq. (6) on the right ofEq. (15) we finally obtain the 
result 

I (m')r'(p');(N; ... N~) I (m")r"(p");(Ni' .. ·N:;) 

= ~ ~ ~ (; ;,' ;,~ I T m') 

XI(m)Tm, r'r"(p);(N .... N n), (17) 

where the required CGC ofU(n) is given by 
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m' 

(
IT N IN" N'" fm )112 

m" I) k= I k • • N 

pIt T
m

, = IIn 
N" IIn 

N"'N'fm' f m' 
;' j" N' N' 

;=1 j=1 

p' 

m' m"l ) 
s' S" 7m" . 

IN (am) (m X ~ ~ t(p) [p]ms 
L ~ m' m" ts s= I tE(p) a"(p,)as,(p") s 

(18) 

The right-hand side ofEq. (18) is determinable in a straight­
forward manner using simple algorithms for symmetriza­
tion coefficientsl6 and subduction coefficients for sri devel­
oped recently. In all cases the matching permutation is a 
product of simple cycles, and as has recently been shown,25 
each such cyclic permutation can be handled relatively easi­
ly. Thus the determination ofCGC using Eq. (18) is not as 
formidable as might appear at first sight. In the next section 
we illustrate the use of Eq. (18) in determining the reduction 
of the product basis of the irreps ofU(n). Some of the advan­
tages of the present method will be illustrated using special 
cases. 

3. SOME ILLUSTRATIVE EXAMPLES 

We first consider a simple case ofEq. (18) for which the 
first N' particles occupy the first n' single particle orbitals 
and the last N" = N - N' occupy the last n" = n - n' orbi­
tals. Here we note that the monomial 
(N; ... N~, )(N;, + 1 ···N;, ) is already in properly ordered 
form, so that the reordering permutation reduces to the iden­
tity. Further, the reducible tensor space of primitive tensor 
monomials is now a subspace (V ~ ® N ') ® (Vn _ n' ® N') of 
(Vn ® N) and product representations arise from the restric­
tion U(n)sis to that of the group have recently been suggested 
using the semimaximal weight concept and the lowering op­
erators of the subgroup U(n') ® U(n,,).26.27 We now examine 
what Eq. (18) reduces to in this case. Letting P = e in that 
equation, we readily obtain the result 

m' m"IT ,)=(N'!N"!f':.)I12 
PIt m N'fm ' f m ' 

. N' N' 
p' 

(19) 
As an illustration of the use of the above equation consider 
the restriction (5,2,04

) ~ (2,1,0) ® (3,1,0) ofU(6) to 
U(3) ® U(3). Let V3 be spanned by the three orthomormal 
basis states U I ,U2,U3 and V:; be spanned by U4,U5,U6• The 
Weyl tableau for maximal weight states of the two groups 
U(3) are ~I and f4, respectively. The semimaximal weight 
states ofU(6) for the given irrep are g444 and l!44S. Using the 
Yamanouchi notation for the standard Young tableaux of 
the irrep [5,2] of S7' the set of the Young tableaux corre­
sponding to the above two Weyl tableaux (in the sense de­
fined in Sec. 2) are listed below: 

~~444==(1121112) , 
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l!44~=( 1121121 ),(1121211 ),( 1122111) . 

The basis transformation for the restriction 
[5,2]~[2,1] ® [3,1] of S7 to S3 ®S4 can be readily worked out 
using the techniques developed in an earlier papero and is 

(112)X(I112) = U - 3y115(1121112) + (1121121) 

+ yl2(112121l) 

+ yl6(1122111)] . (20) 

Consider first the states II X f4 defining the product state of 
U(3)XU(3). We observe that each ofthe Weyl states corre­
sponds uniquely to one standard Young tableau so that the 
required symmetrization coefficients are unity, 

a(2.1.0) - 1 a(3.1.0) 1 (1l2)(l') -, (11l2)(f4) = . (21) 

Similar is the case with l~444 so that 

a(~·2.0') 1 (1l21112)(W"") = . (22) 

To the Weyl tableau l!44~ correspond three standard Young 
tableaux, as indicated earlier, over which symmetrization is 
required. This symmetrization requires essentially that we 
determine the subduction coefficients for the restriction 
[4,2]![2,1] ® [3]. This determination leads to the symmetri­
zation coefficients 

a(~·2.0') 1 
(I 121 12IXU""') ="3 ' 

TABLE I. Subduction coefficients for the reduction 
[2,I)X[2,I) = [4,2) + [4,12) + [32) + 2[3,2,1) + [3,1 3

) + [33
) + [22,12) 

(the Young bases are represented by lattice permutation symbols). 

[2I)X[2I) 
(112)(112) (112)(121) 

[42) (112112) -!V8 0 

(112121) i -V3/2 
(112211) IIVI2 +! 

[412) (112113) -2IVS 0 
(112131) V3/V40 - VSIV8 
(112311) -IIV8 - V3/V8 

[32) (112122) -! -V3/2 
(112212) -!V3 ! 

[321). (112123) -VSIV24 0 
(112132) 0 -VSIV24 
(112213) - VISIV24 0 
(112231) IIV24 -2IV8 
(112312) 0 IIV8 
(112321) V3/V24 2IV24 

[321)2 (112123) IIV96 - 3/V32 
(112132) - 3/V32 - SIV96 
(112213) IIV32 V3/V32 
(112231) VSIV96 VSIV32 
(112312) - VISIV32 v'SIv'32 
(112321) v'Sly32 - ySlv'96 

[31 3
) (112134) V31y8 -lly8 

(112314) v'51v'8 v'3/V40 
(112341) 0 2Iv'S 

[23
) (112233) ! !v'3 

(112323) !v'3 -! 
[2212) (112234) ! - 1Iv'12 

(112324) !v'3 1 
(112342) 0 iy8 
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a(~·2.0') 1- /2 
(1l21211XU44') ="3 v , (23) 

a(~·2.0') - 1- /6 
(1l2211IXU""') -"3 v . 

Using the results ofEqs. (20) and (21) in Eq. (19) and noting 
that/~2.I) = li3

•I) = 3 and/~~·2) = 14, we readily obtain 

(
5;;;!) (2,1,0) (3::0») = _ ~ . 
2~ II ~ 4 

Similarly using Eqs. (22) and (20) in Eq. (19), we get 

(5i:~~) (2,;/0) (3~0») 

1 [1 1 yl2 yl2 
= yl15 312+-3-12 

+ yl6 yl6] __ I_ 
3 12 - 4y115 . 

Thus the reduction of the product representation yields the 
result 

I~l) X I~) = ( _ !) 1~!444) + (4:15 )1~!445) . (24) 

A similar result, 

2 
2 Ix 

3 ) 3 

3 2 

5 2 0 0 0 

5 2 0 0 0 

yl15 5 0 0 

4 2 0 

2 

2 
5 2 000 

5 2 000 

4 2 o 0 
2 o 

2 

2 ,(25) 

follows from the restriction (5,2,Q4) ~(2,1,0) ® (3,1,0) of 
U(6) to U(3) ® U(3) on applying the weight raising generator 
E4~ to an arbitrary linear combination of the Gel'fand basis 
on the right ofthe above equation and equating the result to 
zero. This relates one coefficient to the other and the final 
unknown can be determined by normalizing the result. The 
results ofEqs. (24) and (25) differ only by an overall multipli­
cative factor 15. This can be accounted for using the fact that 
CGC ofEq. (24) have to be normalized over the entire set of 
basis functions defining the outer-product series, instead of 
two functions as in Eq. (25). 

At first sight it might appear that Eq. (25) follows more 
easily than the corresponding result of Eq. (24). While it is 
true of this particular semimaximal state it is not in general 
so. To illustrate this fact consider the product state W) 
X 1;~6) ofU(3) ® U(4)CU(7) under the same restriction as 
above. Here we find that we would have to apply a number of 
lowering generators EIj (i>H = 1,2,3 and 4,5,6,7) to Eq. (25) 
and their matrix elements in order to obtain the states of 
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(5,2,OS) induced from the product state under considera­
tion. On the other hand, in the present scheme, once the 
subduction coefficients have been determined, the only other 
quantities required are the symmetrization coefficients in or­
der to obtain the linear combination. In the present example, 
all orbitals are singly occupied so that no symmetrization is 
required and the result follows readily as 

1!2) X 1~56) = ( _ !) 1!~456) + 12~15 1!!457) 

+ ( yl2 ) 112467) 
12y115 35 

+ ( yl6 ) 112567) , 
12y115 34 (26) 

where it is to be noted that the above are Weyl and not 
Young tableaux. 

The above examples are only special cases and we now 
illustrate the application of the present method to the irreps 
(2,1,0" - 2X (2,1,0" - 2) ofU(n). For this purpose consider 
the reduction of outer products of the irreps [2,1] ® [2,1] of 
S3 ® S3 yielding the irreps of S6' viz., 
[2,1]X[2,1] = [4,2] + [4,12] + W] + 2[3,2,1] 

+ [3,13] + [23] + [22,12]. 

The subduction coefficients for the above restriction, result­
ing from procedures outlined in an earlier note, 20 are listed in 
Table I. A certain amount of arbitrariness is unavoidable in 
the choice of these coefficients for the doubly occurring irrep 
[3,2,1]. Using these subduction coefficients we now deter­
mine some of the CGC for the reduction of the product re­
presentations (2,1.0"-2)X(2,1,on-2) ofU(n)forn;;:.3. 
Consider, for example, the product I 11 ) X W) which gives six 
Weyl states: 
1112 1113 1112 111 111 111 

23 22 2 223 22 22 . 

3 3(1) 3(2) 
The last two states belong to the irrep (3,2,1,0" - 3) occur­
ring twice in the reduction, distinguished by suffixes (1) and 
(2). The monomial in the product state is U I U I U2 U I U2 U3, 

needing a permutation P = (3,4) to bring it into standard six 
rank tensor form U I U I U I U 2 U2 U3• We now illustrate in de­
tail the method for determining the CGC for 
IiI) X W)---+li~12). From Eq. (IS) we obtain 

(
4,2,on-2) (2,1,0"-2) (2,1,0"-2») 

1112 11 12 
23 2 3 

( 
3!2!1!3!3!9! )112 

= 2!1!1!1!1!6!2!2! 
9 

X '" '" a(4,2,On-2> a(2.I,On-2 a(2,I,on-,> 
~I "'l7l2 s(1l12) 12 (1') 12(J2) 

S - te(" ) 

X [(3 4)][4,21 S( [4,21 [3,11 [2.11) 
, st st (112) (112) . (27) 

The possible standard Young tableaux t leading to the Weyl 
tableaux 1~12 are (111122) and (111212). Under P = (3,4) 
these can only be linked to s = (112112) having a nonzero 
subduction coefficient (cf. Table I). The required subduction 
coefficient is - j ylS. Thus the right-hand side ofEq. (27) 
involves only s = 112112andl = 1111212. Thesymmetriza-
. ffi . (420n

-
2 > ~)1I2 U' h . ttoncoe clentalll1212" '", = (8 . Stngt ese results 10 Eq. 

'" ) 
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(27) we get 

(
4,2,0" - 2) 

1112 
23 

3y13 =--_. 
2y11O 

1 

3 

(2,1,0"-2») 
12 
3 

Similar calculations of other CGC leads to the reduction 

1~1) X 1!2) 

__ 1 11112) _1_1 1113) 
yl3 23 + 2y115 22 

1 
yl3 

1 1111) 
2y13 223 

yl2 

3 
111) 22 1 

3 
+ 3y11O 

(I) 

111) 22 

3 (2) 

The procedure for calculating the CGC is thus evident. We 
first determine the possible [I I/E( p) J and determine the set 
[s J to which these can be linked through reordering permu­
tation P. From the table of subduction coefficients we then 
find the subset of this set which yields nonzero coefficients. 
Knowing the required symmetrization coefficients and the 
matrix elements [P]:; of SN' we can determine the CGC 
using Eq. (IS). As a final example, we consider the product 
state 12X~1 ofU(n). Here the reordering permutation is 
P = (3,4)(4,5)(2,3)(3,4). Using the same procedure as before 
we get 

__ 1_11112) __ 1_ 2 __ 1_1 1113) 1112) 

yI 6 23 yI 6 3 yl30 22 

__ 1_1111) +~ ~~1) __ 1_ ~~1) 
yl6 223 3 3y15 

3 (I) 3 (2) 

The correctness of these results can be checked using tables 
ofCGC for SU(3).2 

4. DISCUSSION 

The procedure outlined in Sec. 2 and illustrated exten­
sively using examples in Sec. 3 is a relatively straightforward 
method for determining the CGC for canonical basis states 
spanning the irreps ofU(n). To the best of our knowledge Eq. 
(IS) is the first quantitative statement of the dualism between 
the product representations in S N, + N, ---+S N, ® S N, and 
U(n) ® U(n)---+U(n). A recent statement of this dualism by 
Chen is at best formal [cf. Eq. (29), Ref. 12] since, as shown 
by Eq. (IS), the CGC involves a number offactors in addition 
to the subduction coefficients of S N' The correctness of Eq. 
(IS) has been verified by determining a large number of CGC 
listed by Lichtenberg.2 

In this context it is worth noting that Eq. (2S) of Ref. 12 
is also formal and the exact relationship between the CGC of 
SN and the subduction coefficients ofU(nm)!U(n) ® U(m) 
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also involve a number of additional factors [cf. Eq. (26), Ref. 
17]. 

For canonical basis states of the irreps ofU(n), it might 
appear that the ISF determination for the U(n)/U(n - 1) 
chain would be simpler than using Eq. (18). Even if this is 
true for low n, the procedure for going from the ISF to the 
CGC of U(n) would require a complete knowledge of all the 
CGC for U(n - 1). This is likely to become a tedious recur­
sive procedure for sufficiently large n. Alternatively Eq. (18) 
involves factors which are easily determinable except for the 
matrix representation of a single matching permutation for 
each CGC. Though this is a stumbling block the fact that 
useful techniques exist for determining the representations 
of both transpositions28 and cylic permutations25 makes this 
task feasible. Finally, once the subduction coefficients have 
been determined and listed, the CGC follow readily for any 
n. 
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An integral transform related to quantization. II. Some mathematical 
properties 
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We study in more detail the mathematical properties of the integral transform relating the matrix 
elements between coherent states of a quantum operator to the corresponding classical function. 
Explicit families of Hilbert spaces are constructed between which the integral transform is an 
isomorphism. 

PACS numbers: 02.30.Qy 

1. INTRODUCTION 

In a preceding paper,1 two of us studied an integral 
transform giving a direct correspondence between a classical 
function on the one hand and matrix elements of the corre­
sponding quantum operator between coherent states on the 
other hand: 

(Ll) 

Here E is the phase space (i.e., a 2n-dimensional real vector 
space, where n is the number of degrees of freedom), and the 
n a are the usual coherent states, labeled by phase space 
points (they can be considered as states centered round the 
phase space point a labelling them, and they minimize the 
uncertainty inequalities2

). 

Formula (1.1) was obtained in Ref. 1 from the corre­
spondence formula 

Qf= 2' 1 dvf(v)W(2v)ll (1.2) 

where the W(v) are the Weyl operators (see Ref. 1) and II is 
the parity operator. [This formula is not the original Weyl 
formula3

; it gives a more direct correspondencef-Qfthan 
the usual expression, since no Fourier analysis step is need­
ed. It was shown in Ref. 4 that (1.2) is equivalent to the Weyl 
quantization formula.] 

The integral kernella,b IvJ in (Ll) is then defined as 

la,blvJ = 2n(n a,W(2v)lln b). (1.3) 

This function was computed explicitly in Ref. 1, where we 
also gave some properties of both the function and the inte­
gral transform defined by it, together with some examples. A 
deeper mathematical study of the integral transform was, 
however, not intended in Ref. 1; we propose to fill this gap at 
least partially with the present article. 

Ultimately our aim is to use the results of the math-

a)Research fellow at the Interuniversitair Instituut voor Kemwetenschap­
pen, Belgium. 

bOn leave of absence from Dienst voor Theoretische Natuurkunde, Vrije 
Universiteit Brussel, Belgium. 

ematical study of the integral transform (1.1) to derive prop­
erties of the Weyl quantization procedure. One can indeed 
use the well-known "resolution of the identity" property of 
the coherent states,2 

(1.4) 

to see that, at least formally, any operator A is characterized 
by its coherent state matrix elements 

(1.5) 

A detailed knowledge ofthe properties of the integral trans­
form with kernel I a,b Iv J might therefore be useful for 
(1) giving a sense to the Weyl quantization formula for 

rather large classes of functions (essentially, once a pre­
cise sense is given to the integral transform on a certain 
class off unctions, one can try to define the correspond­
ing operators from their matrix elements between co­
herent states), 

(2) deriving properties of the quantum operator Qf 
directly from properties of the corresponding 
functionf(and vice versa). 
As we shall show, the inverse ofthe integral transform 

( 1.1) is given again by using the same kernel 

f(v) = 11 da db Qf(a,b Jlb,alvJ. (1.6) 

(Actually, this integral does not converge absolutely in most 
cases, and some limiting procedure has to be introduted.) 
Therefore we shall also be able to use the results of our study 
of the integral transforms associated with the kernel func­
tion I a,b Iv J to obtain information on the "dequantization 
procedure" [i.e. the inverse map of the "quantization proce­
dure" as defined by (1.2)]. Note that this dequantization pro­
cedure is actually the same map as the one associating to 
each density matrix the corresponding Wigner function5 ex­
tended, however, to a much larger class of operators. These 
applications shall be further developed in a following paper 
(a first application was given in Ref. 6); in the present article 
we restrict ourselves to a study of the integral transforms 
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(If)(a,b) = L dvf(vlla,b Iv}, (1.7) 

(jtp )(v) = L L da db tp (a,b 1I b,alv J. (1.8) 

We shall see that thoughf may be locally quite singular (one 
can even consider some classes of non tempered distribu­
tions), its image Ifwill always be very gentle locally, with 
analyticity properties in both its arguments. It therefore 
makes sense to study not only the function If(a,b ), but also 
the coefficients Ifm.n of the Taylor series for If(a,b ). It turns 
out that one can construct a family of functions giving di­
rectly the link betweenf(v) and Ifm.n' 

Ifm.n = L dv f(v)h m •n (v). (1.9) 

Actually these hm •n are just the functions occurring in the 
bilinear expansion of I a,b I v J in Ref. 1: formally (1.9) can be 
seen as the result of commuting in (1.7) the integral and the 
series expansion for I a,b Iv J. However, (1.9) holds true for 
many functions for which such an interchanging of summa­
tion and integral would be a priori pure heresy. The func­
tions h have lots of beautiful properties, most of which are 
a cons;q~ence of the fact that they form a complete orthon­
ormal set of eigenfunctions for the "harmonic oscillator" 
x 2 + p2 _ i..:i x - !..:i p onL 2(E), i.e., on phase space, where 
we consider an explicit decomposition of the phase space 
into x space p space: E ~ lR2n ~ lRn + lRn = x space + p space 
(see also Sec. 2); in the context ofWeyl quantization the hm •n 

can be seen as the classical functions corresponding to the 
dyadics In) (m I, where In) are the harmonic oscillator eigen­
states (see Refs. 1, 7, and 8). Note that the hm•n are not the 
usual set of Hermite functions (though they can of course be 
written as linear combinations of Hermite functions); they 

1 . 1 78 are related to the Laguerre po ynomla s .. 
One can then derive all kinds of results relating the 

growth of If(a,b ) or Ifm.n to the behavior off, and analogous­
ly for jifJ and ifJ. The derivation of such results amounts to the 
construction of suitable Banach or Hilbert spaces between 
which the integral transforms Ii become continuous linear 
maps or even isomorphisms. _ 

Our main tool for the study of 1,1 will be the link be­
tween the integral transform I and the Bargmann integral 
transform as defined in Ref. 9 (see Sec. 6 in Ref. 1). Using this 
link we shall be able to translate bounds obtained in Ref. 9 to 
our present context, and to obtain other bounds (for other 
families of spaces) by similar techniques. As in Ref. 9, we can 
give a complete characterization of the images of Y(E), 
Y'(E) under I; by a suitable generalization we shall even go 
beyond the tempered distributions. (Related results, but in a 
completely different context, and concerning quantization 
restricted to functions with certain holomorphicity proper­
ties, can be found in Ref. 10.) 

The paper is organized as follows. In Sec. 2 we give a 
survey of our notations and some properties of the kernel 
I a,b I v J, in Sec. 3 we reintroduce the hmn and state some 
related results, in Sec. 4 we show how bounds on If can be 
obtained starting from bounds onf, and vice versa: in Sec. 
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4A we review the Banach space approach found in 
Bargmann9b

; in Sec. 4B we go over to Hilbert spaces, which 
are better suited to our purpose, and in Sec. 4C we generalize 
the construction of Sec. 4B, which enables us to treat certain 
Hilbert spaces of distributions "of type S" which are larger 
than Y'(E). In Sec. 5 we shortly discuss the integral trans­
forml when restricted to functions on phase space which can 
be split up into a product of a function depending only on x 
with a function depending only on p. Essentially the same 
types of statements can be formulated, and a short survey of 
results is given. In Sec. 6 we give some concluding remarks. 

2. NOTATIONS AND BASIC PROPERTIES OF (a,b/v} 

In Ref. 1 we worked with an intrinsic coordinate-free 
notation system using a symplectic structure on the phase 
space (basically this is the bilinear structure underlying the 
Poisson brackets), and a complex structure yielding a Eu­
clidean form on the phase space, compatible with the sym­
plectic structure. By choosing a suitable basis, this could be 
seen to lead to a decomposition of the phase space into a 
direct sum of two canonically conjugate subspaces. This de­
composition is not unique: for a given symplectic structure, 
several compatible complex structures can be constructed; 
different complex structures correspond then to different de­
compositions of phase space. This freedom in the choice of 
the splitting up of the phase space is particularly useful 
whenever (linear) canonical transformations are discussed II 
or used (as, e.g., in the presence of a constant magnetic field). 
Here we shall not need to use simultaneously different de­
composition possibilities for the phase space, and we shall 
therefore fix the decomposition once and for all. We shall use 
this decomposition from the very start to introduce our nota­
tions in a way that is less intrinsic but probably more familiar 
to most readers. It goes without saying that the results we 
shall obtain are independent of this approach, and that they 
could as well be obtained in the more intrinsic setting of Ref. 
1 (see Ref. 8). 

The phase space E is a 2n-dimensional real vector space, 
which we shall consider as a direct sum of two n-dimensional 
subspaces 

E = x space ffi p space, 
(2.1) 

E3v = (x,p). 

The x and p need not be the conventional position and mo­
mentum variables: any set of canonically conjugate coordi­
nates which are linear combinations of position and momen­
tum are equally good candidates for these x and p. On E we 
have a symplectic structure 

a(v,v') = a((x,p),(x',p')) = !(P.x' - x.p') (2.2) 

and a Euclidean structure 

s(v,v') = s((x,p),(x',p')) = !(x·x' + p.p') (2.3) 

[this is the Euclidean structure corresponding with the (7-

compatible complex structure J ((x,p)) = (p, - xl-see Ref. 
1]. For further convenience we introduce a Gaussian in the 
phase space variables, 

w(v) = exp[ - ! s(v,v)] = exp[ - 1(x2 + p2)], (2.4) 
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and a family of analytic functions 

h [ml(v) = IT (pj + iXj )m), 
j= I V'2 

where we have used the multi-index notation 
[m] = (m l , ... ,mn ). 

(2.5) 

Note: Whenever we use the term "analyticity" when 
speaking of a function for phase space, this means that 
f(v) =f(x,p) is analyticin the variablep + ix;iffisanalyticin 
the variable p - ix, we say thatfis antianalytic on phase 
space. For a definition of these concepts without using an a 
priori decomposition of the phase space, see Ref. 1. 

We shall often need the set of functions which can be 
written as a product of the Gaussian eu, (2.4), with an analytic 
function on E. We call these functions "modified holomor­
phic," and denote their set by Z (E) or Z: 

Z (E) = (t/J:E-C;t/J = feu, withf analytic on E J. (2.6) 

Note that the pointwise product of two modified holomor­
phic functions is not modified holomorphic, having a factor 
eu too many. 

The square integrable modified holomorphic functions 
form a closed subspace of L 2(E) (see Refs. 1 and 9); we shall 
denote this Hilbert space by .!£' 0: 

(2.7) 

The measure on E used here is just the usual translationally 
invariant measure on E, with normalization fixed by the 
requirement 

f dv eu2(v) = f dv exp[ - s(v,v)] = 1, 

i.e., (2.8) 

1 dv = __ dnxdnp. 
(217Y 

For any function t/J = feu in Z one can, of course, decompose 
the analytic functionfinto its Taylor series, which gives 

t/J (v) = L at,6,[m I h [ml (v)eu(v), (2.9) 
[ml 

where the convergence is uniform on compact sets. One can 
prove (see Ref. 9) that for t/JE Z one has 

t/JE.!£'0¢}Llat,6,[mJi 2[m!] < 00, 

[ml 

t/J,t/JE.!£' cH(t/J,t/J) = f dv t/J (v) t/J(v) 

= L at,6,[ml a",,[ml [m!], (2.10) 
[ml 

where 
n 

[mIl = II (mj !). 
j= I 

Equation (2.10) implies that the set of functions U [m I' 

1 
u[ml(v) = V'[m!] h [ml(v)cu(v), (2.11) 

constitutes an orthonormal base in .!£' 0' and that the series 
(2.9) converges not only uniformly on compact sets, but also 
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in L 2 as long as t/JE.!£' o. We shall often rewrite (2.9) and (2.10) 
in the following way. 

V t/JE Z: we write a "modified Taylor expansion" 

t/J (v) = L t/J[m IU[m I(v), (2.12) 
[ml 

with uniform convergence on compact sets, 

Vt/J,t/JE.!£' o:(t/J,t/J) = L t/J[m I t/J[m I' (2.13) 
[ml 

in particular 

(2.14) 

The same construction can be made in the space E X E. 
Most functions on E X E in this study will have the property 
that they are modified holomorphic in one variable and modi­
fied antiholomorphic in the other one. We denote the set of 
functions having this property by Z (E2) (or shorter Z2): 

Z (E2) = (t/J:E XE-C;t/J (v,v') = f(v,v')cu(v)cu(v'), with 

f(v,v') analytic in (p + ix,p' - ix') J . (2.15) 

Again we can restrict ourselves to the square integrable func­
tions in Z (E2): 

.!£' 0(E2) = Z (E2) n L 2(E X E); (2.16) 

again this is a closed subspace of L 2(E X E), with orthonor­
mal basis 

U[m"m, I (V I ,V2) = u[m, I(vd u[m, l(v2)· 

The analogs of (2.12) and (2.13) are now 

(2.17) 

Vt/JEZ(E2):t/J(;)= L t/J[m,.m, IU[m"m, 1(;)' (2.18) 
[m,),[m,1 

with uniform convergence on compact sets, 

V t/J,t/JE.!£' 0(E2):(t/J,t/J) = L t/J[m"m, I t/J[m"m, I' (2.19) 
[m],[m,1 

in particular 

t/J[m"m, I = f d; u[m"m, 1(;) t/J (;), (2.20) 

where we have used the notation; = (V I ,V2 ) (in general, the 
Greek letters ;,s will denote elements of E X E). 

Both the spaces.!£' olE ) and.!£' 0(E2) have "reproducing 
vectors" (this is a common feature for Hilbert spaces of ana­
lytic functions I3

): 

VaEE, V;=(a l ,a2)EEXE, 

3euQ E.!£' o(E), 3eu'E.!£' 0(E2), 

such that 

V t/JE.!£' 0(E2):(W',t/J ) = t/J (; ). 

These euQ,eu' are given explicitly by 

euQ(v) = eiojQ,v) eu(v - a) 

= L u[m I(a) u[m I(V), 
[ml 
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(2.21) 

(2.22) 

241 



                                                                                                                                    

CIJ' (S) = ClJa"a'(b l ,b2) = ClJa'(b l ) ClJa'(b2) 

= L U[k,1 ](~) U[k,1 ](S). (2.23) 
[k 1./1 J 

The series in (2.22) and (2.23) converge uniformly on com­
pact sets, but also in L 2(E) (separately in a and v), respective­
ly, L 2(E X E )(separately in ~ and S ). Note that the reproduc­
ing properties (2.21), (2.14), and {2.20} can be proved for 
much more general classes of tP than only !t' 0 (see below). 
The integrsl kernel (s,b/v J 

For any three points a,b,v,E E we define the function 
{a,b Ivl as follows (see Ref. 1): 

{a,b Iv I = 2n ei[oja,b) + Zojb,v) + Zojv,all CIJ{2v - a - b) 

= 2n exP[i(!PaXb - !Pbxa + PbXv 

- PvXb + PvXa - Paxv) 

-(Xv - Xa :Xb y -&v _Pa :Pb Yl 
= 2n exp[{pv - iXv}{Pa + iXa) -! (Pb - ixb) 

X(Pa + iXa) + (Pb - ixb) (pv + ixv)] 

XCIJ(a}ll.l(b }ll.l(2v). (2.24) 

From the last expression in (2.24) it is obvious that {a,b I v J is 
modified holomorphic in a, modified antiholomorphic in b, 
i.e., 

(2.25) 

Moreover, one can easily check (see Refs. 1 and 8) that 
[a,b I v I has the following properties: 

I{a,b Ivll<r, 

f dv[a,b Iv} [e,d Iv} = ClJa(e)ClJd(b). (2.26) 

This function [a,b Iv} will be used to define two integral 
transforms 

(If)(~)= f dvf(v)[~lv}' 
(iq; )(v) = f d~ tP (~) ~. 

(2.27a) 

(2.27b) 

It is our purpose here to investigate some of the properties of 
these integral transforms and their extensions. 

3. BILINEAR EXPANSION OF (s,bjvJ-THE FUNCTIONS 

h(k.tJ 

A. Bilinear expansion of (s,b/v J 

As elements of Z (Ez), the functions { ·1 v J can be devel­
oped in a series with respect to the U[k,1 1 [see (2.13)]: 

[a,b Iv} = {~Iv} = L U[k,1 g)h[k,/](V). (3.1) 
[k ],[/] 

The h(k,/] are defined, up to a factor ~ [k!] [I!], as deriva­
tives of the function [~ I v} (ClJ2(~)) - 1 in ~ = 0: 
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h(k.l](v)+2n~[k!][I!] 2(1kl+I/I)/2 

[ 
d[k] d[/] ] 

X -d [k] d [I] {a,b IvjCIJ(a)-ICIJ(b)-1 , 
Pa Pa a=b=O 

(3.2) 

Because of the explicit form (2.24) of [~Iv} it is obvious that 
every h[k,/] is a polynomial in v multiplied by the Gaussian 
@(2v) = exp[ - (xv 2 + Pv 2)]. This automatically implies 
that all theh[k,l] are elements of Y(E), the Schwartz space of 
C 00 function which decrease faster than any negative power 
of (x,p). 

B. Orthonormallty of the h[k.l] 

On the other hand, we have [see (2.26)] 

f dv {a,blv} {e,dlv} =ClJa{e}ll.ld(b). 

Multiplying both sides with CIJ(a)-1 CIJ(b )-1, and computing 
derivatives with respect to Pa'Pb, we obtain (it is obvious 
from the explicit form of {a,b I v I that these derivatives can be 
commuted with the integral in the left hand side) 

f dv h(k.l ltv) {c,d Iv} = U[k lIe) u[I](d). (3.3) 

Repeating the same operations in the variables e and d, we 
obtain 

(3.4) 

implying that the h[k,1 ] form an orthonormal set in L 2(E). 

C. Completeness of the h[k.t] 

From (3.3) we see that the coefficients with respect to 
the orthonormal set h [k,1 ] of the orthogonal projection of any 
[~ II (~fixed) onto the closed linear span of the h[k,1 ] are 
exactly the U[k,/](;); comparing this with (3.1) we conclude 
that for any ~ the function [~I·} is an element of the closed 
span of the h[k,1 ]; (3.1) can now be considered to be the com­
position in L 2 of {~ I·} with respect to the orthonormal set 
h(k,1 ]. From this it is now easy to see that the closed span of 
the h[k,1 I is all of L 2(E). Indeed, let f/! be orthogonal to all 

h[k,1 ]: 

V[k ],[1] : (f/!,h[k,l ]) = O. 

Then 

Va,b: (f/!,{a,b I·j) = 0 

~Ve : f dv f/!(v) eiojC,V) CIJ(2v) = 0 

~tP(v)'CIJ(2v) = 0 a.e. ~f/! = 0 

[CIJ is bounded, and the Fourier transform is unitary on 
L 2(E)]. Hence the h[k,l ] constitute an orthomormal base for 
L 2(E). 

Note: The properties in Sees. 3B and 3C were already 
stated in Ref. 1, in more generality (valid also for the coeffi­
cient functions of other bilinear expansions of{ a,b I v Jl, with­
out proof. It is possible to prove them (see Ref. 8) using Go­
dement's theorem on irreducible square integrable 
representations of unimodular locally compact groups. In 
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the special case of the h[k,ll' however, one can also prove 
them with very simple arguments, as shown here. 

D. Unltarlty of the Integral transform I 

It is now easy to show that the integral transform I, as 
defined by (2.27), defines a unitary operator from L 2(E) onto 
.YO(E2 )· 

Proposition 3.1: The integral transform I: 

If(t) = f dvltlvlf(v) (3.5) 

with I t I v I = I a,b I v I as defined by (2.24), defines a unitary 
operator from L 2(E) to .Y 0(E2); in particular 

Ih[k.1 I = U[I.k I' (3.6) 

Proof We start by defining a linear operator on the span 
of the h [k.1 I by putting 

Uh[k,ll = U[/.k I' 

Sincetheh[k,ll' U[k,l ) constitute orthonormal basesinL 2(E), 
.Y 0(E2 ), respectively, this U can be extended to a unitary 
operator from L 2(E) onto .Y 0(E2)' In particular, 

UUb,al·j) = u( L U[k,ll(b,a)h[k,ll) 
[k ](/) 

= L U[I,k I(a,b) U[I.k ) = Wla,b), 
[k JIll 

where we have used (2.23). Take now any ¢J in L 2(E). Then 
U¢JE.Y 0(E2 ), and its value at any point is given by the repro­
ducing property (2.21), 

(Uq; )(t) = (w', Uq; ) = (U *w',q; ) 
=Utll,q;) 

= f dv Itlvlq;(v) 

[for t = (a,b), we denote (b,a) by t]. 
Hence (U¢J )(t) = (I¢J )(t ), which proves the proposition .• 

Remarks: 
1. A different proof of the unitarity of I between L 2(E) 

and .Y 0(E2 ) was given in Sec. 4E in Ref. 1 (the argument 
given there is not completely rigorous, but it can easily be 
transformed into a rigorous one). 

2. The integral in (3.5) converges absolutely for any 
IE L 2(E ),since It 1·1 isinL 2(E)foreachfixedt. The situation 
is different if one tries to apply Ito .Y 0(E2): since { ·1 v I is not 
square integrable on E XE, the integral transform (2.27b) 
cannot be defined on all of .Y 0(E2 ). One has, however, 

(3.7) 

where the integral converges absolutely because U[I,k I is ab­
solutely integrable. So 

iIh[k.I) = h[k,I)' (3.8) 

which leads one to believe that I is the inverse of 1. Indeed, if 
one tries to circumvent the problem of possible divergence of 
the integral by taking limiting procedures, one finds (as in 
Ref. 9a), e.g., 
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1r/f{JE.Y 0(E2 ) : 1- 'q; = L 2 - lim I( X Rq; ) 
R_«> 

= L 2 -limI(w(a.)q;), (3.9) 
u-Q 

where 

{
I, It I<R 

XR(t) = O,lt I >R [here It 12 = lal 2 + Ib 12 

and laI 2 =s(a,a)]. 

The same is true for any other reasonable limiting procedure. 

E. Other properties of the hlk,/) 

One can show (see Refs. I and 8) that 

Ih[k.1 l(v)1 < 1. (3.10) 

Explicit calculation of the h[k,1 ) yields (see Refs. 7 or 6) 

min(~,[/I) [ 
h[k,1 l(x,P) = 2n e - x, - P' L ( - 2) - 151 211k I + 1/1)/2 

Is) =0 

J [k I] [/!] (p + ix)[I-sl(p _ iX)[k_SI]. 
[sl] [(/ - s)l] [(k - s)l] 

(3,11) 

One can check (by direct calculation) that these hlk,1 I are the 
eigenfunctions of a dilated harmonic-oscillator-type opera­
tor on phase space E: 

(- a(~x + ~p) + X2 + p21h[k,11 = (Ik I + III + mlh[k,II' 
(3.12) 

As a consequence of this, thehlk,11 are linear combinations of 
products of Hermite functions: 

[r[[sl 
Irl + 151 = Ik I + III 

with 

(3.14) 

'" la 12 - 1 ~ [k,/],[r,sl - (3.15) 
[rUsI 

and where H[r I is the [r]th order Hermite function. 
There exists also a relationship between the h[k,ll and 

the Laguerre polynomials (see Ref. 7). For n = I, k = lone 
has for instance 

hkk(X,P) = 2( - 11k e- Ix' +p') Ld2x2 + 2p2), (3.16) 

where Lk is the Laguerre polynomial of order k. 
One can also prove the following recurrence relation for 

the hlk,l I: 

(Ik I + II II h[k,11 =.JIkI L kj(pj - ixj)h[k-,sl'/J 
j 

where [8j ] is the multi-index (8])m = 8jm . 
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4. THE INTEGRAL TRANSFORM I AS A CONTINUOUS 
MAP BETWEEN SUITABLE FAMILIES OF BANACH 
SPACES AND HILBERT SPACES 

As was already mentioned in the Introduction, there 
exists a link between our integral transform I and the Barg­
mann integral transform as defined in Ref. 9. Since we shall 
use this link to derive some of our results, we shall first show 
here what exactly is the connection between the two integral 
transforms. For zeCn

, qeRn
, the Bargmann integral kernel 

A (z,q) is given by9 

A (z,q) = 1T- nl4 exp[ - !(Z2 + q2) + v1 z·q]. (4.1) 

Identifying z with (l/v1) (x - ip) (which makes of the multi­
plication by z-on a suitable Hilbert space of analytic func­
tions-a representation of the harmonic oscillator creation 
operator: see Ref. 9a), we can rewrite (4.1) as 

A (x,p;q).e - l14{x' + p') = 1T - nl4 el1l2 )xp e - ipq e -1l12)(x - q)'. 

Comparing this with (2.24) we see that 

r b I 1 = 2n~12 A (Xa + Xb Ph - Pa . f2x ) 
lO, V v1 ' v1 ,,,k v 

e -1l/4)lx~ + x~ + p~ + p~) 

or 

!o,b Ivl = r 7"12 A (cab ;V2xv)A (dab;v1Pv}tu(Cab)·w(dab)' 

with 

1 
cab = v1 (xa + Xb,Pb - Pal, 

1 
dab =V2'(Pa +Pb,xa -Xb)' 

(4.2) 

(4.3) 

(4.4) 

Actually, (4.3) implies that we can consider the integral 
transform I as a 2n-dimensional Bargmann transform. The 
explicit Gaussian factors w(cab ), w(dab ) just compensate for 
the difference in definition between our Hilbert space 
!f o(E2 ) and the Bargmann Hilbert space [we absorb the 
Gaussian in the functions in !f o(E2 ), whereas in Ref. 9 it is 
always displayed as a weight function in the definition of the 
inner product]. The constant factors r~12 account for the 
difference in normalization in the measure, and for the dila­
tion in Xv ,Pv' Moreover, one can easily check that analyticity 
in Cab ,dab is equivalent to analyticity in 0, antianalyticity in 
b. So, from a mathematical point of view, I can be assimilat­
ed with a 2n-dimensional Bargmann transform. Physically 
however, the two integral transforms have a different mean­
ing: I gives a correspondence between classical and quantum 
aspects, while the Bargmann transform gives the unitary 
transformation between two different but equivalent realiza­
tions (for a short discussion, see Sec. 6 in Ref. 1). 

The remarks above will enable us to translate various 
results obtained by Bargmann in Ref. 9b to the present set-
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ting. An example of this is the following (we keep the same 
notations as in Ref. 9, even though the functions considered 
here are in fact modified holomorphic instead of 
holomorphic): 

Define 

Vq;e Z (E2):11P Ip = supl(l + It 12)P IP (t )1, 
{; 

(g = !lPeZ(E2 ); VpeR;11P Ip < 00 l, 
(g' = IlPe Z (E2 ); 3peR such that IlPlp < 00 l· 

The spaces (g, (g' can be equipped with very natural locally 
convex topologies by means of the norms lip, and one has 
then the following result. 

I defines an isomorphism between Y(E) and (g, with 

V!eY(E):(I!)(t) = f dvltlvl!(v); 

by duality, I defines also an isomorphism between Y'(E) and 
(g', with 

VTeY'(E):(IT)(t) = TUt I·j)· 

The results in Ref.9b also concern two families of Banach 
spaces interpolating between Y and Y', (g and (g', respec­
tively, and between which the integral transform lor its in­
verse are continuous. We give a survey of these results, trans­
lated to our present setting, in Sec. 4A. 

The chains of Banach spaces presented in Sec. 4A dis­
play, however, several inconveniences. As already men­
tioned in Ref. 9b the (g p spaces are not separable, and the 
little space (g is not dense in any (g p. Moreover, in relation to 
the present setting, it turns out that though one can always 
choose suitably matched spaces in the two ladders to make 
either I or its inverse continuous, it is impossible to choose 
them in such a way that! is an isomorphism. None of these 
problems arises when one uses a suitable interpolating chain 
of Hilbert spaces instead of Banach spaces (see Sec. 4B). The 
resulting bounds on I are much more precise between these 
Hilbert spaces, and therefore more useful for applications to 
quantization than the results of Sec. 4A. 

Generalizing the construction of the Hilbert spaces in 
Sec. 4B, one can obtain even larger families containing 
spaces smaller than Y (or (g) or larger than Y'((g'), on which 
the integral transform I can still be defined and has continu­
ity properties. The results in Secs. 4B and 4C can be consid­
ered as extensions of the bounds in Ref. 9b (Sec. 4B uses some 
estimates made in Ref. 9b). Other results on the Bargmann 
transform can, of course, easily be translated to the present 
context and be useful in a Weyl quantization setting (see, e.g., 
Ref. 1, where a characterization of the images under the 
Bargmann transform of the Gel'fand-Shilov spacesS and S • 
are given; in a sense this can be considered as complementary 
to our results in Sec. 4C). 

A. The Banach spaces yk, &' and related results on the 
Integral transform I 

For any C k function! on E, we define (this norm is the 
same as in Ref. 9b, up to a dilation: 
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s ( . ) s I Ilk = II I V2 I kBargmann) 

I II~ = max sup 12 - Ilm,l+ Im,II/2 
[m,l.[m,l x.p 

Imol + Im,l<k 

(1 + 2x2 + 2p 2)lk- lm,I-lm,1112 (v~m,l v~m'l/) (x,p)l. 

(4.5) 

The Banach space Y k is then defined as 

yk = [I: E---+C;j is Ck,l/l~ < 00 I. (4.6) 

On the other hand, we define, V peR, the following subs paces 
~PofZ(E2): 

~ = [rpe Z (E2);lrp Ip = supl(1 + I; 12r rp(;)1 < 00 I· 
f; 

The following theorem was proved in Ref. 9b. 
Theorem 4.1: 
1. V/eY\ the function 

11(;) = f dV[; Ivl/(v) 

is well defined and an element of Z (E2 ). Moreover, 

Ile~k 

and 

with 

b =...!.. 2"/2(16n)kI2' '" 3 
{

I k<.2 
k 2 e-kk\ k>3 

2. VrpE~l", with,u > 2n, the function 

irp (v) = f dV[s Iv Irp (;) 
is well defined on E. Moreover, 

VkeN, 

with 

k <,u - 2n:irpeyk 

and 

with 

b 1,.1" = 2" + k (j)k 12 r (~ + m + 1) r r ~ k - m ) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

xr(,u ~ k) -I L dv e- 2Ivl '(1 + Iv1 2
( (4.11) 

3.fe U yk-::::::;,lII = J, 
k;,2" + 1 

(4.12) 

rpe u lil"-::::::;,Iirp = rp. 
1">2" 

Note: This theorem was used in Ref. 6 to derive some 
restrictions in the class of distributions corresponding to 
bounded operators. 

It is obvious from the definition (4.6) of the yk spaces 
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that Y(E) = n Y\ and that the locally convex topology 
kEN 

on Y defined by the IIII~-norms coincides with the usual 
Schwartz topology. Defining, on the other hand, 

~ = [rpeZ(E2);Vp:lrp Ip < 00 L (4.13) 

and equipping this space with the locally convex topology 
induced by the norms II lip , we have immediately the follow­
ing corollary to Theorem 4.1. 

Corollary 4.2: The integral transform I, restricted to Y, 
defines an isomorphism from Y onto ~, with inverse I (re­
stricted to ~). 

In Ref. 9b it was shown that ~', the dual of~, can be 
identified with UpER ~p in the following way: 

VLeli':gL(;) = L(ui)-::::::;,gLeu ~P, 
pER 

(4.14) 

with 
gL = rp, Lg = L. 

'" L 

The topology on ~' corresponds with the natural topology 
on UpER ~p induced by the norms lip. In what follows, we 
shall always identify~' with UpER ~p and implicitly use (4.14). 

Since I is an isomorphism between Y and ~, it is ob­
vious that by duality I also defines an isomorphism between 
Y' and ~': 

VTeY':we define (IT)(rp) = T( lrp), Vrpe~. (4.15) 

By means of the identification ~' = UpER ~ P, we define the 
function IT (; ) as 

IT(;) = IT(ul) = T( lui) = T([; I·j). 
One can easily check that for Ie Y, this new definition of II 
coincides with the old II defined as an integral transform. 
We have now immediately 

Theorem 4.3: V Te Y', the function IT (; ) = T ([; 1·1 ) 
is a well-defined function on E XE, with ITe~'. This map 
I:Y'---+~' is an isomorphism extending the isomorphism in 
Corollary 4.2. 

Remarks: 1. The inverse map of I:Y'---+Ii', with I de­
fined as in (4.15), can again be constructed by combining I 
and a limiting procedure. For instance, 

Vrpe~':I -Irp = s' -lim I (rp.XR). 
k_", 

(4.16) 

2. One can enter in some detail into a discussion of I as 
an isomorphism between Y' and ~', and compute explicit 
bounds on lIT Ip for Tin (yk)', using the bounds in 
Theorem 4.1 (see Refs. 9b or 8). 

So finally I defines an isomorphism between Y and ~ 
and between Y' and ~'. Moreover, we have two sets of inter­
polating spaces: the yk (yk)' between Y and Y' and the ~ 
between Ii and ~', and we have at hand continuity state­
ments and bounds for I between elements of these two inter­
polating chains, giving more detailed information on the ac­
tion of I. Except for the two ends of the chain we have, 
however, no bicontinuity of I, considered as a map from 
yk [ or (Yk)'] to a suitably chosen ~p. This problem will 
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not occur with the chains of Hilbert spaces in the next sub­
section. 

B. The Hilbert spaces Y P, WP, and related results 
concerning I 

The Hilbert spaces YP, WP we define below constitute 
again two chains interpolating ~ with ~', Y with Y' respec­
tively. Actually the yP spaces were already introduced in 
Ref. 9b as a tool for studying ~'; they are weighted L 2 spaces 
of modified holomorphic functions. Their inverse images 
under the Bargmann integral transform were not displayed 
in Ref. 9b; we call these spaces W" spaces; essentially they 
are the Hilbert spaces associated to the N-representation of 
Y(E), Y'(E) with respect to the harmonic oscillator-type 
operator x2 + p2 - !L1 x - !L1p (see, e.g., Ref. 14). 

The yP spaces 
The yP spaces are defined as (pER) 

yP = {CPE Z(E2);llcp II~ = f dt(1 + It 12l"'lcp (t W < 00 }, 

(4.17) 

with associated inner product: 

(cp,!f)p = f dt(1 + It 12l'" cp(t) !fIt)· (4.18) 

The yP spaces are Hilbert spaces [yo = .!.t' 0(E2)]; one can 
check (see Appendix A or Ref. 9b) that the U1k,1 j are ortho­
gonal elements of the yP : 

(U1k,lj,U1k',/'I)P =o[k][k,)o[I][I'j'T(p;l k l + III) (4.19) 

with 

r(p;m) = rIm + 2n)-' LX> dx xm+ 2n -'e- X (1 + x)P. 

Moreover, for any ¢lEY P with series expansion (2.18) one 
has 

11¢l II~ = I 1¢l[k.1 d2r(p;lk I + III), 
[k ][1 I 

and 

¢l[k,lj = f dt U[k,1 lIt) ¢lIt)· 

Equations (4.19) and (4.20) imply that the 

(4.20) 

(4.21) 

r(p;lk 1+ 1/1)-'/2u[k,/) constitute an orthonormal base of 
yp. 

The following estimates for r(p;m) were computed in 
Ref.9b: 

c; <r(p;m)(m + 2n) -P<c;, (4.22) 

with 

c' = (1 + L) -, } 
P 2n 

p+2n p>O, 
c; = (1 + :n) e'-P 

( ) 
- 2n +p } c; = 1 - L e - , - P 

2n p<O. 
c; = e- P 

(4.23) 
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The W-spaces 

We put V fEY(E),VpER: 

(llfll;)2 = (f,(x2 + p2 - !L1x - !L1p + n)Pf). (4.24) 

Note: Actually, the operator x2 + p2 -lL1x -lL1p has 
spectrum Nn[n, 00], which implies we could drop the extra 
term n in (4.24): the resulting topology on W would be exact­
ly the same. We nevertheless introduce the extra term n in 
order to obtain the sharpest possible estimates on the inte­
gral transform I: to obtain these estimates, we shall use 
(4.22), where this extra n is already present. 

We define then WP as the closure of Y(E) with respect 
to the norm 1111;; equipped with this norm, WP is a Hilbert 
space. 

The renormalized Hermite functions 
(Irl + lsi + 2n)-pI2H[r,s) [see (3.14)] constitute an orthonor­
mal base in WP; one has 

VTEY'(E):TEWP~ I IT(H[r,s)W(lrl + lsi + 2nl'" < 00 
[r][s) 

(4.25) 

and 

TEWP=>(lITII;)2 = I IT(H[r,sIW(lrl + lsi + 2nl'" 
[r][sl 

(see, e.g., Sec. V.5 in Ref. 13). 
Because of (3.13) and (3.15), we can rewrite (4.25) in 

terms of the h[k,/ ): 

VTEY'(E):define T1k.l ) = T( h[k.1 d = T(h[J,k I)' 
(4.26) 

Then 

VTEWP:(IITII;)2 = I IT[k,/ )12(lk I + III + 2n)p. (4.27) 
fkllll 

The integral transform I as a map from W onto yP 
From the definitions of WP,YP one can check that 

n WP=Y(E), u WP=Y'(E), 
peR peR 

n yP = ~, u yP = ~'. 
peR peR 

The extended definition (4.15) of the integral transform I can 
therefore be applied to all WP; for any TEWP, the resulting 
IT will be in ~' and have series expansion 

IT(t) = I (IThm,n )U[m,n )(t), 
[mlln) 

with 

(IThm,n) = f dt u[m,n)(t)IT(t) [use (4,21)] 

= IT(u[m,n)) [use (4.14)] 

= T(h[n,m)) [use (4.15) and Proposition 3.1] 

= T[m,n I' (4.28) 

Using the definitions of the norms IIllpand 1111;, and the esti­
mates (4.22) we see now that 

(4.29) 

and 
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(4.30) 

Hence the following theorem. 

Theorem 4.4: The map I: IT (; ) = T (I t I j) defines an 
isomorphism from WP onto yP, and this peR. Estimates on 
the norms of this isomorphism and its inverse are given by 

III Ilwp_yp<.c;1I2,III -llIyp_wp<'c; -112, (4.31) 

where C; and C; are defined by (4.23). 
Remarks: As we announced before, the restriction of I 

to a WP is a bijection onto yP, which means we have no 
qualitative loss of information when mapping to and fro (this 
was not the case for the yk,~p). Due to the fact that the 
product of the estimates on the norms in (4.31) is larger than 
1, we have, however, still a "quantitative" loss of inform a­
tion, which gets worse for large Ip I. 

Up to now, we have considered the spaces ykf? and 
later yP, WP, in order to obtain some fine structure in the 
study of I as an isomorphism from y' to ~'; it turns out that 
the Hilbert spaces yP, WP are better suited to this end than 
the Banach spaces yk,&. Our ultimate aim is to use these 
results to derive properties of the Weyl quantization proce­
dure, using the fact, mentioned in the Introduction, that the 
integral transform I constitutes the link between a classical 
function and the coherent state matrix elements of its quan­
tal counterpart. Theorems 4.1 and 4.4 can then be used to 
translate restrictions on a tempered distribution to growth 
restrictions on the coherent state matrix elements of the cor­
responding operator. A first application of Theorem 4.1 was 
given in Ref. 6, where it was also noted that stronger results 
could be obtained by means of Theorem 4.4. Other applica­
tions shall be given in Ref. 15. 

c. The Hilbert spaces Y G, ~ 

We shall here generalize the structures of both yP, WP 
to obtain Hilbert spaces larger than y', and which can still 
be handled by I. 
The Hilbert spaces yG 

Y P was constructed as a weighted L 2 space of Z (E2) 

functions, with the special weight (1 + It 12) p. To generalize 
this construction, we consider now more general weights. 

Let G be a function from R + to R + . We define 

y G
= l¢eZ(E2);II¢II~ = J dtl¢(tWG(ltI 2)<ooj (4.32) 

and we equip this space with the norm illiG' Since one has to 
be careful with Hilbert spaces of analytic functions, we shall 
first investigate the conditions to impose on G to ensure that 
yG is an infinitely dimensional Hilbert space (see also Ref. 
16). 

Proposition 4.5: 

1. If 'tI reR + :ess infG (x) > O,ess supG (x) < 00, 
x<r x<r 

then Y G is complete. 

2. Define 
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(4.33) 

(4.34) 

A necessary and sufficient condition for Y a to be infi­
nitely dimensional is 

and 

'tim;). ~ < 00. 

If this condition is satisfied, then 

'tI[k ],[/]:U[k,1 leYG 

(4.35) 

'tI¢ = I ¢[k,/lu[k./leya:ll¢ II~ = I 1¢[k,1 d2A. ~I + III' 
[k][/1 [k][/1 

(4.36) 

The following three conditions involve not only G, but also 
1/G: 

3. If 

"ifm;).:';G < 00, then 'tI¢eyG:¢[k,/1 = J dt U[k,/l(t)¢ (t) 

(4.37) 

[Le., (2.20) holds for all ¢ in Y OJ. 
4. If 

lim A. :.;a(mA. :.;~ I ) -I = 0, (4.38) 

then 

(4.39) 

[i.e., the reconstruction property (2.21) still holds for Y OJ. 
5.If 

3K ~,K ~ >0 such that "ifm:K ~<,A. ~A. :.;a<.K~, 
(4.40) 

then Y IIG can be identified with the dual, (ya)', of ya, by 
means of the map 

yIlG_(yG)', 

¢~L." withL.,,(¢) = Jdt r/J(t)¢(t) 

= I ¢[k.1 1¢[k,1 I' 
[k ][/1 

Proof 

1. Using 

¢ (t) = (1Tr) -211a>2(t)1 dt '¢ (t ')a>2(t ')-1, 
I~'-~I<r 

and (4.33) one can check that 

(4.41) 

(4.42) 

"ifR:3KG,R such that 'tit, It I <.R:I¢ (t )1 <.Ka,R II¢ Ila· 

(4.43) 

Hence, convergence with respect to 1IIIa automatically 
entails uniform convergence on compact sets. Therefore, 
any Cauchy sequence in ya has a limit in Y a, and ya is 
complete. 

2. Proposition A 1 in Appendix A proves that "if ¢eZ (E2): 

J
dt I¢ (tWG(lt 12) = I 1¢[k,/11 2A. ~I + III' (4.44) 

[k ][1 ) 
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where these expressions can be finite or infinite. If A ~ < 00 

for all m, then (4.44) shows that all the U[k,1 )EyG; (4.36) is 
proved in Appendix A. If A ~ = 00, then Vm/>m:A G, = 00 

[use (4.33)]. Hence, V¢EyG: ¢[k.l ) = 0 if Ik I + Ill;m and 
.yG is finite-dimensional. 
(yG Cspan IU[k,1 1;lk I + III <mj). 

3. If Vm:A ;,;G < 00, then 

V[k ],[/]:u k I EYI/GCL 2(E XE- d~ ) [. ) , G(I~ 12) , 
(4.37) is then a consequence of Proposition A2 in Appendix 
A. 

4. Equation (4.38) implies 
V ~:{J)t;E.y IIG C (yG )' 

apply Proposition A2. 
5. See Proposition 4.3 in Ref. 16. 
Note that once (4.40) is satisfied, (4.39) holds 

automatically; 

(4.40)=>(Y G)/ ~Y IIG. 

Because of (4.43), 3t0t;EYIiG such that 

V¢EYGJ t0S(~)¢(~)=¢(S)· 

In particular 

Examples: 
l. Take G (x) = (1 + x)P. This weight satisfies all the 

conditions in Proposition 4.5; the corresponding Y G spaces 
are of course exactly the Y P of Sec. 4B. 

2, Another possibility is G (x) = efJx, with 1/31 < l. This 
choice for G satisfies (4.33), (4.35), and (4.38); one has 
A ~ = (1 - /3) - m - 2n, from which one clearly sees that the 
duality condition (4.40) is not satisfied. 

3. G (x) = efJVx. This corresponds to a simple exponen­
tial weight for Y G: 

II¢II~ = fd~I¢(~WefJlt;l. 
This choice also satisfies all the conditions in Proposition 4.5 
(see below). 

4. A rather general class of interesting weight functions 
is given by taking G = F~'T, 
with 

For all the values of the parameters indicated above Fq,T , P 

satisfies (4.33), (4.35), and (4.38). 

A detailed analysis of the asymptotic behavior of A FZ,T 

yields (see Appendix B) m 

VqE(I - .!. 1 - _1_) n = 1 2 n' n + 1 ' , , ... , 
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Fq·~ 

AmP - constX mPexp[1'mq +A lm
2q

-
1 + ... 

m--+oo 

with 

a = max(q - l;q + n(q - 1)), 

For q<~ this specializes to 

(4.46) 

pq.T 

Am" - constXmPeTmQ [1 + o (ma)], (4.47) 

which implies the duality condition (4.40) is satisfied for q<!; 
for q > ~ it is not, 
The Hilbert spaces w~. 

The Y G spaces were constructed on the same principle 
as the Y P spaces, with more general weight functions. We 
shall likewise generalize the construction of the WP spaces. 
Let ¢ (m) be any sequence of strictly positive real numbers. 
We define 

(lIJII~)2= I 1(J,H[r,s)W¢(lrl + lsi +n) 
[rHsl 

= I 1(J,h[k,1 IW¢ (lk I + III + n). (4.48) 
[k III 1 

The set of all functionsJin Y for which II JII~ is finite we call 
Y,p; woP is then the completion of Y ~ with respect to IIII~. 

We can, of course, as in (4.24), consider woP as the natu­
ral domain of ¢ (x2 + p2 - !.::1 x - !.::1 p )1/2, and put IIJII~ 
= II¢ (x2 + p2 - !.::1 x - !.::1p )I/2fll. 

Examples: 
l. Taking ¢p(/) = (/ + nY', one has Y ~ = Y (it is only 

for ¢ increasing faster than polynomials th;t Y ~ may be­

come a proper subset of Y), and W~P = Wp. 
2. The H (a, A ), H (a, A) spaces, introduced in Ref. 17, 

are a special case of a W" -structure. For the detailed defini­
tion we refer to Ref. 17; a survey is given in Appendix C (our 
definitions are slightly adjusted to deal with the dilation in 
x 2 + p2 - !.::1 x - !.::1 p with respect to a normal harmonic os­
cillator). Essentially the H (a, A ) form a scale of spaces oftest 
functions "of type S" and their duals H (a, A) a scale ofHil­
bert spaces of distributions or generalized functions of type 
s.IR They are defined (see Appendix C) as W" spaces with: 

for H(a,A): 

¢ (k + n) = Yk- 2(a, A ) = I a(m;k) , (4.49) 
m~oA 2mr2(am) 

for Hra,A): 
¢(k +n)=n(a,A), 

where the a(m;k ) are numbers satisfying 

2 - m r(k + 2n + m) <a(m;k)< r(k + n + m) (4.50) 
r(k + 2n) r(k + n) 

[for the exact definition of a(m;k ), see Appendix q. For all 
(a, A )witha <~,A arbitrary, ora = ~,A > y2,H(a, A )isan 
infinitely dimensional Hilbert space, with orthonormal basis 
Ylk 1+ 1/,1 (a, A )h[k,1 I; ~ra, A) is its dual: for any JE H (a, A ), 
the action of Tefl ra, A ) on Jis simply the natural extension 
ofthe action of elements of Y/ on H (a, A ): 

(4.51) 
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In Ref. 17 it was shown that V(a, A ) satisfying the restriction 
above, 3C(a, A) such that Vje R(a, A): 

n 

I f(x,p) I <;;C(a, A )llflla.A IT (xjpj)n+2 
j= I 

x exp [ - 1 ~ (x lla + p lla
] • (4.52) 

2n(2A )lIa j~1 j J 

In the extreme case a = ~,A>v'2 this becomes 

n [ X
2

+p2] If(x,p)I<;;C(!.AlIlfIl1l2.A g(Xj PJ)"+2 exp - 8nA 2 ' 

J (4.53) 

i.e.,fhas a Gaussian-like behavior at infinity. 
Another property proved in Ref. 17 is the following. 

Vae(p),VjeR(a, A ): 

fis the restriction to the reals of an entire analytic function of 
orderp<;;(I-a)-·. 

The integral transform I as a map from W~ to y G 

and vice versa 

Looking back at the arguments leading to the formula­
tion of Theorem 4.4, we see that the estimates (4.22) played a 
crucial role in the proof of the bijectivity of I between WP 
and Y p. In the case of a general W~-Y G pair, we shall use 
again such estimates. 

Theorem 4.5: Let Y G, W~ be two Hilbert spaces as 
defined above [with G satisfying (4.33), (4.35)]: 

(I)If 3 K, > 0 such that '1m e N:K.; (m + n»A.~, (4.54) 

then I can be considered as a bounded linear map from 
W¢ to Y G, with 

VTe W~:lT!;) = ~ T(h[l,k I) u[k,/I!;)' (4.55) 
[k~/1 

where the series converges uniformly on compact sets. 
Moreover, 

VTe W¢:IIITIiG <;; K:12I1TII~. (4.56) 

(2)If3K2 > OsuchthatVmEN:K2;(m+n)<;;A.~,(4,57) 
then j can be extended to a bounded linear map from yG to 
W¢with 

G -'14> = ~ 4>[k,1IU[k,1 I e Y :14> 
[k~/1 

= W~ - lim L 4>[k,1 Ih[/,k I' (4.58) 
"'-00 [kl[ll 

Ikl + III..;'" 

One has 

lIi4> II¢ <;; K 2- •
12114> IIG' 

(3)lf 3 K • .K2 > 0 such that 
Vm:K.; (m + n) <;; A. ~ <;; K 2; (m + n), (4.59) 

then I as defined by 4.55) is an isomorphism from W~ onto 
yG, with inverse j [as defined by (4.58)] 

Proof Ij are already defined on the finite linear combi­
nations ofthe h[k,1 1',Y[k,1 I' respectively. The bounds (4.54), 
(4.57) ensure that 1,1 can be extended as indicated. Formula 
(4.55) is a consequence of the fact that IlliG convergence 
implies uniform and absolute convergence on compact 
sets. • 
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Note: Of course, one can always define yG first, and 
then take; (m + n) = A. ~; for this particular W'" space, the 
theorem becomes trivial. A W'" space defined in this way 
would, however, be rather useless because of its too intrinsic 
definition: we are more interested in the situation where yG 
and W'" are defined separately, but where nevertheless a link 
can be established via I or i. This was the case for the yP and 
the wP spaces: the wP spaces made sense as ladder spaces in 
the N-representation of Y'(E), and the yP spaces were po­
lynomially weighted L 2 spaces of modified holomorphic 
functions. Results such as Theorem 4.4 (or Theorem 4.5 with 
explicit yG - W'" pairs) can then be used to characterize the 
behavior of the coherent state matrix elements of an operator 
by means of the properties of the corresponding classical 
function (or distribution) or vice versa. 

An example of corresponding W~ -y G pairs different 
from the WP-y P pairs in Sec. 4B is given in the following 
subsection. 

The action of the integral transform Ion Hilbert spaces of 
distributions of type S 

We shall study in this subsection the action of I on the 
Hilbert spacesR (a, A ),R (a, A) defined above. In order to be 
able to apply Theorem 4.5, we have to find suitable weight 
functions JGa.A ,lJa.A such that 

KiA. :;a ... <;; y;; 2(a, A) <;; K;A. ;:", .. , 

KiA. ,!"'A <;; Tn. (a, A ) <;; K ; A. ';a.A (4.60) 

forsomeK;,Ki.K;,Ki > O. 

Using the bounds (4.50) we can easily construct the 
jGa.A functions. Indeed we have 

~ 2 - I r (m + 2n + I) <;; y;; 2(a, A ) 
1~0 A 21r2(al) rIm + 2n) 

00 1 r (m + n + I) 
<;; f~O A 21r2(a/) rIm + n) 

Since it is clear from (4.34) that for 

'" 00 xi 
Gp,B(X) = L r 21f3 )B2/ 

j=O j 

the corresponding A. ~ are given by 

A. GIl•S _ f 1 r (m + 2n +11 
m - j=oB2Jr2(21J rIm + 2n) 

we immediately have 

A. ~a,v2A <;; y;;2(a,A) <; A. ~a.A. (4.61) 

To find candidates for the functions l}a.A' we have to do a 
little more work. We shall study the asymptotic behavior of 

the A. C:.S
, then invert (4.61) and try to find suitable jGa.A' 

G p,B as defined above is typically an entire function of 
finite order. Computing its order and type we find '9 

plf3,B ) = lim m In n 1 
n-oO In(r 2(.8n)B 2n) = 2P ' 

7( {J,B) = 1 lim n [r 2( {In)B 2n] - IIlPn = 2B - liP. 
2p( {J,B) n_oo 
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So Gp,B is an entire function of growth < (1/2,8, 2B - liP), 
Since the positive real axis is the direction of fastest growth 

"'-
for Gp,B' this implies that 

'tJr' < r(/3,B), 'tJr" > r(/3,B), 3 K',K" > 0 

such that 

'tJx E jR+:K'P(2PI - t ,T'(X) < Gp,B(X) < K"P(2{3I- t ,T"(X) 

[we definepq,T(x) = Pinx) = exp(rxq)] 

and hence 

K '1 FI2PI~~',T A. Gp,B K" A. F(2P)-',T' 
Am < m < m • 

Using now the estimates (4.46), inverting (4.61), these 
inequalities imply that 

'tJa > ~;'tJr2 > r(a,A) = 2A -1/2,'tJr l < r(a,v2A) 
= 2(v2A )-1/2: 3 K I,K2 > 0 

such that 

K2 A. ~i2al" T, < fm (a, A) < KIA. FI2a
l ', T'. (4.62) 

Since this inequality has exactly the right form of (4.60), we 
are now in a position to apply Theorem 4.5; we get the fol­
lowing results. 

Theorem 4.6: For any q E (0, 1),r E R, we define 

pq.T(X) = eTxq(x E R+); for any (/3,B) with/3 > ! or /3 =!, 
B > v'2, we define 

A 00 xn 
Gp,B(X) = n~o r2(/3n)B 2n' 

Take any [a, A ) with a > ! or a = !, A > v'2. Then 

( 1) The integral transform I defines a continuous linear map 
from the Hilbert spaceH(a, A) off unctions oftypeS to the 
weighted L 2 space of holomorphic functions yGa ,V2A: we 
have 

'tJ/EH(a,A):II(;) = f dv !;lvJf(v) 

and 

11/111~a,v2A = f d; 1/1(; WGa ,V2A (I; 12) < II/II;,A' (4.63) 

(2) The il!tegral transform i defines a continuous linear map 
from yGa,A to 

H(a,A):'tJt,6EyGa ,A:(it,6)(v) = f d;!tlv)t,6(;) 

and 

Ilit,6II;,A <f d; 1t,6 (; WGa,A (I; 12) = 1It,611li",A . (4.64) 

For the next two results, we restrict ourselves to the case 
a>~. 

(3) 'tJr2 > r(a, A) = 2A -1/2, the integral transform I ex­
tends to a continuous linear map from the Hilbert space 
H (a, A) of distributions of type S to the weighted L 2 space of 
holomorphic functions yF'2a'-',-T,: 

'tJTE H(a, A):lT(;) = L T(h[l,k ])U[k,/](;) = T({s I·)) 
[k ][/] 

(4.65) 

and 
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3Ksuch that IIITII~'2an-T' = f d; IIT(;We-T,I~I'/1 

<KIITII~,A' 

(4) 'tJr l <r(a,v2A) = 2( v'2A )-lIa, I extends to a con­
tinuous linear map from yF'2a' ',- T, to H (a,A ]: 

'tJt,6EyF,2a, ',-T':It,6=H(a,A)-lim ( d;lt.jt,6(;) 
R~oo JI';I<R 

(4.66) 

and 

3K'>Osuch thatK'lllt,6II~,A 

< f d; 1t,6 (; We - T,I, 1'/1 = 11t,611~'2ol '. T,' 

For a = ~, A > v'2 we have 
(5) 'tJy> (A 2/2 - 1)-1, the integral transform I extends 

to a continuous linear map from H (I, A ) to the weighted L 2 

space yG_" where 

Ga(x) = eax (a < 1). 

Wehave'tJTEH(I,A):IT(;)= TU;I·)) and 

IIITIIL, = f d; IIT(;We-yl;l' 

«1 +y)-n+IKa ,A(y-I)-IIITI12112.A' 

with 

00 m' 
K A (z) = " . (z + 2)m. 

a. m~or2(am)A2m 
(4.67) 

Proof (1)-(4) were essentially proven above. Since 
'tJ(a. A):!; l·jEH(a,A), we can always writeIT(;) as 
TU; I,)), For (5) we use the estimate 

r;;; 2(!, A )«1 + yt + n -IKa • A (y-I) (see Appendix C). Since 

A. ~a = (1 - a)-1m + 2nl, (4.67) follows .• 

Remarks: As we already mentioned previously, our 
motivation for this detailed study of the integral transforms 
I,i is their relation with the Weyl quantization procedure 
[see (Ll) and (1.6)]. Possible applications of Theorem 4.6 in 
this quantization context are, e.g., the following. 

1. In Ref. 17 it was shown that for a > 1, the functions in 
H (a, A ) are the restrictions to the real line of entire functions 
oforder(1 - a)-I. On theseH (a, A ) one can therefore define 
the complex 8 functions 8v + iw :f-+{v + iw) as continuous lin­
ear forms, i.e., as elements of H (a,A) (see Ref. 17). By means 
of the integral transform I, and applying Theorem 4.6, one 
can therefore quantize these 8 functions with complex argu­
ment. The same can be done for the real exponentials eax + bp

; 

the quantal operators corresponding to both these functions 
are actually complex translation operators, and can there­
fore be useful in the study of certain resonance problems. 
Complex dilations also can be obtained as quantizations of 
H (ll!, A)-objects (at least for the dilation parameter () in some 
strip of the complex plane). 

2. Using the i results, the statements in Theorem 4.6 
enable one to dequantize certain families of operators with 
coherent state matrix elements with fast growth (up to Gaus-
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sian-like growth) in the coherent state labels, and to derive 
properties of the corresponding classical functions. 

5. THE INTEGRAL TRANSFORM I ACTING ON 
FUNCTIONS FACTORIZING INTO A PRODUCT OF A 
FUNCTION DEPENDING ON x WITH A FUNCTION 
DEPENDING ON P 

Whereas for "dequantization procedures" it may be 
useful to know how to treat an operator in which the x and p 
parts cannot be disentangled, for quantization purposes one 
is mostly interested in functions depending only on x or on p 
or linear combinations of such functions. We shall therefore 
indicate here how the additional information that a given 
function is factorizable,f(x,p) = fl(X):f2(P) or, depending 
only onx or onp,J(x,p) = nx),f(x,p) = f2( pI, can be used to 
sharpen the results derived in the preceding section. To 
achieve this, we shall use the decomposition (4.3) of the inte­
gral kernel! a,b Iv I: 

!a,b Ivl = KB (cab;X.}KB (dab;p.), (5.1) 

where 

KB(c;y) = KB((C I,C2);y) 

= 2n!21T"/4A (C
I
,C

2
;v2y)e - (1I4)(~ + c~1 (5.2) 

(YERn;CER2n = Rn 
(f) Rn

), with A given by (4.1), and where 

1 
Cab = YL (xa + Xb,Pb - Pal, 

1 
dab = YL (Pa +Ph,xa -xb )· (5.3) 

One immediately sees from (5.1) that the integral transform 
I, when applied to a factorizable function 
f(x,p) = fl( X)f2(P), splits into two pieces: 

If(a,b) = IBfl(cab)/Bf2(dab)' (5.4) 

with Vg function on Rn
, Vd = (d l , d2)ER2

n: 

(IB g)(dl, d2) = (21T) - n!2 L. dnyKB(d;y)g(y). (5.5) 

It is not difficult to check that the integral transform I B with 
kernel K B has exactly the same properties as the integral 
transform I, except that all the dimensions have to be halved. 
Since the exact value of the dimension n plays no role what­
ever in the results derived up until now, we see that all the 
results for I hold also for I B' provided we replace each n by 
n12. 

We give below a list of bounds on I (fd2) which can be 
obtained in this way. For all the cases where the images 
I B fl' I B f2 cannot be defined directly (i.e.,fl,J2~ L 00 + L 2), 
we define I B as a continuous extension of the integral trans­
form with kernel K B (just as we did for I). 

In the case where}; = 1, i.e., where the functionfde­
pends only on x (the casefl = 1 is completely similar), one of 
the factors in (5.4) can be calculated explicitly: 

IU.,I) (a,b) = IB f.)(cab ) 

[ 
(xa -Xb )2 

Xexp - 4 

i(Pa +Ph),(xa -xb)] 
+ . 

4 
(5.6) 
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We also give some bounds for this special case. 
Examples: 
1. Define yk = { g: Rn_c; g is C k and 

I glk = max supl2 -lml12(1 + 21 yI2)(k -lmlJ12 
Iml<k 

vIm) g(y)1 < 0() I . 
Take!.EYk',J2EYk,. Then 

I IUd2)(a,b)1 <bk, bk, Ifllk,lf2Ik, 

X( 1 + IXa +XbI
2

; lPa - Ph 12) -k,12 

( 
IXa - Xb 12 + lPa + Pb 12) -k,!2 

X 1+ 2 ' 

with 

b = 3e 2nI4(Sn)k/2{1 
k 2 e-kk k 

if k<2, 

if k~3. 

2. Define WP as the closure of Y(Rn ) with respect to 

IIII~, wit~(li g lI~e = (g,(H + n/2Y'g) and H = y2 - a~y· 
Takef.EWP',J2EWP,. Then 

f f da db II Ud2)(a, b W 

X (1 + IXa + Xb 12: I Pa - Pb 12 r 
(

1 IXa - Xb 12 + lPa + Ph 1
2
)P' 

X + 2 

<C;, .c;,(llf.II~, '1If211~Y, 
with 

C; = {e. -p( 1 + ~ r + n , 

e- P , p<O. 

3. Takef.Ey-k. Then 

IIUI,I)(a, b )1<bke-(1I41Ixo-xbl' 

X Ifdk (1 + IXa +XbI
2

; lPa _PhI
2
)-k!2 

4. Take TIEY'(Rn), with VgEY(R)n: ITI(g)I<KT,1 glk' 
Then Vf-L > k + n: 

with 

cl' = f-L1'12 exp[ - !( f-L - 1)] , 

Ii I.,!, 
= 1T-n12(J)kl2r(k; n + 1 )r(f-L - ~ - n)rr; k)-I 

xi d ny e - 2y'( 1 + y2)k . 
R" 

5. TakefiEWP; letgbe any function in L 2(Rn). Then 
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J J dadbII(fl'l)(a,bWlgea::b )1
2 

X(1 + IXa +XbI
2

;!Fa _Ph12) <c; "g"i("fdl~). 
By taking other combinations forfl>f2 one can easily derive 
other bounds of this kind. 

6. CONCLUDING REMARKS 

Using intensively the analyticity properties of the func­
tion I a, b I v I we have derived several families of bounds on 
the action of I and i. These results will be used in Ref. 15 to 
derive properties of the Weyl quantization procedure. Ex­
amples of such results are 

Vfe WY + E: Qf is trace-Class} I R f 
see a so e. 5, 

VAe&iJ(£'): Q -IAeW -Y-£ 

VflJ2eWYH: QflQJ; trace-class, 

!IJ2e L 2(Rn)~flQJ; Hilbert-Schmidt, 

VTeWJ.I: QTis a quadratic form, relatively form-
bounded with respect to a power of the harmonic oscillator 
Hamiltonian QH. 

V!eWP ,geW -P: the twisted product fog is defined, 
andeW -2p. 

The bounds derived here can also be used to show that all the 
operations in, e.g., Ref. 11 were well defined. 

Because of the link of our integral transform I with the 
Bargmann integral transform in Ref. 9 any result on the 
Bargmann integral transform (such as, e.g., in Ref. 1) can be 
translated to give properties of I, and hence of the Weyl 
quantization procedure. Note also that analogous bounds 
can be obtained if one starts not with the coherent state fam­
ily 111 a I , but with any other overcomplete family depending 
analytically on its label, and having the reproducing proper­
ty (1.4); an example of such a family would be given by20 
II1[m))' wherel1[m) = W(a)u[m) [W(a) are the Weyl opera­
tors; to obtain the usual coherent states one takes [m] = [0)). 
This would give rise to another integral kernel I a, b Iv I [m) 

= r(11 [m ),ll (v)11 tm)) but essentially the same theorems 
could be derived (with some adjustments). Finally, it is im­
portant to note that the integral transform I has the follow­
ing invariance property with respect to the symplectic Four­
ier transform (see also Ref. 1). 

Define 

then 

F4(!a, b 1·J)(v) = la, - b Iv) 

and hence 

VT: f(F _4T)(a, b) = fT(a, - b) 

and this for Tin any of the classes considered above (all the 
spaces we have introduced are invariant under the Fourier 
transform). This leads to the property Q (F _4T) = QT.ll (ll 
is the parity operator) for the Weyl quantization procedure, 
but it also implies that the same Fourier invariance will tum 
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up in all results, thereby weakening some of them (e.g., the 
result of the trace-class properties of QflQf2: see Ref. 15). 

APPENDIX A 

We prove some results on yG spaces. 
Proposition A.1: Let G be a function R + -+R + , such that 

is finite. Then 

Vt/> = L t/>[k./)u[k,/)eZ2, 
[k )[/) 

Jdtlt/>(tWG(ltI2)<00¢:> > 1t/>[k,/d2,1,~I+1/1 <00. 
[kj(1) 

If one of these expressions is finite, they are equal. 
Proof From 

J dt U[k,/)(t)U[k'.I')(t) =8[k)[k,)8[1)[I') 

one sees that (see Ref. 9b) 

r dt U[k, I lIt )U[k'.I')(t) 
J"I = I 

2 
= r(lk I + III + 2n) 8[k)[k,)8[1)[I')' 

Hence 

r dt G (It 12) U[k, I lIt )U[k'.I')(t) 
Jlbl<R 

= 8[k)[k' )8[1)[1') AG(lk 1+ I/I;R), 

with 

AG(m;R)= 1 rR

'dyr yym+2n- 1G(y) /' ,1,~ 
r~+~)k ~m 

Then 

J dt It/> (t WG (It 12) 

= lim r dt It/> (t WG (it 12) 
R~m J"I<R 

= lim L t/>[k.1 ) t/>[k', 1')8[k)[k ,)8[1 )[/') 
R~", [k)[/) 

[k ')[1') 

xAG(lk I + I/I;R ) 

= lim L 1t/>[k,/)1 2AG(lk 1+ I/I;R) 
R~", [k)[/) 

= L 1t/>[k,1 d2
,1, ~I + III ' 

[k )[/) 

PropositionA.2:LetI.[k)[/) t/>[k,/)U[k,/) be an element of 
Z(E2 ), 

1. If S dt IU[k,1 )(t)t/> (t)1 < 00, then 

f dt U[k,1 )(t)t/> (t) = t/>[k, I ) , 

2, If S dt Ilti(t)t/> (t)1 < 00, then 

f dt lti (t )8(t) = t/> (s ) , 

Daubechies, Grossmann, and Reignier 252 



                                                                                                                                    

Proof 
1. We have 

f d~ U[k,l )(~) tP (~) 

= lim i d~ U[k,l J(~) tP (~) 
R~oo I;I<R 

2. Analogously, 

f d~ {US (~ )tP (~ ) = lim i d~ al (~ )tP (~ ) 
R~oo !;I<R 

= lim I tP[k, I )U[k ',I' J(S )8[k)[k' )8[1 JlI' J 
R~oo [k)[l) 

[k ')[I'J 

i = m(1 + rqmq- 1)(1 + 0 (mmaxl- 1,2q - 2))) . 

One has then 

Y"(i) = ~(1 +O(mmax(-I,2q-2))) , 
m 

(B7) 

(BS) 

'dj> 2: yIJ1(i) = 0 (m I - j) , (B9) 

Y(i) = (- m + (m + 2n -!) In m) + (p -!) In m 

+ mrmq - I + 0 (mmax10,2q - I)) , 

hence 

-In rIm + 2n) + Y(i) 

= (p -!) In m + rmq + O(mmax(O,2q-I)). 

Collecting all these results, we see now that 

----I __ 1_ 
rIm + 2n) T,p,q,m m~oo ym=r 

xexp[(p -!) In m + rmq + O(mmax(O,2q-I))) 

X (1 + 0 (mmsxl - 1I2,2q - 2))) 

[the higher derivatives contribute only a factor 

(BIO) 

(Bll) 

= lim I tP[k, I JU[k,1 J(S) A ,(Ik I + Ill;R ) (1 + 0 (m - q/2)) because of the estimate (B9)-see Ref. 21]. 
R~oo [k)[l) If q<!, we can rewrite (Bll) as [being a little more care-

= tP (S) . ful in estimating i in (B7)] 

APPENDIXB 

We compute the asymptotic behavior of 

A.~~,r = 1 foo dxxm+2n-Ie-X(1 +xfeTX• (Bl) 
rIm +2n) Jo 

for m-+oo. To estimate the asymptotic behavior in m ofthe 
integral 

IT,p,q,m = loo dx exp[ - x + rxq + (m + 2n - 1)ln x 

+ p In(x + 1)] , 

we shall use a stationary point method. The exponent 

X (x) = - x + rxq + (m + 2n - 1) In x + p In(x + 1) 

has a unique maximum in 

(B2) 

Xo = m( 1 + rqmq - I + 0 (mq - I)). One can use this to esti­
mate that 

IT,p,q,m = i T,p,q,m(1 + O(m- I)), (B3) 

where 

iT,p,q,m = loo dx exp[ -x + rxq + (m + 2n + P - 1) Inx] . 

(B4) 

We shall therefore restrict ourselves to this last integral. The 
exponent in (B4), 

Y(x) = -x+rxq+(m+2n+p-l)lnx, (BS) 

has a unique maximum defined by the equation 

x = - (m + 2n + p - 1) = rqxq . (B6) 

The solution to this equation can be computed using pertur­
bation techniques: 
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A. ~r _ const xmPeTmQ(1 + 0 (mmax( - 1I2,2q - I))) • (BI2) 
m~OO 

For q > !, the estimate (B7) is too coarse. The next term in the 
perturbation gives 

i = m( 1 + rqmq - I + ~q3m2q - 2)( 1 + 0 (mmsx( - 1,3q - 3))) 

yielding, for! < q<i, 

(B13) 

It is easy to see that for qE[1 + lIn,1 - lI(n + 1)], n extra 
terms have to be introduced in the perturbation series for i, 
and that finally 

1 1 
1 - -<q<1 - -- (n>2) 

n n+l 

constxmP 

X exp [rmq +A l m
2q - 1 +A2m

3q - 2 + ... 
+An_,mnq-(n-,)] 

X [1 + 0 (mmax[q - I,q + nlq - I))] , 

where A I = !~q2 [as in (B13)]. 

APPENDIXC 

(BI4) 

We indicate here how the definitions of Ref. 17 have 
been adjusted to fit the h[k, I ). 

Define on Y(E) two sequences of operators by the fol­
lowing recursion: 

M m = + (xj M m _ I Xj + Pj M m _ I Pj 

-~~M ,~-~~M I~) 
4 aXj m - aXj 4 apj m - apj , 
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M m = ~ (i Xj Mm _ 1 Xj + i Pj M m - 1 Pj 
] 

--M I---M 1-
a - a a - a) 

aXj m- aXj apj m- apj , 

Mo=Mo=l. 

Both Mm and Mm are positive; one can easily check that 
V f, ge ..9"(E): (j, Mm YI = (f, Mm g), where - denotes the 
FouriertransformF1 (see Sec. 6). TheMm conservetheorth­
ogonality of the h [k, I J (see Ref. 17), 

(h[k·.I'J,Mm h[k,IJ)=~[k][k'J~[I][I'Ja(m;lkl + III); 
the a(m;k) satisfy the following relations: 

V k: a(O;k) = 1 , 

m>I=>a(m;k) = k + 2n a(m _ l;k + 1) 
2 

+ ~a(m-l;k-l). 
2 

This last recursion relation implies 

2 _ mr(k+2n+m) ( k) r(k+n+m) ----''-------'''<a m; < . 
r(k+2n) r(k+n) 

The Hilbert space H (a, A ) is then defined as 

H (a, A ) = {/e..9"(E); II III!, A 

= ~ A 2m)2(am) (/,Mm I) < 00 } • 

Since 

1 
IIh[k.l JII!,A = ~ A 2mr2(am) a(m;lk I + II I) 

«I+y)lkl+lll+n-l" (l+y-1t r(m+l) 
~ A2mr2(am) 

and this V y > 0, we see that if 3z > 0 such that 

(1 +z)mm! 
ka,A(Z) = ~ A 2mr2(am) 

converges, then h[k,l JeH(a, A )V[k ],[/]. This conver­
gence is guaranteed for any A if a>!, for A> (2(1 + ZW /2 if 
a = !. Hence H (a, A ) is an infinitely dimensional Hilbert 
space with orthonormal basis Ilh[k,l JII;,-l h[k,l J if a>!, or 
a = !, A > v'2. One can check that the topology on H (a, A ) 
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defined by the norm II II a, A is really stronger than the topol­
ogyon..9"(E),andthatH(a, A )isapropersubsetof..9"(E)(see 
Ref. 17). 

The norm II Ila. A on H (a, A ) can also be written as 

II/II!,A = L I(f, h[k.1 JW rlkf+ 111(a,A), 
[k ][1 J 

with 

-2(a A) = ~ a(m;k) 
rk' L.J r2( )A 2m m=O am 

The Hilbert space H (a, A) is then defined as the dual of 
H (a, A ) with respect to the normal action of ..9'" on..9". It can 
be constructed as the closure of ..9"'(E) for the norm II lIa. A: 

IITII~,A= L IT(h[k,IJWyfkl+lll(a,A). 
[k][l J 
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On the Laplace asymptotic expansion of conditional Wiener integrals and the 
Bender-Wu formula for x2N-anharmonic oscillators 
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Rigorous results on the Laplace expansions of conditional Wiener integrals with functional 
integrands having a finite number of global maxima are established. Applications are given to the 
Bender-Wu formula for the x2N-anharmonic oscillator. 

PACS numbers: 02.30.Rz, 03.65.Db 

1. INTRODUCTION 

In a previous paper we showed how it is possible to 
extend Schilder's rigorous results for the Laplace asymptotic 
expansions of Wiener integrals, with integrands having 
unique nondegenerate global maxima, to conditional Wie­
ner integrals. I There we gave applications of this result to the 
derivation of generalized Mehler kernel formulas. In this 
paper we treat the case of the Laplace expansion of a condi­
tional Wiener integral with a functional integrand having a 
finite number of nondegenerate global maxima-a situation 
which arises frequently in theoretical physics.2 Here we ob­
tain equivalent results in this multiple maxima situation and 
give some applications to the Bender-Wu formula3 for the 
x2N-anharmonic oscillator, N~2. 

The Bender-Wu formula for the large order behavior of 
the perturbation series for the ground-state energy of the 
x2N-anharmonic oscillator has been obtained formally from 
a function space integral, with a manifold of maximum 
points, by a number of authors.4 Modulo the interchange of 
two limits, using a very clever argument, the behavior of the 
leading term for the large order behavior of the ground state 
of the X4 -anharmonic oscillator has been obtained rigorously 
from a function space integral by Simon.5 The fact that the 
functional integrand in these treatments has a manifold of 
maximum points makes it difficult to use function space ar­
guments to take the calculations beyond the leading term 
and difficult to extract more detailed information about even 
the leading term. 

Here we give a functional integral realization of the 
ground-state energy for the x2N-anharmonic oscillator so 
that (modulo the interchange of virtually the same two lim­
its) the large order behavior is given rigorously by the La­
place expansion of a conditional Wiener integral with an 
integrand having exactly two nondegenerate global maxima. 
This offers the possibility of taking the function-space calcu­
lation to a higher order and yields more detailed information 
about the leading term. 

At first sight the more detailed rigorous results which 
this realization gives seem somewhat disappointing in that 

B'SUpported by an SRC research studentship. 
b'Centre de Physique theorique, CNRS, Marseille, France. 
c'Supported in part by CNRS-ATP Internationale research grant: "Les 

integrales stochastiques et leurs applications en mecanique statistique ri­
goreuse, quantification ala Feynman et theorie des champs." ATP no. 
055. 

they differ, in the fine detail, from the behavior given by the 
numerical Bender-Wu formula. (Presumably the problem 
here is the interchange of the two limits.) Nevertheless, as 
will be seen below, the method does lead to results for the X 2N 

-anharmonic oscillator (N)2) parallel to Simon's for the X4_ 

anharmonic oscillator. To this extent then the interchange of 
the two limits does appear to be justified. Moreover, since we 
are dealing with the conditional Wiener integral, as opposed 
to a general Gaussian, our method is easier to apply. For 
instance, because the necessary bounds on the functional in­
tegrands in our Schilder type results can be expressed in 
terms of the sup-norm on the path-space, rather than the L 2_ 

norm, these bounds are easy to check and do not require the 
clever technical estimates given by Simon. This seems to us 
to be the main practical advantage of applying the Schilder 
type results over using other treatments.6 

We use substantially the same notation as in our pre­
vious paper. We recapitulate our main conventions here. 
Co[O, T] is the Banach space of continuous functions z: [0, 
T]~R with z(O) = zIT) = 0, equipped with sup-norm 
Ilzll = sUPTE[O.T dz(l')I· Co[O, T] supports the conditional 
Wiener measure, with covariance 

i z(s)z(t) d}lO,O:O,T(Z) = (21TT)-1/2s(1 - tiT), 
C.,[O,T) 

O..;;s < t..;; T, with mean zero S Co[O,T )z(s) d}lO,O;O,T(Z) = 0, 
O..;;s..;; T. For the associated probability measure }lO-:O;~,T 
(Co[O,T] j d}lO,O;O,T(Z) = (21TT)1/2 d}lO,O;O,T(Z), we use the 
notation 

(21TT) 1/2i F(z) d}lO,O;O,T(Z) = lE;{F(z)J, 
CoIO,T) 

for suitable functionals F, Abusing notation, for measurable 
sets A, we shall sometimes write 

lE;{XA(Z)J = lE;{A j, 

where X A is the characteristic function of the set A, 
C ~ [0, T] is the reproducing kernel Sobolev space associat­
ed with Co[O, T]; ZEC ~ [0, T], if z is absolutely continuous 
with derivative i(·) in L 2[0, T], S6li(l')] 2dl' < 00, 

Weare now ready to state our basic theorem, This theo­
rem deals with the case in which the functional integrand has 
two global maxima but the method of proof easily extends to 
the situation in which there are a finite number of such 
maxima, 
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Theorem 1: Let F(z) be a real-valued continuous func­
tional defined on Co[O, T] and suppose that the functional 
IF(z) - 2- IS6[i(r)f drl has exactly two distinct global 
maximaxI,x2EC~[0, T], with IF(x;) - 2- IS6[xi (rW drl 
= b, for i = 1,2. If F satisfies conditions 1-6 below, then 

exp{ -M -2IlE;{exp{A -2F(AzJl} 

=Fo +AF I +A 2F2 + ... +A m- 3F m _ 3 + O(A m-2), 

as A->O, where the Fj are functional integrals depending 
only on the functional F and its Frechet derivatives evaluat­
ed at XI and x 2• 

(I) F (z) is measurable. 
(2) F(z)«b + Ld + L211z112, #o.o;o,r almost everywhere, 

LI and L2 being positive numbers, with 
L2 < mini y12T, l/4T j, y being the constant in 
Lemma 6. 

(3) F(z) is continuous for 
IlzlI<maxl(L I + W12IIL2 - l/2T I 1IZ, 

[2T(LI + l)lyr /2 1 and upper semicontinuous on 
Co[O, T]. We do not preclude the possibility that, for 
somezo,F(zo) = - 00, butthenF(z)---+- - 00 asz---+-zo. 

(4)F(z) hasm>3 continuous Frechet derivatives in a ball 
of radius 8, 8> 0, centered at x I and X 2 in Co[O, T]. 
We further assume that DiF(xi + 17)zi = O(llzW), if 
111711 < 8, for i = 1, 2. 

(5) For some E> 0, for 111711 <8, lE;( exp{(l + E)D 2F(Xi 
+ 17)z2 12 J } is uniformly bounded for i = I, 2. 

(6) xl (·) and x2H are of bounded variation on [0, TJ. 

We need only prove the above result for b = 0. The 
result for b ;60 follows easily by considering the functional 
IF (z) - b I. We defer the actual proof until Sec. 3 of this 
paper. This proof is virtually the same as the proof we gave in 
our earlier treatment, save for the fact that we now have to 
divide up the function space into two disjoint pieces contain­
ing X I and X 2 and treat these separately. The burden of the 
proof is to show that it is possible to do this in a manner 
consistent with the earlier treatment. 

In our earlier treatment, after Simon, we obtained two 
of our crucial estimates (Lemmas 5 and 7) by simply exploit­
ing the Gaussian nature of the conditional Wiener integral 
and the underlying idea in the proof of Kolmogorov's 
lemma. In this paper, following a suggestion of Baxendale,? 
we present proofs of improved estimates for the conditional 
Wiener integral (e.g., Lemma 6 gives the best possible value 
for y, y = 2) by making use of the reflection principle for 
Brownian motion. This gives a simple proof of our basic 
estimate and, incidentally, a nice application of the strict 
Markov property of the Wiener process. Other proofs of this 
best possible estimate are available, but our results here do 
not merit these more abstract treatments. The improved esti­
mates can be used to extend our results on the Mehler kernel 
formula, as we will discuss in a later paper. 

We begin in the next section by establishing our applica­
tion to the Bender-Wu formula for the x 2N-anharmonic os­
cillator. Our main result in this direction is contained in 
Theorem 2. For the statement of this theorem, let N>2 and 
letp>O,H( P) = [2- 1

( - d 21dx2 + x2) + PX2N ] betheself­
adjoint anharmonic oscillator Hamiltonian defined on some 
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suitable domain in L 2(lR), with eigenfunctions tPn and corre­
sponding eigenvalues En ( P ), arranged in order of increasing 
magnitude, n = 0,1,2, .... Then we shall prove: 

Theorem 2: Define the functionsgn(T), for n = 0,1,2, ... 
by 

g(T,P) = f e- TEnIP1ItPn(OW 
n=O 

00 

= L gn(T)/3n, (P>O). 
n=O 

Then, as n---+- 00 , 

[
( - l)"n!gn(T) ] lin _ alTI 

---+- e , 
nNn 

where, as T ---+- 00, 

a(T)---+-N + (N - 1)ln{21IN-IF2(N I(N - 1))/ 

(N - I)F(2N I(N - I))}. 

This result, which is formally consistent with the nu­
merical Bender-Wu formula, is the analog for the x2N_an_ 
harmonic oscillator of Simon's Theorem 18.3, which gives 
the large order behavior of {l:.: = oe - TEnlP1I for the x4-an­
harmonic oscillator. As will be seen below and in the next 
section our results actually yield more detailed information. 
This leads to a slightly different result from the numerical 
Bender-Wu formula as we now explain. 

The connection with the Bender-Wu formula comes 
about by observing that 

00 

Eo(P) = L Enpn = lim - T-1lng(T,p), (0) 
n=O T-oo 

since ItPo(OW;60. 
After previous authors, formally commuting the T and 

n limits, gives for the leading term En---+-limT~oo 
{ - T -lfgo(T)] -Ilimn~oo gn (Tn, asn---+-oo. Using the actual 
result established in this paper, 

gn(T)---+-y(T) nPITI:~naITI nNn( _ 1)"(1 + O(~)). 

and Stirling's formula yields, as n_ 00, 

En---+-[n(N - 1)1!{ - +[F(2N I(N - 1))/ 

F2(N I(N - I)) lim - n . (1) ]
N-I}n {T-1Y(T) PITI-I} 

T~oo 2rrgo(T)(N - 1)1/2 

Our method (in contradistinction to previous treatments) 
gives rigorously explicit values for the above y( T) and f3 (T) 
[as well as a(T)] and enables all higher-order terms to be 
computed. These results lead toP(T)=O. To obtain exact 
agreement with the numerical Bender-Wu formula would 
requirep (T)-~. Thus, although the method does lead to the 
correct rapidly varying factors, as given by the first two 
terms, the relatively slowly varying third term does not 
agree. Hence, the Tand n limits only seem to be interchange­
able for limn_ oo E !/n, En being defined by Eq. (0). This then is 
the extent to which the limits commute. We discuss this 
further in the Conclusion. 
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2. THE PROOF OF THEOREM 2 

We begin with a proposition which may be of some in­
dependent interest. We fix the integer N~2 in what follows. 

Proposition1:For/3>0,letH(/3) = 2- 1
( - d 2/dx2 + x2

) 

+ /3x2N be the quantum mechanical Hamiltonian for the X 2N 

-anharmonic oscillator. Then, on a suitable domain inL 2(K), 
H ( /3 ) is self-adjoint, with a discrete spectrum (Eo( /3 ), E I ( /3 ), 
E2(/3),"} , O<Eo(/3) <EI(/3) < "', with corresponding non­
degenerate orthonormal eigenfunctions (t/Jo, t/JI"")' 
t/JjEC ""(R) and SUPxeR It/Jj(x)1 < 00, eachj. Moreover, defining 
G(x,y, T)by 

G(x,y, T) = J d,uX,O;.v,T(Z)exp{ - 2- l i
Tr

(S) ds 

-/3 iT rN(S)ds}, T>O, 

,ux,O;.v,T being the conditional Wiener measure, 

G (x, y, T) = f e - En( P)T t/J ~(x)t/Jn (y), x, yeR 
n=O 

pointwise. 
Proof See the Appendix. 0 
The above proposition leads easily to the desired func­

tional integral representation for g n (T). Setting x = y = 0, 
G (0,0, T) = g(T, /3) = :I.: = ogn (T)/3 n, and so we obtain 

(- Wgn(T)n! = Jd Z {iT [~]2N }n Nn J,tO,O;O,T( ) 1/2 ds 
non 

xexp{ - 2- ll T 
r(S)ds}. 

Equivalently 

( - lIng (T)n' 
N

n 
• = (21TTj-I/2E:-{exp(nF(n- l /2z))), 

n n 

where 

F(z) = - 2- l i
T 

r(s) ds + In[iT rN(s) dS], z;i:O, 

and F (0) = - 00. Hence, to apply Theorem 1 we must prove 
that 

G(z) = {2- li
T 

Pis) ds + 2- llT
r(s) ds -lni

T 
rN(s) dS} 

has exactly two global minima in C ~ [0, T]. This we now 
establish. 

Lemma 1: The functional G (z) = 2- IS6"i2(s) ds + 2- IS6" 
Z2(S) ds -lnS6"rN(s) ds (N)2) attains its global minimum 
afT) at at least one pathXEC~ [0, T]; X satisfies the "Euler 
Lagrange" equation 

- X(t) +X(t) - 2NX 2N - 1(t)l iT X2N(S) ds = 0, tE[O, T]. 

Proof: The proof is only a slight extension of well­
known results in the direct methods of the calculus of vari­
ations. 8 Firstly the existence of the minimizing sequence fol­
lows from the inequalities 
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iT r N (s) ds< IIzl/2N - 2 iT r(s) ds, 

IIzil = If its) dsl <T 1
/
2{i

T 
Pis) dS} 112, some tE[O, T], 

where II II denotes sup-norm. We can now see that, for N> 2, 

G(z»4-1 ( Pis) ds + {"zI/2 - (2N - 2)lnl/zll Jo 4T 

+ 2- li
T 

r(s) ds -In iTr(S) dS}>4-liTp(S) ds + c, 

for some constant c. Hence, 3 a minimizing sequence (zn I 
withlimn_ oo G(zn) = arT). Without loss we can assume that 
G (ZI»G (zn)' n = 2, 3, .. · and so by the Cauchy-Schwarz 
inequality 

IZn(s)-zn(t)1 = If~; (T)dTI<ls-tl l /22[G(ZI)-C]I/2, 

s, tE[O, TJ. 

Thus (zn J is a family of uniformly bounded equicontinuous 
functions, which by Ascoli's theorem9 has a subsequence 
uniformly convergent to someXEC~[O, T]. The lower 
semicontinuity of G now guarantees that G (X) = afT). The 
result that X satisfies the above equation follows because X 
must be a local minimum as well as a global minimum. 0 

We now scale according to X = k Y, where k is given by 
k 2N - 2 = S6"X2N (s) ds. Then Y satisfies the "instanton" 
equation 

- Y(t) + Y(t) - 2Ny2N - 1(t) = 0, Y(O) = Y(T) = 0, 

(2) 

k 2 = [S6"y2N (s) ds] -I. Also, multiplying the last equation 
by Y(t) and integrating by parts leads to 

from which it follows that 

G(X) =N + (N - 1)ln{lT Y 2N(S)dS}, 

where X = kY, Y satisfying Eq. (2). 

As expected Eq. (2) governs classical motion in the po­
tential V(y) = - 2- ly + y2N, leading to the usual "instan­
ton" interpretation of Y. The potential V has turning points 
at y = 0, or y = ± (2N) - 1I(2N - 2), V having a double-well 
shape. Ea~h instanton solution has a constant energy 
E = 2-I(y2(S) - y2(S)) + y 2N(s).Fortheinstantontosatisfy 
Y(O) = Y(T) = 0, the corresponding energy E>O. Hence the 
solution Y is periodic, oscillating between the extremes 
± Yt(E), YI(E) being a positive solution of 

E = - 2 -ly2 + rN. Trivially Yl(E »2 - 112N - 2 

> (2N)-1I2N-2, N> I, and so, for E>O, aE/aYI = - YI 
+ 2NyiN- 1>0. ForYI = YI(E),E>O, the periodic timet(YI) 
is given by 
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t (ytl = 2V2 (YI - y) - - + dy 1:1" {2 2 ( 1 yiN - y2N)} - 112 
o 2 yi-y2 

_{1T/2 
= 2V2Jo {- ! + yiN - 2 sec20 (1 - sin2NO)J -1/2 dO, 

where we have sety = ylsin O. 
It follows easily from above expression that, for N> 1, 

at (y 1)1 ay I < 0 and t (y I) is a monotonic decreasing function of 
YI' Hence, fixing the periodic time T', say, uniquely fixes a 
corresponding positive value of the energy E = E (T'), with 
E(T')/oo as T''\"O. 

To summarize then: The solutions YofEq. (2) can be 
labeled in 1-1 fashion by their periodic times T', which give 
rise to corresponding energies E = E (T ');;;00. Clearly, to sat­
isfy the boundary condition Y(O) = Y(T) = 0 we must de­
mand that T' = Tin, or T' = T I(m + !); n = 1,2, ... , 
m = 0,1,2, ... , to within a sign, Y consisting of nor (m + !) 
cycles of the periodic orbit starting from O. At least one solu­
tion Y must give the global minimizer X of G. 

Hence, according to the above identity for G, minimiz­
ing G (z) over C ~ [0, T] is equivalent to minimizing 
{nS[T In], (m -I- !)S[T I(m + !)]In = 1,2, ... , 
m = 0,1,2, ... J = (2-lnS[2T In]ln = 1,2, ... J, where 

S[T'] =2v1f'y2N[E(T')- V(y)]- 1/2 dy, (3) 

V(y) = - 2-ly2 + y2N andE(T') = V(yI).Itiseasytoprove 
that S [T'] as defined above is a continuous function of 
T'E(O,oo) with 

S[oo] = lim S [T'] 
1"~oo 

= 222 -NIN-11i
l 
x2N - I(1 _X2N - 2)-1I2 dx. 

Here the last identity follows by observing that, as T' -+ 00 , 
YI-+2 - 112N - 2 and by changing integration variables using 
y = 2 -112N-2 sin 0 = 2 -112N-2X. We now need an ele­

mentary lemma. 
Lemma 2: Let S [T'] be a continuous function, for 

T'E(O,oo), with S [T']-+S [00] as T'-+oo. Then, if 
S[T'] > 2- IS[00] >0, for T'E(O,oo). we can deduce that, for 
all sufficiently large T. 

n ~!.~ .... {2-
l
ns [2;]} = 2- IS [2T]. 

Proof For each To, consider the sequence (nS [T oIn] J. 
Then, since nS [T oIn]-+oo, as n-+oo. 3 a finite integer n(To) 
such that 

n( To)S [--IL] = min Ins [Z] }. 
n(To) n = 1.2 ... · n 

Either for all sufficiently large To, n( To) = 1. or 3 a sequence 
(Tr J. Tr-+oo. as r-+oo. with n(Tr);;;o2. In the first case there 
is nothing further to prove. In the second case either 
Trln(Tr ) <K. for some finiteK, for all r, or 3 a subsequence 
{Tr/n(Tr,} J, with Tr/n(Tr,l-oo as s-+oo. where in both 
casesS [TJn(Tr )] - n(Tr)-IS [Tr] <0. n(Tr );;;o2. In the 
first subcase, letting r-+ 00, we see that inft<KS [t ] 
<2 -IS ( 00 ), which is not so. In the second subcase, letting 
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s-+oo, gives S [00 ]<2- IS [00], which is not so, since 
S[oo] >0. 0 

Lemma 3: Let S [T'] be defined as in Eq, (3). Then, for 
each integer N;;;o2, S[T'] > 2- IS[00], T'E(O,oo). 

Proof Arguing as above, 

S [T'] = 23 /211T12 yiN sin2NO { _! + yiN - 2 

Xsec20(1-sin2NO)J-1/2dO. 

Using the obvious inequality, for 0<O<1T/2, 

sec20 (1 - sin2NO) = 1 + sin20 + ... + sin2N - 20<N, 

we obtain 

S [T'];;;023/2yiN{ -! + NyiN- 2J - 1121
1T12 

sin2NOdO, 

wherebyinspectionYI;;;o2 - 112N- 2,E;;;oO. A simplecomputa­
tion now shows that 

min [YiN{ -! + NyiN- 2J -1/2] 
y.>2 -1/2N--2 

= 2 -IN + 1)112N - 21(N _ 1)-112, 

the minimum being attained at YI = 2 - 112N - 2. Hence, we 
have shown that 

S[T'];;;02- IIN - I(N-l)-1/2 (2N-1)!!1T, 
2NN! 

where we have used the well-known result f;/2sin2NO dO 
= (2N - 1)!!1T/2N + IN!, (2N - I)!! = (2N - 1)(2N - 3) ... 1. 
Integrating by parts 

S[oo] = 222 - N/IN-111IX2N- 1(1 _ X2N - 2)-1/2 dx 

=222-N/IN-II(N_1)-lf(I-X2N-2)1/22xdX. 

Observing that the final integral is a monotonic increasing 
function of N, we see that 

S [00] <222 -N/IN-II(N _1)-1. 

Comparing the last inequality with the inequality for S [T'] 
we see that all we must prove is that 

1T;;;o2NN!(N - 1)-1/2[(2N - I)!!] -I, 

for each integer N;;;o2, But denoting by In' In = f;12sinnO dO, 
as is well known 

I2N = (2N - 1 )!!17l2N + W! 

and 

I 2N + I = 2NN!/(2N + I)!! 
and since 

I2N >I2N+ I' 1T1/2> 2NN![(2N - I)!!] -l(N + !)-1/2. 

The final result now follows from the simple observation 
that, for N;;;02, 1T1/2 > (N + !)1/2(N - 1)-1/2. 0 

The last two lemmas lead to the corollary. 
Corollary: For each fixed integer N;;;o2, for sufficiently 

large T, F(z) = - 2- lf6'[i(s)]2 ds - 2- lf6'r(s) ds 
+ InU6'rN(s) dsJ, achieves its global maximum ( - a(T)) at 

exactly two paths X in C ~ [0, T], X (s) 
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= ± Yo(s)[f6y~N(t)dt ] -1/2, se[O,T], where Yo(s) is the 
unique instanton solution of tis) = Y(s) - 2Ny2N - I(S), 
se[O,T], with Y(O) = Y(T) = 0, withtimeperiod2T,andcor­
responding energy E (2T»0. In addition 

a(T)-N (N _ l)ln{ 2
11N

-
I
r

2
(N I(N - I))} 

+ (N - 1)r(2N I(N - 1)) , 

as T-+oo. 
Proof From the above we see that 

a(T)-+N + (N - l)ln{2-IS[oo]), where 

S [00] = 222 - N/(N- I)(N - l)-lf(l - X2N-2)1/22x dx. 

The proof is completed by the following identity, which is a 
simple exercise on rand B functions using the duplication 
formula, 

t(1_x2N-2)1/22xdx = (N _ l)-IB(2., _1_) 
Jo 2 N-1 

= 221N - I r2(N I(N - 1)) . 
r(2N I(N - 1)) 

o 

It is a routine exercise now to check the conditions 1-6 in 
Theorem 1 for the functional F defined above F: C ~ [0, T] 
-+R. In this connection notice in particular how easy it is to 
establish condition (1) because II II here refers to the sup­
norm and not the L 2-norm. Finally, recall that 
H = C ~ [0, T] is a reproducing kernel Sobolev space when 
equipped with the inner product 

(g, h ) = iT g(s)h (s) ds, 

g, heH. We require a last lemma to complete the proof. 
Lemma 4: The functional F: H = C ~ [0, T] -+R has a 

trace-class second Frechet derivative at X, L = D 2 F (X) 
eL (H, H), X = ± Yo [f6y~N(t )dt ] -1/2 being either global 
minimizer of F. If det denotes the Fredholm determinant 
defined with respect to H, 

det[l +L] = -47TE ~~ (N-1), 

where E is the energy of Yo, and (with above conditions) 

i
~I(E) dy 

T(E) = Y2 0 [E _ V(y)] 1/2 . 

Proof A straightforward calculation yields 

(h, [ - :s: +D
2
F(X)]h t, = (h, (1 +L)h), 

where LeL (H, H) is defined by L = (Lo + 4N 2] -17T), 

] = f6X2N(s) ds, 

d 2 

- d~ (Loh )(s) = h (s) - 2N(2N - l)I-IX2N-2(s)h (s), 

and 

d2 (T 
- d~ (7Th )(s) = X 2N - I(S)Jo X 2N - I(t)h (t) dt. 

The above Lo can be expressed as the product of two Hilbert­
Schmidt operators in exactly the same way as in Corollary 2 
of Sec. 3 of Ref. 1a. Hence Lo is trace-class. We now show 
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that (1 + Lo): H-+H is a bijection, i.e., (1 + Lo)v = O=>v 
=0eH. 

To see this from above observe that v must satisfy 

vis) = vis) - 2N (2N - 1)] - I X 2N - 2(S)U(S), 

with v(O) = v(T) = O. In terms ofthe scaled variable Yo, v 
satisfies 

vis) = vis) - 2N(2N - l)y~N-2(s)u(s), (4) 

with v(O) = v(T) = O. However, Yo satisfies the instanton 
equation 

to(s) = Yo(s) - 2Ny~N - I(S), 

with YolO) = Yo(T) = O. The Jacobi fields along Yo give rise 
to the two linearly independent solutions of Eq. (4). Let Po 
denote the initial momentum of the instanton solution Yo' 
Then the Jacobi field Vo = ay oIapo spans the solution space 
ofEq. (4) with vo(O) = O. We now show that vo(T):;60, N>2. 

To see this lety(S, Po, s) be the solution ofthe instanton 
equation, Eq. (2), withy(s, Po, 0) = S,y(S,po, 0) =Po' Ifpo is 
chosen so thatp~ = 2E, Ebeing the instanton energy, 
Yo(s) = y(O, Po, s) and vo(s) = (ay I apo)(O, Po, s) Ipo = y'2E satis­
fies Eq. (4) with vo(O) =0, vo(O) = I, the remaining Jacobi 
field uo(s) = (ayl as )(0, Po, s) Ipo = y'2E satisfying Eq. (4), with 
uo(O) = 1, tio(O) = O. By definition of T(E) = T(po), 

y(O,Po, T(Po)) = O. 

Partially differentiating with respect to Po yields 
volT) =Po aT lapo:;60(N:;6 1). Hence, (1 + Lo):H-+Hisabi­
jection. Arguing as in Ref. lOwe actually obtain, for N :;6 I, 

aT aT 
det(l + Lo) = 27TPo - = 47rE -:;60, (5) 

apo aE 
confirming that (1 + Lo) is a bijection. 

We now tum our attention to 7T. By definition of 7T, for g, 
heH, 

(g,7Th ) = (g, (7Th)) = - (g, (7Th )) 
L2 L2 

= (g,X2N-I)L,(X2N-I, h )L' = (g, W)(W, h), 

the last step following by definition of W, W: = X 2N - I, 
WeH. Thus 7T is just a multiple of a projection in H. 

Since we know that (1 + L) = (1 + Lo)[1 + 4N2]-2 
X (1 + Lo) -17T], we can now deduce that 

det(l +L) 

= det(l + Lo)[l + 4N 2] -2( W,(1 + L O)-I7TW) (W, W) -I]. 

It only remains to calculate Z = (1 + Lo) -I WeH. Using 
W = (1 + Lo)Z gives W = i + (L ~Z), i.e., 

X 2N - I = i - Z + 2N(N - 1)I-IX2N - 2Z, 

where X = X - 2N] -IX 2N - 1
• Trying Z = kX gives the 

(unique) solution for k =] 12N(2N - 2), N>2. The final ex­
pression for det(l + L) follows by combining Eq. (5), the 
definition of 7T and the last expression for 
Z=(l + LO)-IW. 0 

We can summarize the above: let 

f e - TE.unl tPn (OW = f gn (T)/3 n, 
n=O n=O 

En ( f3 ), 4> n being the eigenvalues and eigenfunctions of 
H(P) = 2- 1( - d 21dx2 + x 2

) +PX2N,p> 0, then,asn-+oo, 
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gn(T)-+r(T)e-na(T)n~n (_l)n[l +o(~)] (N)2), 

where y(T) = 2[det(1 +L )]-1/2 = (-1TE aT laE)-1/2 
x (N - 1)1/2, Ebeing the instanton energy, the instanton Yo 
having time period 2T. Finally, we recall that 

a(T)-+N + (N - 1)ln{2
11N

-
1
r 2(N ~ J/ 

(N - 1)r(N2~ I)} 
as T-+oo. 

This completes the proof of Theorem 2. 

3. PRELIMINARY LEMMAS AND THE PROOF OF 
THEOREM 1 

A. Preliminary lemmas 

The proof which we give here is a simple extension of 
the proof which we gave in Ref. 1a. For Wiener integrals the 
basic argument was first elucidated by Schilder in Ref. 1 b. 
We shall frequently refer to these papers in what follows. 
Following a suggestion of Baxendale we first use the reflec­
tion principle to establish some improved estimates. The cor­
responding estimates in our earlier treatment were estab­
lished by using the underlying idea in Kolmogorov's lemma. 
The treatment below seems more transparent. Since the re­
flection principle is not well known to physicists we include a 
brief account of it below. 11 

Lemma 5: Let xIs) be Brownian motion starting at 0. Let 
r(a) be the first hitting time of a, i.e., 
r(a) = inf! s > Olx(s) = a J. Let B be any Borel subset of 
( - 00 ,0). Then, if 71'0 denotes expectation with respect to 
Wiener measure dJ.L W(x), 

7ro!x(t )E(a + B), rIa) <t J = 7ro!x(t )E(a - B), rIa) < t J. 

Remark: There is a simple geometrical interpretation of 
the reflection principle: to every Brownian path x(.) with 
rIa) < t arriving in the set (a + B) at time t there is an equally 
likely reflected Brownian path r(a)x(.), reflected in the line 
x = a for times s > r(a), arriving in the set (a - B ) at time t 
(see Fig. 1). 

XI 

(a-8) 
a ~------------~~~~r-

(a+8) 

0+-------+----1-------5 
o "t(a)x t 

FIG. 1. The reflection principle. 
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Proof Letf = X (a + B ) be the characteristic function of 
the set (a + B ). For each a > 0, 

100 

e- at7ro[X(t)E(a +B), r(a)<t) dt 

= 7ro[L:) e - a1(x(t)) dt ] 

= 71'0 [ e - mj a)1°O e - ay(x(s + rIa))) dS]' 

For the stopping time r(a), letB1ja) + be defined as on p. 67 of 
Simon.5a Taking conditional expectations 7roHB1ja) + ), us­
ing the fact that e - mja) is B1ja) + measurable, gives 

rhs = 71'0 [ e - a1ja) 7ro(iOO e - ay(x(s + r(a))) dsIB1ja) + )]. 

Using the strict Markov property of Dynkin-Hunt, 12 we see 
that 

rhs = 71'0 [ e - a1ja)i
oo 

e - aS7ra [f(x(s))) dS], 

7ra being the expectation with respect to dJ.L W(a + x). 
Hence settingF (s)-s e-la-b)2I2s(21TS)-1/2db , B - be(a+B) 
gives, for a > 0, 

100 

e - at 71'0 [x(t )E(a + B), rIa) < t ) dt 

= 71'0 [ e-a1ja)1°Oe-aSFB(S) dS] 

= 71'0 [ e - a1ja)1°O e - aSF _ B(S) dS] 

= 100 

e - at 71'0 [x(t )E(a - B), r(a) < t ) dt, 

proving the result. 0 
To obtain the usual form of Andre's reflection princi­

ple, set B = ( - 00 ,0) in above to give 

7ro[x(t»alr(a)<t) =2- 1. 

By continuity of sample paths then observe 

7ro[x(t»a) = 7ro[x(t»a,r(a)<t) 

= 71'0 [ rIa) <f) 71'0 [x(t ) > alr(a) < t ) 
=r I 7ro[r(a)<t). 

We now come to one of our basic estimates. 
Lemma 6: For some fixed constants C, y> ° 
E;{llzll>a'J <Cexp{ -ya'2ITJ. 

The best possible value of y is 2. 
Proof SetB = (- a +A), whereAC( - 00, a), some 

a > 0, in above lemma. We obtain 

71'0 [X(T)EA, r(a)<T) 

= 7ro[X(T)E(2a - A), r(a) < T] 

= 71'0 [X(T)E(2a -A)), 

since x( T )E(2a - A ):::::}T(a) < T by continuity of sample 
paths. Hence, we have shown that 

7ro!r(a)<Tlx(T)EA J 

= r (21TT)-1/2e-b2/2Tdb/f. e-b2/2T(21TT)-tl2db. 
)(2a - A) .A 
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Choosing A = ( - 0, 0 ) and letting 0-+0 gives for the condi­
tional Wiener process z 

lE;{max z(s) > a} = e - 2a'IT. 
s<.T 

Finally then 

e- 2a'IT <lE;{max Iz(s) I >a} <lE;{maxz(s»a} 
s<.T s<.T 

+ lE;{max - z(s) > a} = 2e - 2a'IT, 
s<.T 

which proves the lemma. 0 

Let z"(-) denote the polygonalization of the sample 
pathz. 

z"(s) = zf,j + (s - j,j[z(U: 1)0 -zf,j] ~ , 
T (.+ I)T L <s< =J-,--,---
n n 

forj = 0,1,2, ... ,(n - 1). Then the following lemma is a trivial 
consequence of the triangle inequality. 

Lemma 7 (Schilder): If 

[
'T sup ('+I)TI ('jl] max L < s < J z(s) - z L 

0<;<." - Inn n 

o 
<-

2 ' 

then liz - z"(-)II < o. 
Proof See Lemma 6 in Ref. lb. 0 

We also need the basic estimate: 
Lemma 8: 

lE;! liz -z"'(.)II>o'J < ~0'-I(mT)I/2exp{ _ mO'2}. 
(21T) 8T sup 

Proof Unless otherwise stated s denotes sup 
SE[j~ , U : 1)1 in what follows and initially j can vary 

so thatj = 1,2, ... ,(m - 2). Then 

~0{7(x(s) -xfE)) >b,x(T)E( - 0, D)} 

= f ~0{7(X(S)-xfE))>b'X(U:l)0Eda, 
X(T)E( - 0, O)}. 

Let 

and observe that AjEB(j + I)T 1m' BT being the (T-field generat­
ed by ! xIs) Is< l' J. Then, taking conditional expectations 
~o('IB(j+ I)TI"')' we obtain 

rhs= f ~O{XAj ~X((j+I)Tlm){X[T- U:l)~}(_O'O)}} 

= f ~or;p(X(S) -XfE))>b, 

x((j :1)1Eda}~a {x[ T - U :1)T]E( - 0, O)}. 
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Repeating the above argument for the random variable 
xUT 1m), we obtain 

~or;p(X(S) - xfE)) > b, x(U: 1)1Eda } 

= f ~o{ ~o{xfE)Ede:;P(x(S) -xfE))>b, 

x(U :1)1-xfE)Ed(a - e) I BjTlm }} 

= f ~o{xfE)Ede}~or;P(X(S)-xfE))>b, 
x(U: 1)1- xfE)Ed (a - e) I BjTlm }. 

Using the Markov property 

f . (21T1T) - 1/2 rhs = de e - me'/2jT -;;-

x ~o{ sup xIs) > b, x(:i)Ed (a - e)} 
O<.s<.Tlm m 

and using the reflection principle 

= f de e - me'/2jT( 2~T) - 1/2 {O (a _ e _ b)e - m(a - c)'/2T 

+ O(b - a + e)e- m(2b-a+C)'/2TJ(2:T) - 1/2 da, 

where 0 is the Heaviside function. 
This gives forj = 1,2, ... ,(m - 2) 

= f f de da e - mc'/2jT( 2~T) -1/2 

X! e- m(a -c)'/2TO(a - c - b) 

+ e - m(2b - a + c)'/2TO (b - a + ell 

x(21TT)-1I2e - ma'/2(m- j_I)T( ~ )112. 
m m-J-l 

Using the inequality r e - A. '/210 dA < (talb )e - b '/210 , 

Jhb 
then yields forj = 1,2, ... ,(m - 2) 

4TI/2 1 -mb'/2T <--- e (21T)1/2 b (m _ j _ 1)1/2 . 

Similarly, it can be shown that the above inequality is valid 
forj = 0 and, settingj = 0 in rhs forj = (m - 1). Now let 

From above 
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{

m-I } 16T1I2 m-I 1 
ET U Qm < e- mb '/8T '" _ 

Z j=O J b(217")1/2 /:'1//2 

32 (mT)1/2 _ mb'/8T 
< (217")1/2 be, 

the last step following by adding the inequalities 
r 112 < S{j _ l)x- 1/2 dx, for j = 2, ... ,(m - 1). But, if 

m-I 

XE. U Qj, SUPjTlm<s<U+ I)Tlm Iz(s) - z(jT Im)1 < ~b, for 
J=O 

j = 0,1,2, ... ,(m - 1), and so by the last lemma liz - ~(')II <b 
and so 

ET{llz-~(')II>b J < ~ (mT)1/2 e- mb '/8T. 0 
Z (217")1/2 b 

Lemma9:Fork,lER,E;{exp{k IIz112 + lllzil J J < oo,for 
k < ylT, y being as given in Lemma 6. 

Proof See the proof of Lemma 9 in Ref. 1 b. 0 
As has already been stated, for each ZECo[O, T], znH den-

0tes its polygonalization. 

~(s) = zf;) + (s - j;) [z( n;r) 
-zf;)]~ , n 

j = 0,1 ,2, ... ,(n - 1). We write the associated vector zn, where 
zn = (z(T In), z(2T In), ... ,z(T)) and in the following IIzn ll 
= SUPj = 1,2 •...• n Izj I, zj being the components of ~. The next 

four lemmas are due to Schilder. I 
Lemma 10 (Schilder): Let An be the following (n Xn) 

tridiagonal matrix 

2 - 1 0 0 

-1 2 -1 0 

niT 
o - 1 2 - 1 

o -I 2-1 

o 0-1 

Then, for sn an n-dimensional vector, snAnsn 
= ~j= I (nIT)(sj - sj_ I )2, s~ = 0, 

i
T [dsn ]2 ( 

o dr (r) dr = snAnsn<Jo [s'(r)]2 dr, 

s being any trajectory in C ~ [0, T] with polygonalization 
sn(.) and associated vector sn. 

Proof See the proof of Lemma 4 in Ref. lb. 0 
Lemma 11 (Schilder): IfzEC~[O, T] then, for r2> r l, 

T':~~T' [z(r) - z(r IW«r2 - rtlf' [z'(rW dr. 

Proof See the proof of Lemma 5 in Ref. 1 b. 0 
Recall that x I and X 2 are the global maxima and set 

SI = {zECo[O,T]lllzn(.) -x211>lIznH -xliiI. 
S2 = {zECo[O,T]III~(') -xdl > Ilzn(.) -x211 J,sothat,forsuf­
ficientiylargen,xIESI,x2ES2,andxs, + Xs, = l.xbeingthe 
characteristic function. We temporarily defer specifying n, 
although we shall assume in the following that n is so large 
thatxlESI andx2ES2. We refer to this as the condition • on n. 
LetA;c5 = {zES;llIz-x;II>8J,fori= 1,2, and let 
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A;(8) = sup {F(Z) - 2- li
T 

[i(rWdr}, 
zeA I6 0 

8> O. Then the following lemma is valid. 
Lemma 12: Suppose F (z) satisfies the conditions given 

in Theorem 1 then A;(8) < 0, for 8> 0, i = 1,2. 
Proof The proof is an easy generalization of Schilder's 

original Lemma 6 in Ref. 1 b. We only prove the result in the 
case i = 1. Suppose the result is not true; then there is a 
sequence {zm J CA;c5 such that 

!,i~ {F(Zm)-2- li
T 

[im(rWdr} =0. 

We show that under the above assumptions the sequence 
I Zm J has a subsequence I z! J, uniformly convergent to xT, 
in C~[O, T], xT¥=xl or x 2, and yetF(xT) - 2- ISniT(r!y 
dr>O. This is contrary to the hypothesis of Theorem 1. 

It can clearly be assumed that, for all m, 

- I<F(zm) - 2- li
T 

[im(rWdr. 

From the last lemma and the second condition on F (z) it 
follows that 

iT [im(r)]2dr<4(L I + I). 

From the last lemma again 

T'~~~T2Izm(r) -zm(rl)1 < [(r2 - rl)i
T 

[im(rWdrfl2 

<2[(r2 - rl)(L I + l)p/2. 

Therefore, the sequence IZm J is equicontinuous and bound­
ed. By Ascoli's theorem there exists XTEC ~ [0, T] and a sub­
sequence {z! J such that xT is the uniform limit of {z! J. 
Moreover XTEA.c5 entails xT ¥=x I or x 2. From the inequality 

- I<F(zm) - 2- li
T 

[im(rW dr 

and Conditions 2 and 3 onFit follows thatFis continuous at 
xT and F(xT)¥= - 00. Since S6[i(rj]2dTis lower semicontin­
uous, it follows that 

F(xT) - 2- li
T 

[iT(r!ydr 

>lim inf{F(Z!) - 2- liT 
[i!(r)JZ dr}>o. 0 

Lemma 13: Ifsn(·)ES; and Ilsn(.) - x7( lIl>wandw-p~ 
> 0, then F(sn(.)) - 2- lsnAnsn<A;(w - p~), wherep~ 

= Ilx; - x7(')II, x7(') being the polygonalization of the 
unique maximizing paths x; of{F(z) - 2- I S6[i(r)f drJ; for 
i = 1,2. 

Proof The prooffollows easily from the last lemma and 
the proof of Lemma 12 in Ref. I a. 0 

Lemma 14: LetAn be the matrix defined in Lemma 10. 
Then if wn is any vector in Rn, 

wnAnwn>T-lllwnI12, 

II II being the sup-norm. 
Proof See the proof of Lemma 13 in Ref. la. 0 

We now come to one of our most important lemmas, 
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which is based on Lemma 14 of Ref. la. 
Lemma 15: Let F satisfy the conditions in Theorem 1 

and let 0 > O. Then, for sufficiently small A, 

1(1,(,1, ) 

= E;{[ 1 - x(~ ,~ ,z) ]xs,(Az)exP!A -2F (AZ)J} 

= 0 (exp(a). -2)), 

for some a j <0, for i = 1,2. 
Proof Since xj(r) is continuous on [0, T] we have 

limn~"" !lx j - x7HII = 0 and from Lemma 10 we have 

lim x7Anx7< ([dX
j 

(r)]2 dr, 
n~"" Jo dr 

for i = 1,2. Therefore, both sequences !lIx7(')1I J and 
! x7A nx7 J are bounded for i = 1,2. Hence 3 a positive con­
stant c sufficiently large so that, for all n, 

L)/c + 2L211x7!1(T /C))/2 + L211x7 II l/c + (x7Anx7/c))/2 <~ 

and, simultaneously, 

-Aj(o)lc<i 

for i = 1,2. 

From the continuity assumptions on F we can find an 
1] <0/4 such that, for IIzll <a = [T(LI + 1)]1/2 and 
liz - yll <1], 

F(z) - F(y)<Dj 

= -2(~rAj(~)/TC>0, fori=I,2. 

Finally, we choose n so large that condition. holds, that 

LI - nr/116T < - 1 

and so large thatp~ = IIx j - x7HII <818, for i = 1,2. In 
what follows we keep these choices of n, 1], and c fixed. We 
only prove the result for 1(°(,1, ); the proof of the result for 
1(2)(,1, ) is similar. We observe that 
1(°(,1, ) = 12(,1, ) + 13(,1, ) + 14(,1, ), where 

12(,1, ) = E;{[ 1 - X( ~ , i ,z)][ 1 - H (1 ,n, z) ] 
XXs, (Az)expfA -2F (AZ)J}, 

13(A)=E;{[I-X(~ ,~),z)]H(1 ,n,z)x(~ ,o,z) 

XXs,(Az)exp{A -2F (AZ)J}, 

14(,1,) = E;{[ 1-x(~ ,i ,z)]H(1 ,n,z) 

[1 - X (~ ,0, z) ]xs, (Az)exp{A -2F(Az)j}, 

H(1]/A., n, z) is the characteristic function of the set 
{zeCo[O,T] liz -~HII<1]/A}. We show that 12(,1, ),13(A ),and 
14(,1,) are each o (exp{a)A -lJ), for some a) <O,just as in 
Lemma 14 of Ref. la. 

In 11(,1, ) [and 14(,1, )] we simply observe that X s, (AZ) < 1 
and [1 - X (0 lA, XI/A, z)]<1 [andH(1]/A, n, z)<I] so that 
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and 

14(,1, )<E;([ 1 - x(a/A, 0, z)]exp{A -IF(AZ)j). 

We can now argue in exactly the same way as we did in 
Lemma 14 of Ref. la. Using the Cauchy-Schwarz inequality 
and the improved estimates of Lemmas 6 and 8, together 
with the facts that here (L) - n1]2/16T) < - 1 and 
a = [T(LI + 1)P12, yields 12(,1, ) = o (exp( -A -1)) and 
14(,1, ) = 0 (exp( - A -1)). 

The tricky term is 13(,1, ). It is here that we require the 
presence of the X s, term. Repeating the argument of Lemma 
14 we obtain, using Lemmas 12 and 13 and the presence of 
the X s, term, 

13(,1, )<v - (n - ))exp(DIA -lIE; 

X! [1 - X((o - 1] - p~)A. -IV, 0, z)] J, 

where v = [- 2A 1(0 -1J - 2p!)Ic]l/2,p! = IIxl - x7HII. 
We now use Lemma 6 to deduce that, for an absolute con­
stant K, for sufficiently small A, 

E;P - X((o - 1] - p!)A. -IV, 0, z) J 

<Kexp{ -2(0-1]-p!)lv2/A 2T}. 

Finally then, since 1] < 0/4,p! <0/8, andA)(·) is a negative 
decreasing function, for K' an absolute constant, 

13(,1, ) 

<K'exp!A -l[DI + 4(0 -1] -p!)lAM -1] -p!)/Tc]} 

<K'exp{A -2[D) +4(0/2)2A)(8/2)/Tc]j 

=K'exp{A -202AI(8/2)/2Tc}. 

This completes the proof if we take a I = max ( - 1, 
8 2AI(0/2)/2TcJ. 0 

Lemma 16: If X j (.) is of bounded absolute variation on 
[O,T] and if f6 f(r}Y(rjdr - f6Xj(r) dy(r) = O,jeL 2[0,T], for 
allyeC~[O, T], then 

iT f(r}y(r) dr = iT xj(r) dy(r) 

for a.e. yeCo[O,T]; i = 1,2. 
Proof See the proof of Lemma 15 in Ref. la. 0 

B. Proof of Theorem 1 

Choose a 8> 0,0 < IIx) - x211/4, such that the hypoth­
eses on F hold. Then, following the argument given in Ref. 
la, 

E;{exp{A -IF(AZ)}} = hl(A) + h2(A), 

where 

h)(A) = E;{x(8/A, XI/A, z)Xs,(Az)exp[A -2F(z)j} 

+ E;{x(8/A, x2/A,z)Xs,(Az)exp[A -2F(z)j}, 

hl(A) = E;{[l- X(8/A,x/A,z)]Xs,(Az)exp[A -2F(Az)}} 

+ E;{[ 1 - X (0/,1" X2/ A, z)]Xs, (Az)exp[A -2F(k))}. 

From the penultimate lemma we deduce that h2(A ) 
= o (exp[aA -lj),a = max[a),a1} <Oandsoforanyinte­
ger m, h2(A) = 0(,1, m-l). 

We will now consider the first term in h) (A ). The neces­
sary results for the second term follow similarly. Let 
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h UA) = lE;{x(8/A, XI/A, Z)Xs,(Az)exp{A -2F(AZ)}}, 

then using a Cameron-Martin transformation we arrive at 

hUA)=exp{ -2- IA -2i
T 

[x;(r)]2 dr } 

XlE;{X(MA, O,Y)Xs,(AY +xd 

xexp{ -A -liT x;(r) dy(r) +A -2F(AY + Xd}}. 

From Taylor's theorem for functionals we may write 

F(Ay+xd 

= F(xd +ADF(xllY +A 2D 2F(xd(Y,y)l2 + k ~(AY) 

= 101(0) + A II (OlY + A :n (OlY2 + k ~ (AY), 

say, where Ik ~(AY)I = O(A 3) if IIAyl1 <8. Therefore, 

hl(A)=exp{ _2- IA -2i
T 

[x;(r)]2dr+A -2/d(0)} 

XE;{X(MA, O,Y)Xs,(AY +xl)J 

xexp{ -A -liT x;(r)dy(r)+A -1/(OlY} 

xexp{/21(OlY2 +A -2k ~(AY)J}. 
By hypothesis {F(z) - 2- ISJ"lz'(rWdrJ has a maximum of 0 
at X lover C t [0, T], so it and its first Frechet derivative are 
zero at X I. Thus, 

111(OlY - iT x; (r) dy(r) = 0 

for yEC ~ [0, T] and so, by the last lemma, 

h I(A) = lE;{X(8/A, 0, Z)Xs,(AY + xdJ 
X exp{1 21 (OlY2 + A -2k ~ (AY) J. 

The Taylor expansion of exp {x J reads 

n-I 
exp{xJ = L X

i/11 + Rn(x), 
i=O 

where 

R (x) {xn/n!exp{x J 
n < Ixln/n! 

We may now write h I (A) in the form 
m- 3 

h UA) = L (11)-IE;{x(8/A, 0, Z)XS,(AZ +xd 
;=0 

xexp{ 121(0)rj [A -2k ~(AZ)n +Jm _ 2(A) 

where, denoting the characteristic function of the set 
{zECo[O,T]lk ~(AZ»Oj by B I(A, z), 

IJm _ 2(A )I<((m - 2)!)-IE;{X(MA, 0, Z)IA -2k ~(Az)lm-2 
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XXs, (AZ + xdexp{ I i(O)r + A -2k ~ (AZ) IB I(A, z) j 
+ ((m - 2)!I-llE;{X(8IA, 0, zliA -2k l(Az)lm- 2 

XXS, (AZ + xl)exp{ 121(0)rj [1 - B I(A,z)] I. 
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From Taylor's theorem for functionals it follows that, if 
IIAyll < 8, then 

A 21 i(OlY2 + k ~ (AY) 

= k 1 (AY) = A 2/21(1JlY2; 

1JECo[O, T] with 111J11 <8, 

where by hypothesis Ik ~(Ay)I<C~ 311Y1I3, C3 being a con­
stant. Thus, 

IJm _ 2 (A )1 

<((m - 2)!)-llE;{X(MA, 0, z)(C~ t - 211z 11 3(m - 2) 

XXs, (AZ + xl)exp{ 121(1J)z2jB I(A, Z)j 

+ ((m - 2)!)-llE;{X(MA, O,Z)(C~ )m- 21IzI1 3(m-2) 

XXS, (AZ +xdexp{/21(0)z2! [1 - B I(A, z)] I. 

By using the Cauchy-Schwarz inequality and Condition 5 of 
Theorem 1 we have J m _ 2 (A ) = O(A m - 2). We have now 
proved that 

m- 3 

hl(A)= L (11)-llE;{X(MA,0,z) 
;=0 

usingxs, (AZ + Xd = I, if IIAzlI<8, for sufficiently large n. 
However, k ~ (AZ) = A 3 I 31(0~ 

+ ... + Am -1 ~ _ I (o)zm - I + k ~ (AZ), where A -2k! (AZ) 
= O(A n - 2I1zlln), for IIAZII <8; expanding by the binomial 
theorem, therefore, gives, using Condition 5 of Theorem 1 
and Holder's inequality, 

m- 3 

h I (A) = L (11)-llE;{X(MA, 0, z)exp{ 121(0)r}[AI31(0~ 
;=0 

+ ... + A m - y ~ _ I (o)zm - l]i! = O(A m - 2). 

It can be seen from the Holder inequality, Lemmas 6 and 9, 
and Condition 5 of Theorem I, that for sufficiently small A, 

m- 3 L (z1)- llE;{[I-X(MA,O,z)] 
;=0 

Xexp{/21(0)rj [AI31(0~ + ... 

+ Am - y ~ _ I (o)zm - I ]i! 

= O(P(A )exp{,8A -2}) = O(A m-2), 

where Pis a polynomial and,8 is a negative constant. Replac­
ingx by [1 - (1 - X I], we finally obtain 

m-3 
h I(A) = L (11)-llE;{exp{/21(0)z21 [AI31(0)z3 + ... 

;=0 

+ A m - y ~ _ I (o)zm - I ]i) + 0 (A m - 2), 

so that 

where the r : depend only on F and its Frechet derivatives at 
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XI' for i = 1,2, ... ,m - 3. 
Repeating the above argument for [h I (A ) - h 1 (A )] we 

may finally write 

as A-o, where the r j depend only on F and its Frechet 
derivatives evaluated at X I and x 2• 0 

Corollary: For A > 0 and F satisfying the hypotheses of 
Theorem 1, with D 2F (x d==D 2F(x2), 

E;{exp{A -2F(AZ) I } 
= 2lE;{ exp{ D 2F(x I)(Z, z)/21} + 0 (A ). 

Proof By observation. o 

4. CONCLUSION 

We have seen how Schilder's rigorous results on the 
Laplace expansions of Wiener integrals can be extended to 
conditional Wiener integrals with functional integrands 
having a finite number of nondegenerate global maxima. We 
have applied these results to the derivation of Bender-Wu 
type formulas for the large order behavior of the perturba­
tion series of the x 2N-anharmonic oscillator (N)2), in a 
scheme which (modulo the commutativity of two limits) 
leads to detailed information about the asymptotic behavior. 
The rapidly varying terms in this large order behavior agree 
exactly with Bender and Wu's remarkable formula. The 
slowly varying term, however, differs slightly from the pre­
dicted behavior of the Bender-Wu formula. (The problem 
here presumably is the noncommutativity of the two limits). 
Nevertheless, our results do give an analog of Simon's rigor­
ous results for the x 2N-anharmonic oscillator, for N>2. A 
Feynman graph analysis of higher order terms in the asymp­
totic expansion is possible. This is currently being attempted 
to compare with the formal Feynman graph analysis carried 
out with collective coordinate methods. Generalizations to 
field theory are also currently being investigated. 
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APPENDIX: THE PROOF OF PROPOSITION 1 

The self-adjointness and discreteness of the spectrum 
are well known. 13a

,b We now show by a standard argu­
mentSb that the eigenfunctions are not degenerate and 
bounded. We consider the eigenvalue equation 
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[2- 1
( - :X22 +X2) +PX

2N 
]U(X) 

= [- 2- 1 ~ + V(X)]U(X) = Eu(x), 
dx2 

Eeof.H ( p )],H ( P) = 2 -iI - d 2/ dx2 + x 2) + pX2N. Without 
loss we assume that u is real valued. Firstly, observe that if 
ueL 2(K) is a solution of above equation necessarily u' eL 2(K). 
To see this we multiply the above equation by u(x) and inte­
grate by parts from X = a to X = b, giving 

u(b )u'(b ) - u(a)u'(a) 

= f [U'(xW dX+2f [V(x)-E]u2(x)dx 

> [u'(xW dx - 2E u2(x) dx, u'(x) = ~x). i
b ib d 

a a ~ 

For ueL 2(R), letting b-oo, we see that the divergence of 
S: [u'(xW dx would imply that, for all sufficiently large b, 
(d / db )(2 -lu2(b )) > 0, contradicting the hypothesis that 
ueL 2(K), so u'eL 2(R). Now let u, veL 2(R) be two linearly in­
dependent solutions of the above eigenvalue equation, real 
valued and normalized so that W(u, v)(x) = u(x)v'(x) 
- u'(x)v(x) = 1. Then the Cauchy-Schwarz inequality 

shows that the divergence of S~ 00 W(u, v)(x)dx is not consis­
tent with the hypotheses u, v, u', v' eL 2(K). Hence at most one 
of u or veL 2(R). What is more the inequality 

lu2(b) - u2(0) I 

= 12 f u(x)u'(x) dx 1 <21IuI1 21Iu'lb 

proves that any L 2-eigenfunction satisfies SUpxER I u(x) I < 00. 

We denote orthonormal eigenfunctions and eigenvalues of 
H(P) by ifJn and En( P), n = 0,1,2, .... 

We now establish that G (O,O,T) 

= l::~oe - E.(P)T lifJn (OW; the more general result involving 
x's andy's follows in almost exactly the same way. For the 
Brownian bridge a 5a 

Evidently then, for T> 0, IG (x,y,T)1 «21TT)-1/2 andby 
dominated convergence, we see G (8x, 8y, T)-G (0,0, T), 
for each x,yeR, as 8-0. Let 8eY(R) be such that 8 (x»O 
with S8(x) dx = 1 and define 8c5 (x) = 8 -18(8 -IX), xeR, 
8c5 eY(R). Changing integration variables, using dominated 
convergence for Lebesque measure, for T> 0, gives 

f G(x,y, T)8c5 (x)8c5 (y)dxdy 

= f G (8x, 8y, T)8 (x)8 (y) dx dy 

-G (0, 0, T), as 8-0. 

The proof will therefore be completed if we prove that for 
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T>O 

j G(x,y, T)OIl(X)OIl (v) dx dy 

- f e-En(PITI<Pn(OW, as 8-+0, 
n=O 

<Pn being orthonormal eigenfunctions of H ( f3 ) with eigenval­
ues En ( f3). This we now prove by another application of the 
dominated convergence theorem. Let 8n be a Dirac measure 
concentrated atx = n, n = 0,1,2,3, .... Consider 

f.l = :!.:~oe- TEn(PI8n, for T>O. Then, since for T>O,f3>O, 
e - TH(PI<.e - TH(OI, e - TH(PI is trace-class and so f.l is a mea-

sure on .z (with 2z as q-field), with f z J(x)df.l(x) = :!.:~ 0 

J(n)e - TEn(PI, for bounded continuousf Z-+R. We now con­
sider the particular functionJ Il: Z-+R defined by J Il (x) 
= 1(<Pn' OIlW, when x = n, n = 0,1,2, .... 

Then, using the above inequality 

If Il(n) 1 <.1I<Pn II~ <.211<Pn 11211<p ~ II 2<' 2Y2E !/2( f3), 

where in the last step we are using 

1I<p ~ 112 = j <P ;(x) dX<.2En (f3). 

Define now g(.) by g(x) = 2V2E !12( f3), for x = n, 
n = 0,1,2, .... Then, since En- oo as n-oo implies E !/2 

< e',En
, for sufficiently large n, arbitrary E> 0, 

r g(x)df.l(x) = 2vL.f E !/2( f3)e - TEn(PI < 00, T> O. 
Jz ° 
ButJ Il(n)-I<pn (OW = JO(n), as 8-+0, n = 0,1,2, ... , since by 
dominated convergence (Oil' <Pn) = f<Pn(8x)O(x) dX-<Pn(O), 
as 8-+0. Hence by dominated convergence for the measure f.l 
on .z 

jJIl(X)df.l(X)-jJO(X)df.l(X) 

= f l<Pn(OWe-En(PIT, T>O 
n~O 

i.e., 
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f e-TEn(PII(OIl,<PnW_ f e-TEn(PII<Pn(OW, T>O 
n~O n~O 

as required. 0 
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This paper deals with a system oflinear non-Markovian-Langevin equations with memory 
functions that are not constant in time and a nonzero initial instant of time. A set of statistical 
means, based on the application of a generalized Furutsu-Novikov formula, was used to derive a 
generalized Fokker-Planck equation corresponding to this system and holding for both long and 
short instants of time. Considered as an example is the Brownian motion of a particle in a 
viscoelastic fluid with a particular relaxation time. 

PACS numbers: 02.50.Ey 

1. INTRODUCTION 

At present, problems occur in various branches of phy­
sics, that are reduced to Langevin equations with memory, 
descriptive of a non-Markovian stochastic process. In the 
linear case, its statistical characteristics can be determined 
directly by presenting the solution ofthe initial equations in 
an explicit form. However, in many cases, a more convenient 
probabilistic description gives an equation for the distribu­
tion function. This is why it is desirable to establish a clearly 
defined relationship between the Langevin equations with 
memory and the corresponding equation for the distribution 
function, similar to the Fokker-Planck (FP) equation for a 
Markovian process. 

In doing so we shall follow the Novikov-Klyatskin­
Tatarsky method 1 with a modification enabling its general­
ization, whereby it becomes applicable to non-Markovian 
processes as well. This method permits deriving a general­
ized FP equation directly from non-Markovian-Langevin 
equations. A specific feature of the derivation that follows is 
that it is based on a generalized Furutsu-Novikov formula2 

that enables separation of the mean of the product of two 
functionals from a Gaussian stochastic process. Thus, it be­
comes possible to establish the necessary fluctuation-dissi­
pation relations without resorting to any additional assump­
tions that are not contained in the formulations of the initial 
stochastic equations. 

2. A SYSTEM OF STOCHASTIC INTEGRO­
DIFFERENTIAL EQUATIONS 

Let us consider a system of linear stochastic integro­
differential equations for a set of variables aa (t ), 
a = 1,2, ... ,n, determining the state of a physical system 

d I' -d aa(t) = - Aap(t,s)'ap(S) ds + cJ>a(t), 
t '0 

(1) 

where Aap(t,s) are predetermined nonrandom memory func­
tions characterizing the dissipative properties of the system. 

Random forces cJ> a (t ) are assumed to be Gaussian with a 
mean value equal to zero. In this case, their statistical pro­
perties are fully determined by correlation functions 

Kat/(t,s) = (cJ>a(t)cJ>p(s). 

The angle brackets indicate averaging over an assembly of 
realizations of the random forces. 

The system of equations ( 1) together with the above as­
sumptions as to the statistical properties of random forces 
determines a multidimensional nonstationary Gaussian 
non-Markovian process starting at instant to' Its explicit so­
lution satisfying initial condition alto) = 80 is essentially a 
linear functional of random forces 

aa(t) = Xap(t,to)'aop + L XaP (t,s)cJ>p (s) ds. (2) 

Green's functions Xap(t,tO) are defined by a system of 
equations 

(3) 

In the case of real physical systems the causality princi­
ple must come into play, according to which the reaction 
cannot precede an action. In the case under consideration, 
this is equivalent to condition 

Xap(t,t') =0 if t'<to,t'> t. 

If the system under investigation is asymptotically sta­
ble, Green's functions also meet condition 

at t-oo. 

For a complete formulation of the system under consi­
deration in the statistical sense one must establish the corre­
sponding fluctuation-dissipation relations that express the 
correlation functions of random forces in terms of memory 
functions and one-time cumulant functions 

qJay(t,tO) = (aa (t )ay(t) - (aa (t) (ay(t ), 

which are determined by a particular physical situation. The 
averaging is accomplished, provided at instant to the sto­
chastic process a(t) takes the value 80. Proceeding from Eq. 
(2) we obtain the desired relations 

qJay(t,tO) = f L Xap(t,t 1)Xy;(t,t2 ) Kp;(t1,t2 ) dt 1 dt2 , (4) 

as well as the necessary conditional means of the type 
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(5) 

where 

{
I at t;>O 

H (t ) = 0 at t < O. 

Relations (4) and (5) also follow from the generalized 
Furutsu-Novikov formula2 that permits separation of the 
correlations of two linear functionals from a stochastic pro­
cess with a zero mean since in this case we are dealing with 
functional derivatives 

8aa(t )/8tPp(s) = XaP(t,s) H(t - s). 

Note that in deriving the ftuctuation--dissipation theo­
rem for non-Markovian-Langevin equations with memory 
functions of the AaP (t,s) = Aap (t - s) type, Kub03 and 
Henery4 proceeded from an erroneous assumption that the 
solution is noncorrelated with the subsequent values of 
force. In fact, the correlations are in this case different from 
zero within intervals of the force correlation time order. This 
assumption holds only when the random force is a 8-corre­
lated noise (has a zero correlation time). 

3. NON-MARKOVIAN FOKKER-PLANCK EQUATION 

Let us introduce conditional probability density value x 
of stochastic process a(t) at time t, 

P(x,t IXo,to) = (8(x - a(t,to,Xo))), (6) 

where a(t,to,xo) is a solution 9f system (1) at a given value Xo at 
time t = to, corresponding to a definite realization ~(t). The 
averaging is done over the set of all realizations ! ~(t ) J. 

Differentiating Eq. (6) with respect to t, we obtain the 
following equation for the conditional probability density: 

!.... P (x,t IXo,to) = - ~ ( daa (t) 8(x _ aft ))). (7) 
at aXa dt 

With the aid of the generalized Furutsu-Novikov formula2 

for the mean of the product of the linear P [ tP ] and nonlinear 
R [tP ] functionals of the Gaussian stochastic process tP (t ) 
with a zero mean value 

(P[tP]R [tP]) = (P[tP])(R [tP]) 

+ II / 8P [tP] ) / 8R [tP] ) (tP (t )tP (t ) dt dt 
\ 8tP(t\) \ 8tP(t2) \ 2 \ 2' 

we determine 

(8) 

where we have used Eq. (6). 
The limits of integration in Eq. (8) are arranged in ac­

cordance with the causality condition. Determination of 
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a 8a y(t) 
= - - P (x,t /Xo,to)' 

aXy 8tP"1(t2) 

Given Eq. (2), 8ay(t )/8tP"1(s) = XY"/(t,s) H(t - s) may be in­
terpreted as the linear response function to the external force 
tP"1(t ). 

Taking the last relations into account, Eq. (7) can be 
written as follows: 

XXY"/(t,t2)K'''1(t"t2) dt\ dt21 

a x - P (x,t /Xo,to)' (9) 
aXy 

Here, rna (t,to) is the mean value of stochastic process aa (t ), 
provided at instant to it assumes the value aOa' It can be 
easily seen from Eqs. (1) and (2) that 

a 
- rna (t,to) = - /3ap(t,to)rnp(t,to), 
at 

where 

aXas(t,to) -, 
/3aP (t,to) = - XsP (t,to)' 

at 

In addition, according to the generalized Furutsu-Novikov 
formula we have 

rnp(t,to) P (x,t /Xo,to) = xp P (x,t /Xo,to) 

+ I L Xp,(t,ttlXY"/(t,t2)K'''1(t"t2) dt\ dt2 

a x -- P (x,t /Xo,to). 
aXy 

Hence, Eq. (9) can be written as 

a a -a P'/'o = -a [/3ap (t,tO}xP P'/'o] 
t Xa 

i' ~ + XY"/(t,t2)Ka"1(t,t2) dt2 P'lto ' 
10 aXaaXy 

(10) 

In the case of a one-dimensional stochastic motion starting 
at instant to = 0 and involving an aftereffect characterized 
by memory function A (t,s) = A (t - s), Eq. (10) leads to Hang­
gi's resultS obtained by a known method. \ 

Finally, using ftuctuation--dissipation relations (4) and 
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(5), we derive a generalized FP equation for the conditional 
probability density of a multidimensional nonstationary 
non-Markovian process determined by a system of equations 
( 1), in the form 

a a 
-P(x,t /"o,to) = - [Pae(t,to)xe P(x,t /"o,to)] 
at aXa 

a2 

+ [Day(t,tO) P(x,t /xo, to)] , (11) 
aXaaXy 

where kinetic coefficients D afJ (t,to) are determined, with due 
account for their SUbscript symmetry, as 

a 
Way(t,to) = - 'Pay (t,to) + Pae(t,tO)'Pey(t,tO) 

at 
+ Pye (t,tO)'Pea (t,to)· 

Unlike the usual FP equation, the kinetic coefficients of the 
non-Markovian FP equation depend on both the current and 
initial instants of time. 

The solution ofEq. (11) must be positive, normalized to 
unity, and satisfy the condition 

P (x,tol"o,to) = o(x - "0). 

Since two-time distribution function /("o,to; x,t ) is ex­
pressed in terms of the conditional probability density and 
initial distribution /("o,to) as follows, 

/("o,to; x,t) = /("o,to) P (x,t /"o,to), 

multiplication of Eq. (11) by /(xo,to) gives 

a a 
- /("o,to; x,t) = - [PafJ(t,to) xfJ /(xo,to; x,t)] 
at aXa 

a2 

+ [Day(t,tO) /("o,to; x,t)]. 
aXaaXy 

Thus, for the two-time distribution function fully descriptive 
of the non-Markovian stochastic process under consider­
ation, we derive the same kinetic equation. 

In conclusion of this section we should like to point out 
that the generalized FP equation for non-Markovian-Lan­
gevin equations with memory functions 
A.afJ(t,s) = A. (t - s)0afJ' derived on the basis of the conditional 
probability density by Adelman6 for the case of to = 0 and by 
Fox7 for an arbitrary to, is not exact. This is so because the 
derivation was based essentially on fluctuation-dissipation 
relations for a system with initial moment to related to - 00, 

rather than a system of stochastic equations with finite to' 
Their approximate equation follows from Eq. (11) if in the 
expression for kinetic coefficients Day (t,to), one substitutes 
'Pay(O) for 'Pay (t,to)· 

4. BROWNIAN MOTION OF A PARTICLE IN A 
VISCOELASTIC FLUID 

The Brownian motion of a particle both in a viscoelastic 
fluid and in a viscous one should be considered as a non­
Markovian stochastic process because in both cases the force 
acting upon the moving particle is defined by a formula in­
cluding aftereffects. 8

•
9 If the fluid in which the particle 

moves is viscoelastic, and generally speaking, all fluids are in 
fact viscoelastic, the Brownian motion of the particle is a 
non-Markovian process even if the inertial effects in the fluid 
are ignored. 10 The interpretation of the Brownian motion as 
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a non-Markovian process is corroborated by comparison of 
the results of a study based on numerical computation of 
simple models. II 

The Brownian motion with due account for the hydro­
dynamic aftereffect described by Boussinesq's formula was 
for the first time investigated by Vladimirsky and Terletsky. 9 

They derived the mean square of displacement of the Brow­
nian particle. However, the method they used taking the 
aftereffect into consideration is essentially based on the as­
sumption of the random force being noncorrelated. 12 

Consider by way of an example the Brownian motion of 
a spherical particle of radius a and mass m in an unbounded 
viscoelastic fluid with a particular relaxation time 1', de­
scribed by a system of generalized Langevin equations 

d ; fl 1 -ui(t)= - - e-(I-S)ITui(s)ds+ -<Pi(t). (12) 
dt m1' 10 m 

Here, ui,i = 1,2,3 stands for particle velocity components, 
while; = 61T a'l] is the Stokes frictional coefficient of the 
particle in a fluid having viscosity '1]. For random force <P 
acting upon the Brownian particle all assumptions men­
tioned in Sec. 2 are true. 

System (12) with finite to describes the motion of a 
Brownian particle at random instants of time and deter­
mines a nonstationary Gaussian non-Markovian process. At 
the initial instant related to - 00, system (12) describes the 
Brownian motion of the particle at instants infinitely remote 
from the initial instant and determines stationary process 
Uoo (t). According to (12), the equation for vi(t) = ui(t) 
- uooi(t) takes the form 

d 
dt vi(t) = 

where 

- L fl e -(I - s)lTVi(S) ds 
mr to 

+ L e -(I - lo)ITCi(tO)' 
m1' 

Ci(tO) = - [00 eSlruooi(s + to) ds. 

Solution ofEqs. (13) establishes that 

(13) 

ui(t) = uooi(t) + Vi (to)X(t - to) - Ci(tO)X(t - to), (14) 

wherex(t) = (1'+ - 1'-)-I[r+e- IIT
+ - 1'-e- IIT ] and 1'+ 

and 1'- are relaxation times defined by formulas 

1'± = 1 ± (1 - 41'; /m)1/2 

2;/m 
At t - to-+ + 00, u(t )-+u oo (t ); that is, process u(t ) is station­
ary but asymptotically. 

Now, using the results obtained in Sec. 2, we find the 
following equation for the conditional probability density 
corresponding to system (12): 

a a 
- P(u,t - tolUo) = P(t - to) - lUi P(u,t - toluo)] 
at aUi 

a2 

+ D(t - to) -P(u,t - tolUo), (15) 
aUT 

wherep(t - to) = - x(t - to)/x(t - to), 

1 a 
D (t - to) = - - 'P (t - to) + P (t - tow (t - to). 

2 at 
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Function q:;(t - to) results from multiplication of Ui (t) by 
uj(t), defined in accordance with Eq. (14), with subsequent 
averaging at preset u(to) = 00. The associated moments 
(uooi(t )uooj(t) = (kT Im)oij are calculated using the equilib­
rium Maxwell distribution, while moments (uooi(t )u""j(t ') 
= (kT 1m )X(t' - t )oij are calculated using Eq. (15) at 

t - to---"oo. In this limiting case, q:;(t - to) = kT 1m, 

a 
- q:;(t - to) = 0, at 

and Eq. (15) is completely defined. As a result, we have 

(ui(t ),uj(t) = q:; (t - to)oij' 

q:; (t - to) = (kT Im){1 - x2(t - to) 
+ 7+ 7- [2 + 7+ 7-/(27+ + 7- )(27- + 7+)] 

Xx2(t - to)}. (16) 

The averaging bracket in Eq. (16), which involves a comma 
separating the stochastic processes, is essentially a cumulant 
bracket. In the case of a Brownian motion of a particle in a 
viscous fluid, when 7+ = mit and 7- = 0, Eqs. (16) and, 
consequently, (15) are reduced to the known classical result. 
Multiplying Eq. (15) by /(Oo,t), we find that the two-time 
distribution function of this process /(Oo,to; u,t ) satisfies the 
same equation as the conditional probability density. 

The Brownian motion theory under consideration 
should be characterized as a phenomenological theory as 
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opposed to the statistical theory of Brownian motion, 13-15 

which provides a more detailed explanation of the effect of 
the fluid on Brownian particles, proceeding from point parti­
cles with a Brownian particle among them. Averaging of 
microscopic equations of motion has given 13,14 a generalized 
FP equation with a memory kernel. This equation, however, 
is approximate16 and exactly defines only first-order mo­
ments. 6 

'V. I. Klyatskin and Y. I. Tatarsky, Usp. Fiz. Nauk 110, 499 (1973) [SOy. 
Phys. Usp. 16,494 (1974)). 

2G. N. Bochkov, A. A. Dubkov, and A. N. Malakhov, Izv. Yyss. Ucebn. 
Zaved. Radiofizika 20, 406 (1977). 

JR. Kubo, Rep. Prog. Phys. 29, 255 (1966). 
4R. J. Henery, J. Phys. A 4,685 (1971). 
'Po Hanggi, Z. Phys. B 31, 407 (1978). 
6S. A. Adelman, J. Chern. Phys. 64,124 (1976). 
7R. F. Fox, J. Math. Phys. 18, 2331 (1977). 
sT. S. Chow and J. J. Hermans, J. Chern. Phys. 56, 3150 (1972). 
"V. Yladimirsky and Va. Terletsky, Zh. Eksp. Teor. Fiz. 15, 258 (1945). 
'''T. S. Chow and J. J. Hermans, 1. Chern. Phys. 59, 1283 (1973). 
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"P. Mazur and I. Oppenheim, Physica (Utrecht) 50, 241 (1970). 
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We show by means of several examples how the Hamilton-Jacobi equation can be used to solve 
nonlinear ordinary differential equations whose direct integration is otherwise difficult. 

PACS numbers: 03.20. + i, 02.30.Hg 

I. INTRODUCTION 

The Hamilton-Jacobi formalism has not played a cen­
tral role either in the solution of classical mechanical prob­
lems or in the subsequent development of quantum mechan­
ics (although for a brief period action-angle variables 
appeared to be the fundamental link between classical and 
quantum ideas). It is probably fair to say that to most physi­
cists the Hamilton-Jacobi equation is something which was 
once learned (and/or taught) as part of an advanced course 
on classical mechanics, I and which has since been seldom if 
ever used. 

I t is the purpose of this note to point out that the Hamil­
ton-Jacobi equation can be of direct practical utility in inte­
grating certain nonlinear ordinary differential equations. 
We shall illustrate this contention by means of a number of 
examples, dealing with equations that have been of interest 
in recent years: the spherically symmetric Yang-Mills­
Higgs monopole2

.
3

; the superconducting vortex4
•
5

; the axial­
ly symmetric Liouville equation6

; and the spherically sym­
metric Einstein equations in five-dimensional space-time.7 

These examples fall into two classes. In the first, only a 
particular solution to the Hamilton-Jacobi equation can be 
readily found, containing no free parameters. In this case, 
one obtains a set of first-order equations which imply the 
original second-order equations that one started with. (For 
instance, the Yang-Mills-Higgs equations are reduced to 
the Bogomol'ny equations). Whether these first-order equa­
tions generate solutions of interest will depend upon the indi­
vidual problem. 

In the second class, one is able to find not necessarily 
the most general solution to the Hamilton-Jacobi equations, 
but at least a solution depending upon a number of in de pen­
dent free parameters equal to the number of degrees of free­
dom. In this case, one is able, without further integration, to 
deduce the most general solution to the original equations. 
The Liouville equation and the general relativity example 
fall into this category. 

We stress that the use of the Hamilton-Jacobi equation 
is not guaranteed to lead to a solution. Rather, it maps the 
original (presumably nonlinear) equation onto another non­
linear equation which, in some cases at least, is more tracta­
ble. 

In Sec. II, we briefly review the Hamilton-Jacobi for­
malism. In Sec. III, we discuss the monopole and vortex 
examples, and in Sec. IV, the Liouville equation and the Ein­
stein equation. Section V is devoted to some conclusions. 

II. THE HAMIL TON-JACOBI FORMALISM 

Consider a dynamical system whose degrees offreedom 
are a number of coordinates qj(t), i = 1, ... ,n, and which is 
governed by a Hamiltonian JY(qj! P j ,t ). We wish to perform 
a canonical transformation to a new set of variables 

Qj = Qj(qj'Pj,t), 

Pj = Pj (qj , Pj,t). 

One way to do this! is to specify a function 

S(qj!p;.t) 

and to let 

(1 ) 

as 
pj=-. (2) 

aqj 

Then the dynamics will be the same provided the new Ha­
miltonian K (Qj 'Pj ,t ) is given by 

as 
K(Qj!Pj,t) = JY(qj,Pj,t) +-. 

at 

We observe that if K vanishes, then the dynamics has been 
rendered trivial: 

Qj = Q.o = const, 

P j = P.o = const. 

The Hamilton-Jacobi equation is simply the requirement 
thatK = 0: 

JY(qj! as ,t) + as = o. 
aqj at 

(3) 

We now explain the two variants of the Hamilton-Ja­
cobi method that we shall encounter below. (i) Ifwe have a 
particular solution to Eq. (3), then we can apply Eq. (2). The 
canonical momentum pj is found in terms of {qj I and {qj I 
either from Hamilton's equation 

. aJY 
qj=-­

apj 

or directly from the Lagrangian: 

aL 
Pj=-a' , 

qj 

if L is known. Then Eq. (2) becomes a first-order equation for 
q j (t ). Of course, since we have started from a particular S, we 
can at most obtain particular solutions to the original equa-
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Hons of motion. Sometimes these will be the solution of inter­
est, and sometimes not. We shall experience both possibili­
ties in the next section. (ii) If we have a family of solutions to 
Eq. (3), containing a number of parameters Yi' i = 1, ... ,n, 
then in general the Yi will turn out to be functions of the new 
momenta Pi and, therefore, by Eq. (1) we have 

as as aPj aPj 
-=--=Q}J -=const. 
aYi aPj aYi ayj 

That is, the set of n equations 

as 
-=a·, 
ayj • 

where the a j are constant, allow us to solve algebraically for 
the unknown functions qj(t). Furthermore, this must be the 
general solution, because we have enough parameters (the n 
Yi and the n a j ) to specify both qj and qi at some initial time. 
We shall explore two applications ofthis method in Sec. IV. 

III. THE MONOPOLE AND VORTEX EXAMPLES 
A. The monopole 

We consider the classical dynamics of the Yang-Mills 
field A; (x) coupled to a Higgs field €J> O(x) in the adjoint re­
presentation, in the limit of vanishing Higgs self-coupling. 
By making the ansatz2 

A ~ = Eo,j"'j [1 - K (r)]!er, 

A~ =0, 

€J>a = 'aH(r)ler, 

we find two coupled second-order equations for the func­
tions H (r) and K (r): 

?K"=(H2+K2-1)K (4) 

and 

?K" = 2K 2H. (5) 

The first step in applying the Hamilton-Jacobi formal­
ism is to find a Lagrangian for this system of equations where 
the variable r plays the role of time. This is easily done. The 
result is 

L = 2K'2 + H,2 + ~ (K4 + 2H2K2 - 2K 2). 

Consequently, the canonical momenta are 

PK = 4K', PH = 2H', 

and the Hamiltonian is 

(6) 

JY' = i Pk +! P~ - (l/?)(K4 + 2H2K2 - 2K 2). (7) 

Note that the potential is unbounded below. Since we are 
using the Hamilton-Jacobi formalism merely as a technical 
device, this is of no particular concern. 

From JY' we immediately obtain the Hamilton-Jacobi 
equation 

as +~(as)2 +~(as)2 =~(K4+2H2K2_2K2). 
ar 8 aK 4 aH ? 

(8) 

On first, and subsequent, glances this equation appears 
too difficult to solve generally. The best we can do is to guess 
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a plausible form for a particular solution. First we eliminate r 
from the equation by making the substitution 

s= U(H,K)lr, 

which results in 

- U + i Uk +! U~ = K4 + 2H2K2 - 2K2. (9) 

Because the right-hand side is a polynomial in Hand K, it 
seems natural to try a polynomial in Hand K as an ansatz for 
U. One finds the solution 

U(H,K) = 2HK2 + H2 - 2H + 1. (10) 

Not only are there no free parameters in the solution, it was 
actually fortunate that the ansatz worked at all, because 
there was one more equation for the coefficients of the polyn­
omial than there were unknowns. 

Armed with this solution, we can apply Eq. (2). We have 

PK =4K'= as =~(4HK), 
aK r 

PH =2H'= as =~(2K2+2H-2). 
aH r 

These are the Bogomol'ny equations3 

rK' =HK, (11) 

rH'=K 2+H-1. (12) 

One can eliminate H from these equations. In terms of 
W = In K, one has 

W" = (l/?)(e2W - 1). (13) 

The best way to proceed at this point is to make the substitu­
tion 

W = X (r) + In r, 

in which case 

(14) 

which can be integrated straightaway. However, it is instruc­
tive to continue with the Hamilton-Jacobi method. A La­
grangian for Eq. (13) is 

L = !(W,)2 + (l/2?)(e2W - 2W), 

from which follows 

P w = W', JY' = !P~ + (l/2?)(2W - e2W ) 

and 

~(as)2 + as =_I_(e2W _2W). 
2 aw ar 2? 

(15) 

Once again, it is tempting to eliminate the r dependence from 
this equation by letting S = U Ir. Then 

U~ - 2U = e2W - 2W. 

Furthermore, if one is guided by the form of the right-hand 
side, it is natural to try 

U= ae w +f3W + Y, 

and one finds the solution 

U = 1]e w + W +!, 1] = ± 1. 

From this, we get the first-order equation 

W' = (l/r)(1]e w + 1) 
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with solution 

K(r) = eW = 1]cr(1 - cr)-I, c = const. 

For the monopole solutions, however, we want 

K(O) = 1, K(oo) = 0 

so these solutions have the wrong boundary conditions. 
To obtain the desired solution (in fact, the most general 

solution) requires a more complicated ansatz. We try 

S= W/r+ m(r) +F(t), 

where t is the variable 

t=e2W/r. 

(16) 

(17) 

The motivation for this guess is as follows: the W /r term, 
when inserted into Sr' will cancel the - W /r term on the 
right-hand side ofEq. (15). Then the rest ofthe right-hand 
side is simply !t, so it is reasonable to think that the remain­
der of S should be a function of t. It is necessary, however, to 
add a function of r alone to deal with the term 1/r in Sw 
induced by the W / r term in S. That the complete ansatz, Eq. 
(16), actually works is due to the fortunate cancellation of the 
cross term 

J...~F' 
r dW 

in !S~, with the term 

dt F' 
dr 

in Sr on the left-hand side ofEq. (15). 
Putting Eq. (16) into Eq. (15) and choosing 

1 a 2 

m(r) = 2r - 2 r, 

where a is arbitrary, we find the equation 

dF 1] (t + a 2)1/2 
- = - "'--..:...--"--
dt 2 t 

(18) 

where 1] = ± 1. This equation is easily integrated, and we 
find 

S = W + J... _ a2 r + 1][V + !:..In(V - a)] , 
r 2r 2 2 v+a 

(19) 

where v=(t + a 2)1/2. 

The presence of an abitrary parameter in this solution 
enables us to use the second method outlined in Sec. II. We 
differentiate S with respect to a, and equate the result to the 
constant value - aro. After some straightforward algebra, 
we obtain 

e2W = K 2(r) = a 2r /sinh2a(r - ro). 

The desired boundary conditions lead to the choices a = 1, 
r 0 = 0, with the expected result 

K (r) = r/sinhr. 

B. The vortex 

In this example as well, the Hamilton-Jacobi technique 
will be useful in reducing the original second-order equa­
tions to a system of first-order equations, but in this case we 
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shall not be able to proceed further and solve the problem 
completely. 

The superconducting vortex is a special case of a 
charged scalar field t/J coupled to the electromagnetic field. 
Physically, it describes the magnetic lines of flux which are 
expelled from the interior of a superconducting medium.5 

We assume axial symmetry, and let the distance from the 
axis be p, and the angle about the axis to be e. We make the 
ansatz 

A = VIp)8, Ao = 0, t/J = t/J Ip) (t/J real). 

The Maxwell-Klein-Gordon equations then reduce to 

V" + (1/plV' - V /p2 = 2e2t/J 2V, 

t/J" + (1/p)t/J' = e2V2t/J +!4 (t/J 2 - 1)t/J, 

where we have included a term 

-!A(t/J2-1f 
in the original Lagrangian. 

As before, we seek a Lagrangian for this system in 
which p plays the role of time. We find 

L = p(t/J'f + !p(V')2 + e2pt/J 2V 2 + l..1.p(t/J 2 - W + V2/2p. 

Thus 

P", = 2t/J'p, Pv =pV', 

and the Hamilton-Jacobi equation is 

_1_ (S )2 + _1_ (SV)2 _ e2pt/J 2V 2 _ !:""p(t/J 2 - If 
4p '" 2p 4 

v 2 as --+-=0. 
2p ap 

To eliminate p, we try 

S = R (t/J,V) + pT(t/J,V). 

Comparing powers of p, we find the three equations 

!R ~ +R t = V 2
, 

!R",T", +RvTv + T=O, 

lT~ + !Tt = e2t/J 2V2 +!A (t/J 2 - If 

(20) 

Although these are three equations in two unknown func­
tions, the choice 

T=e(t/J2-1lV, R= _!V2 

is a solution, provided we also demand that the self-coupling 
constant A. take the critical value 

A. = 2e2
• 

When A. takes on this value, the force between two vortices 
vanishes. Thus A. = 2e2 demarcates the boundary between 
the type I superconductor (A. < 2e2

) in which vortices attract, 
and the type II superconductor (A. > 2e2

) in which they re­
pel.5 Then 

S = e(t/J 2 - IlVp - !V 2
, 

and, therefore, from Eq. (2), 

t/J' = eVt/J, 

V'+ V/p=e(t/J2-1). 

Letting W = In t/J, we have W' = e V and hence 

W" + W'/p = e2(e2W - 1). 
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If we let ep = 15, this is the axially symmetric version of the 
inhomogeneous Liouville equation 

(22) 

We can continue with the Hamilton-Jacobi method, much 
as we did for the monopole. A Lagrangian for Eq. (21) is 

L =15(W,)2 +15(e2W - 2W) (23) 

and thus 

P=215W' 

and 

(24) 

Unfortunately, this equation is much less amenable to solu­
tion than the corresponding monopole equation (15). The 
situation changes dramatically, however, if we drop the last 
term on the right-hand side, that is, if we consider the homo­
geneous axially symmetric Liouville equation. This is no 
longer relevant to the vortex, of couse, but it is of interest in 
its own right and it is a problem to which we now turn. 

IV. THE LIOUVILLE AND EINSTEIN EQUATIONS 
A. The axially symmetric Liouville equation 

The general solution to the two-dimensional Liouville 
equation 

V2 W= e2W 

is known; therefore, in particular, all solutions to 

WIt + (l/p)W' = e2W (25) 

have been found (we drop the distinction betweenp and 15 
introduced above). However, it is not trivial to integrate Eq. 
(25), and it is of interest to see how the application of the 
Hamilton-Jacobi technique successfully confronts this 
problem. As noted in Sec. III, the equation we wish to solve 
is the following truncated version of Eq. (24): 

_1_ (as)2 + as = pe2W. (26) 
4p aw ap 

Multiplying by p, we have 

!S~ + Sa = e2(W+a), (27) 

where u = In p. 
The essential simplifying feature of this equation is that 

the right-hand side depends only on the combination W + u. 
Note that this happy circumstance would no longer obtain 
had we retained the extra term in Eq. (24). 

We take advantage of the situation by making the an-
satz 

S(W,u) = -2W-(,12+1)u+F(t), 

where t is the variable e2
( W + a). This is essentially the same 

variable we defined earlier for the monopole problem in Eq. 
(17). Then Eq. (27) becomes 

t 2[F'(t W = t + ,12 

and 

F'(t) = TJ(t + A 2)1/2lt, 

where "I = ± 1. 
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This equation is immediately integrable; the result is 

S (W,u) = - 2 W - (A 2 + l)u 

+TJ[2~+,1ln(~-,1)]. (28) 
~+,1 

We now apply the second variant of the Hamilton-Jacobi 
method. Letting {3 be an arbitrary constant, we have 

as = _ 2Au + TJln( ~ - A) = 2{3, 
a,1 ~+,1 

which leads to 

e2W = (4,1 2Ip2)IpAef3 _p-Ae-f3)2, (29) 

which is the general solution. 

B. An equation from general relativity 

Finding the spherically symmetric solutions to five-di­
mensional general relativity7 amounts to solving Einstein's 
equations for a metric of the form 

ds2 = _ eVdt 2 + ~ dr + rIde 2 + sin2e d4J 2) 

+ 2A dxsdt + if> 2(dxS)2, 

where v, A, A, and if> are functions only of r. One finds that 
the function 

f1 (r) = eVif> 2 + A 2 

obeys the equation 

(
f1" f1') 1 r --- + 1 +-2r4(f1')2=0. 
f1' f1 Jl 

(30) 

Here Jl is a constant of integration. We want the solution to 
obey the boundary condition 

lim f1(r) = 1. 

As usual, we must first find a Lagrangian for Eq. (30); it is 

L = (l/r)f1 1f1' - (rIJl2)f1 2, (31) 

from which follows 

Pn = (l/r)f1 1f1,2 

and 

JY = (- 2/r)( - f1Pn )1/2 + (rIJl2)f1 2. 

The Hamilton-Jacobi equation is 

Sa - 2( - SK)1/2 + e2(K+ a) = 0, (32) 

where K = In(f1 IJl), and u = 1nr. Defining 

T= S + !e2(K + a), 

we find 

iT; + TK = e2
(K+ a). (33) 

Observe that this is identical to the Hamilton-Jacobi equa­
tion for the Liouville problem, Eq. (27), although the roles of 
the dependent and independent variables have been inter­
changed. This enables us immediately to set up a dictionary 
to transcribe our previous results 

In(f1 IJl) = K~lnp, 
Inr~W. 
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Letting t now stand for 

t = ,.zn 2/",2, 

we find that the equation 

aSrel 
--=a 
a,i. 

becomes 

In(~-,i.)=U1/lnn +r, 
~+,i. 

where r = (a - U In ",)1/, and 1/ ± 1. 

(35) 

This is somewhat harder to solve explicitly for n as a 
function of r than was the corresponding Liouville case, be­
cause In n appears on the right-hand side as well. It is con­
venient to define a new variable R by the equation 

rn = (R 2 - B2)/R, where B 2 = ",2,i. 2/4. (36) 

Then we have from Eq. (35) 

n=e~'Y ---(
R - B)I'!2B 

R+B ' 
(37) 

where the choice of 1/ has been absorbed into the choice of 
sign of",. The relationship between rand R is then given 
explicitly as 

r = R 2 - B 2 ~ = (R 2 - B 2)(R + B)1'/2B (38) 
R n R R-B 

and we see that the choice r = 0 insures that n_I as r_ 00 • 
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Note also that we obtain real solutions for n either when B is 
real or when B is purely imaginary. 

v. CONCLUSIONS 

We hope to have convinced the reader that the Hamil­
ton-Jacobi equation has been undeservedly languishing in 
obscurity. It is true that in the paper we have not solved any 
equations whose solutions were not previously known; nev­
ertheless, in the examples we have discussed straightforward 
integration of the equations [except for the monopole equa­
tion (13)] is difficult if not impossible. We have sought to 
illustrate what types of equations are likely to yield to the 
Hamilton-Jacobi technique, and to give the reader some in­
tuition for the kinds of Ansiitze that will solve the relevant 
Hamilton-Jacobi equations. 
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I. INTRODUCTION 

The Hamiltonian formulation of classical mechanics is 
based on the symplectic structure of the phase space W of the 
system here considered. The space N of observables (eOO 

functions on W) is given a Lie-algebra structure by the Pois­
son bracket. 

A detailed study of deformations of this Poisson algebra 
and of the usual associative structure on N was carried out in 
Ref. 1. Such a study allows a new approach to quantum 
mechanics as a deformation of classical mechanics which 
generalizes the Weyl-Wigner's quantization. 

The phase-space W is supposed to be a symplectic, con­
nected, paracompact manifold. We denote by {u,v] the Pois­
son bracket of two elements u and v of N. Quantization of the 
associated dynamical system is given by a deformation of the 
usual associative product on N (a so-called * product): 

Definition 1: Let ?f be the space of formal series in A, 
with coefficients in N. A * product on W is a bilinear map: 

(u,v)EN XN-+u*v = LA 'e'(U,V)E?f, 
,,0 

where e'(r> 1) is a bidifferential operator on N XN, vanish­
ing on constants and such that, if u,v,wEN 

(i) eO(u,v) = U·V, 

(ii) L e'[CS(u,v),w] = L e'[u,CS(v,w)]. 
r+s=t r+s=t 

(iii) e I(U,V) = {u,v], 

(iv) e'(u,v) = ( - lre'(v,u). 

Each * product on Wadmits a natural extension to 
?f X ?f. Thanks to properties (i) and (ii), a * product is a defor­
mation of the associative product on N; properties (iii) and 
(iv) ensure that the bracket defined on N XNby 

[u,v]. = (l/U )(u*v - v.u) 

is a deformation (with parameter A 2) of the Lie-algebra struc­
ture of N. Existence conditions of such deformations are giv­
en in Refs. 2 and 3. 

In any quantization procedure, it is generally supposed 
that some particular Lie algebra of observables is preserved. 
Therefore the following notion is quite natural: 

Definition 2: Let 9 w be a-finite dimensional Lie algebra 
of observables. A * product is 9 w-relative quantization if 

[u,v]. = {u,v] foralluandving w· (gw'Q) 

All physical examples, previously treated in the * for-

malism, admit g-relative quantization with respect to suit­
able Lie algebras. These Lie algebras are usually obtained 
from natural geometrical symmetry groups acting by sym­
plectomorphisms on phase space. 

If G is a connected Lie group of symplectomorphisms of 
W, we denote the action of G on N (and its canonical exten­
sion to ?f) by 

(x.u)( s) = u(x-I·s) for all uEN, XEG, SEW. 

By differentiation, each element X of the Lie algebra 9 of 
G is represented by a vector field X - on W. 

Since it is the case in physical examples, we shall assume 
that all vector fields generated by 9 are globally Hamilton­
ian, and that the associated functions satisfy the commuta­
tion rules of g, i.e., 

Assumption (H): 

If XEg, there exists u xEN such that X - v = {u x ,v] for all 
vEN. 

IfX,YEg,u[X,Y] = {ux,u y ]. 

Assumption (H) means that 9 is represented by a Lie 
algebra 9 w = {u x; XEg] of observables. Assumption (H) is 
satisfied, for instance, on the orbits of the coadjoint represen­
tation of G in the dual space g* of g. 

Let us define some invariance properties of. products 
with respect to a Lie group of symplectomorphisms of W. 

Definition 3: Under Assumption (H), a * product is 
called geometrically G invariant (G.I.) if: 

x.(u*v) = (x·u)*(x.v) for all xEG, u,vEN. (G.I.) 

Definition 4: Under Assumption (H), a * product is 
called strongly G invariant (S.I.) if it satisfies (G.I.) and 
(gw·Q) with gw = {ux, XEg, 9 the Lie algebra of G ]. 

Strongly invariant. products were introduced in Ref. 
1, where their physical meaning is discussed. 

Unfortunately, except in the case of the cotangent bun­
dle of a Stiefel manifold,l,4 or in the case of homogeneous 
symmetric spaces,5 we do not know if such * products exist 
in general. Moreover, we suspect that there exist a lot of 
symplectic manifolds [among which are natural phase 
spaces of some relativistic systems (see the examples in Sec. 
III)] on which there are no geometrically invariant * pro­
ducts. This negative observation is not so surprising, since, in 
fact, quantum mechanics does not impose conservation of all 
geometrical properties of the underlying classical system. 
For instance, the notion of trajectories being generally mean­
ingless at the quantum level, there is no reason to require a 
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geometrical realization of the invariance group. Therefore it 
is convenient to generalize Definitions 3 and 4: 

Definition 5: Under Assumption (H), a. product is 
called G covariant if there exists a representation 7 of G by 
automorphisms ofthe algebra (If,.), such that 

7x (U) = (IdN + L A S7~)(X'U), for all xEG, uEN, 
s;.1 

where 7~ is a differential operator on W. 
Note that Definition 5 means that 7 is a deformation of 

the geometrical action: u_x·u of G. 
The main result of this paper is that each quantization 

relative to a Lie algebra g, is a G covariant. product with 
respect to the connected, simply connected Lie group G with 
Lie algebra 9 (see Theorem 1 and Corollary). 

In all physical papers, 1,6 the. products introduced are 
gw-relative quantizations with respect to some suitable Lie 
algebras g. From our result, this assumption seems physical­
ly quite natural, since it means that some covariance proper­
ties with respect to symmetry groups of the system are pre­
served after quantization, even if geometrical invariance 
might be lost. We give in this paper some examples of nilpo­
tent Lie groups G, where no invariant. product is known on 
the orbits of the coadjoint representation, though relative 
quantization can be constructed by natural generalization of 
the Moyal techniques. 

On the other hand, so many formulations oflocal invar­
iance were introduced that it seems necessary to establish 
relations between all these notions. In fact, we shall show in 
this paper that they are all more or less equivalent. For in­
stance, under Assumption (H) the following local invariance 
properties of a • product with respect to a Lie algebra 9 were 
introduced in Ref. 1: 

(IP 1) lux,v.wJ = lux,vJ.w+v·lux,wJ 

for all X in 9 and v,w in N. 

(IP'd lux,v.wJ = lux,vJ.w + v.lux,wJ 

for all X in 9 and v,w elements of the associative. algebra 
generated by 9 w' 

(IP2 ) lux,vJ = [ux,v). forallXing,vinN. 

In this paper, we prove the following: 
1. If G is connected, (IP I) is equivalent to the geometri­

cal G invariance of the. product. 
2. If, moreover, gw is "sufficiently large" (i.e., if vector 

fields X - for X in 9 generate the tangent space at each point 
of W), then the following notions of in variance are equiva­
lent: 

a) gw-relative quantization satisfying (IPd, 
b) 9 w-relative quantization satisfying (IP'd, 
c) strong invariant. product, 
d) • product satisfying (IP2). 

The natural notion of equivalence of • products is given by 
Definition 6: Two. products. and .' on Ware equiva­

lent if there exists an operator T of the form 

T=IdN + LATs ' 
s;.1 

where the Ts's are differential operators, null on constants, 
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such that 

T(u.'v) = (Tu).(Tv) for all u and v in N. 
In the compact semisimple case, we prove that, in the 

equivalence class of any g-relative quantization, there exists 
a strongly G invariant. product. This means that geometri­
cal properties are unchanged by quantization when the sym­
metry group of the system is a semisimple compact group. 

In Refs. 1 and 6 a useful. exponential map is intro­
duced under the implicit assumption that the. product se­
ries converges (in some sense) for particular value of the pa­
rameter A. Is it possible to introduce this. exponential 
without these assumptions of convergence, in fact, directly 
at the formal level? We give a partial answer to this question: 
In the case of a nilpotent Lie group G, we show that it is 
possible to define a • exponential mapping from G into (If,.) 
for each orbit of the coadjoint representation (see Theorem 
2). 

II. RELATIONS BETWEEN INVARIANCE NOTIONS OF * 
PRODUCTS 

Let 9 w be a finite-dimensional Lie algebra of observa­
bles on W. 

Proposition 1: If 9 w is sufficiently large, the following 
are equivalent: 

(i). is a gw-relative quantization satisfying (IP 1). 

(ii) • is a • product satisfying (IP2 ). 

Proof Let us write 

u.v = U·V + A I u,v J + L A nc n(u,v); u,vEN. 
n;.2 

Then: 

(i)<=> x' y , 
{
C 2r + I(U U ) = 0 

lux,Cr(v,w)J = Cr(!ux'vJ,w) + Cr(v,lux,wj), 

(ii)<=>C 2r + I(UX'V) = 0 (1) 

('o'r;;;d; 'o'UX,uyEg w ; 'o'v,wEN). 
(ii) implies (i) because (IP 2) implies trivially 9 w·Q and 

lux,v.wJ = [ux,v.w). 

= (U )-I((ux.V - v.ux).w 

+ v.(ux.w - w.ux )) 

= lux,vJ.w + v·lux,wJ. 

If (i) is satisfied, we shall prove (1) by induction. Using the 
associativity of., we obtain the following expression for the 
Hochschild coboundary of C 3 (see Ref. 2 for the definition): 

aC 3(u,v,w) = C 2(!u,vJ,w) - C 2(u,lv,wJ) 

+ IC 2(u,v),wJ - lu,C 2(v,w)J. 

Then, computing 

aC 3(ux ,v,w) - aC 3(v,ux,w) + aC 3(v,w,ux ) 

for uxEg w , 
we obtain, using (1), 

C 3(UX'vw) - wC 3(UX'v) - vC 3(U X'w) 

= C 2(! ux,vJ,w) + C 2(v,lux ,wJ) - luX,C 2(v,w)J = 0 
(2) 

and, for v = U y and w = Uz in gw, 

C 3(UX'u y·uz ) = 0 'o'UX,uy,uzEg w ' 
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By induction, the differential operator C 3
(UX ") is null on the 

polynomial elements on gw and, since gw is sufficiently 
large, null identically. Now suppose (1) is satisfied for 
r<./ - 1. By a computation similar to (2), we obtain, using the 
induction hypothesis, 

2C 2I + I(UX'VW) - 2WC 21 + I(UX'V) - 2vC 2I + I(UX'W) 

= (a) + (b) + (c), 

where 

(a) = 2C 2I Oux ,Vj,w) + 2C 21 (V,lux ,wj) - 2Iux ,C 2I (v,w)j, 

(b) = I [ - Cr(ux'CS(v,w)) + cr(cs(v,w),ux )], 
r+ s = 21+ I 

r,s>2 
r even 

(c) = I [cr(cs(ux,v),w) + cr(v,CS(ux,w)) 
r+ s = 21+ I 

r,s>2 
r odd 

- cr(cs(V,UX)'W) - cr(V,CS(W,Ux ))]. 

The symmetry properties of the Cn imply that (b) = (c) = 0, 
and (i) that (a) = O. We now have the analog ofEq. (2), and 
the end of the proof is similar to that for the case / = 1. 

Now suppose G is a connected Lie group acting on W 
under Assumption (H), and 9 w is the space offunctions u x. 
By differentiation of (G.!.), we immediately obtain 

Proposition 2: A • product is geometrically G invariant 
if and only if it satisfies (IP I)' 

Corollary: A • product is strongly G-invariant if and 
only if it is a 9 w-relative quantization satisfying (IP d. 

Moreover, if gw is sufficiently large, strong G invar-
iance is equivalent to (IP2). 

A priori, (IP' I) is weaker then (IP d. However, 
Proposition 3: If gw is sufficiently large, 
(i) (IP' I)<=>(IP d. 
(ii) A 9 w-relative quantization satisfying (IP' d is strong­

ly G invariant. 
Proof Let (UXit= 1.2 •...• n be elements of gw. We write 

From (IP' I) we have 
n 

luX,S~(XI, .. ·,Xn)J = I S~(XI,,,,,Xi_P[X,X;],,,,,Xn)' 
i=l 

Let us write, with obvious notation, 
n 

lux'S~ J = I S~,i' 
i= I 

The associativity of the. product implies: 
p 

s:= I I Cj(Sk,S~_k)' Vk=O, ... ,n. 
j=Or+s=p-j 

Suppose (IP d is satisfied up to order (p - 1); then 
p-I 

lux,S:J = I I CjOux,Skl,S~_d 
j=O r+s=p-j 
+ C j(Sk'{UX'S~ -d) + lux,C P(S2,S~_k)J 

n 

= " SF. 4,; nt' 
;= 1 
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Then 

= jto r+ s'?P-j C j Ctl Sk.i'S~ - k) 

+ C j(S k' i S ~ - k.i) 
i=k+ I 

p 

= I I CjOUx,Sk J,S~ __ d 
j=Or+s=p-j 

I UX,C P(S2,S~_ klJ 
= C PO ux,S~ J,S~ _ k) + C P(S~,I ux,S~ _ k j). 

By induction on nand k, and using the sufficient largeness of 
gw, we obtain (IP I )· 

III. VEY *n -PRODUCTS 

Let r be a symplectic connection on W. The rth power 
of the Poisson bracket is the bidifferential operator defined 
in any chart by 

pr (u v) = A i,j' ... A i,j,V . . uV .. V \.Iu _~T r , 'I""r lJ'''Jr' V ,VClY, 

where A ij are the coefficients of the structure 2-tensor A. 
If W = R2n 

, the W eyl-Wigner quantization procedure 
is associated with the well-known Moyal • product: 

Ar 

u·v = U·V + I -P~(u,v), VU,vEN, 
r>1 r! 

(the connection being the Riemannian flat one). 
Flatness of the connection is essential and, in fact, if 

there is curvature, Moyal's formula no longer defines an as­
sociative product. Following Ref. 7 it seems quite natural to 
generalize Moyal's notion for any symplectic manifold Wby 
introducing Vey .n -products: 

Definition 7: A • product on W is called a Vey .n -pro­
duct if the principal symbolS of the bidifferential operators 
C and (1/r!)P~ (r<.n) coincide, n = 2,3, ... ,00. 

Looking for Vey .n -products is technically easier, and 
supported by the fact that each equivalence class of. pro­
ducts contains a Vey .2-product. 3 [Note added in proof A. 
Lichnerowicz proved in a recent work; Deformations d'alg­
ebres associees a une variete symplectique (les .v-produits) 
to appear in Annales de l'Institut Fourier (Grenoble), that 
each equivalence class of. product contains a Vey .00 -pro­
duct. Then Sec. III could be rewritten, considering only Vey 
.oc-products.) Nevertheless, when geometrical invariance is 
required, this problem happens to have no solution, as 
shown by the examples that we are going to give in this sec­
tion. The examples give some justification to our feeling that 
geometrical invariance after quantization is too much to ask. 
Let us remark that in each of these examples we can con­
struct a Vey .00 -product which is a 9 w-relative quantization 
and therefore (as will be shown in Section IV) we obtain 
covariance after quantization. 

Our first example is a massless orbit of the coadjoint 
representation of the Poincare group P. 

Proposition 4: There is no geometrically P invariant Vey 
.2-product on the orbit with m2 = 0 and null helicity. 
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Proof Consider a Vey .2-product; the third term in its 
expansion is !p} + aH, where H is a differential operator 
with order less than three.7 Then if this. product is geome­
trically invariant, r is an invariant linear connection. 7 

We shall prove that the considered orbit does not carry 
any SOo(3, 1) invariant connection. Let us suppose that r is 
an invariant connection; then the relation 

V[y-,x]Z+Vx[Y-,Z] = [y-,VxZ] 

holds for any Yin so(3, 1) (Lie algebra of the Lorentz group) 
and any vector fields X and Z on W (Ref. 5). 

Here W is the cotangent bundle of the halflight cone in 
K8 with equations 

p/ +p/ +p/ -p/ = 0 (P4>0), 

P.q. + P2q2 + P3q3 - P4Q4 = O. 

We choose a global chart (P.,P2,P3,Q.,Q2,Q3) on Wand 
X = Z = al apt and successively, Y - = M 23' M 24, and 

M 34 · 
Since in our chart 

writing 

a 3 a 3 a 
Va lap, -= L a l - + L PI-' 

apt 1=. api 1=. aQI 

we obtain with the invariance relation for r at the point 
(0, P2' P3'0,0,0) (P2'P3 # 0) 

for Y- =M 23' 

aa2 aa2 0 P3-- -P2-- -a3 = , 
ap2 ap3 

aa3 aa3 0 P3-- -P2-- +a2= ; 
ap2 ap3 

for Y - = M i4 (i = 2,3) 

__ 1_ = !PI aal _ a2P2 + a 3P3 

!PI api !PI 
(i= 2,3), 

aa3 = aa2 =0. 
ap2 ap3 

In this linear system with respect to a 2,a3, aallapj 
(i,j = 2,3), it is possible to eliminate the derivatives aa; I apj 
and the remaining system 

P; 
-1 = -a2 -P3a3' 

P2 

p~ 
- 1 = -P2a2 + -a3' 

P3 
does not have any solution. 

Remarks: 
1. On the orbit considered here, there exists a Vey .00 -

product which is a quantization relative to the Lie algebra of 
Poincare group.8 

2. On the orbit with nonzero mass (without or with spin) 
there exists an invariant connection and it is possible to 
prove existence for a strongly invariant Vey .2-product with 
respect to the Poincare group.9 

We shall now exhibit a group such that "almost" all 
orbits of the coadjoint representation do not admit any geo­
metrically G invariant Vey .2-product. We are indebted to 
M. Plato for suggesting this example. 

Proposition 5: Let 9 be the (nilpotent) Lie algebra with 
basis (Xo,x., ... ,xk'Y; k> 3) and commutation relations 

[y,x;] = X;_ .(i;> 1); [Y ,xo] = 0; 

[X;,xj] = 0, i,j = O,I, ... ,k, 

and G be the corresponding connected and simply connected 
Lie group. The nontrivial orbits of the coadjoint representa­
tion are two-dimensional. The coordinate function So de­
fined on g. by Xo is invariant. On the orbits satisfying So#O, 
there is no geometrically G invariant Vey .2-product). 

Proof Let (So, S., ... , Sk ,1/) be the coordinate functions 
associated with the basis (Xo,x., ... , X k, Y). Then the orbit of 
the point (So, S., .. ·, Sk ,1/) is given by 

{(so, S. + SSo, .. ·, Sk + SSk-. + ... + {! So,'Tj - tk Sk-. - ... - (t. tj~!_1 )so} s,tjElR, j = 1, ... ,k }. 

The generic orbits (So#O) are characterized by k invariant rational functionsp; defined by (see Ref. 10 for definitions): 

1 (S)2 k - • 1 (s )k - ; 1 (S)k 
Po = SO,P2 = S2 -"2 S: SO,,,,,Pk = Sk - 1~2 2(k _ i) S: PI - k! S: So· 

These orbits are two-dimensional (they are of maximal 
dimension) and parametrized by S. and'Tj. 

From these expressions we immediately see that the 
subgroup of G acting trivially on these orbits is the one-pa­
rameter group generated by XO' On the other hand, the 
group of automorphisms of a given linear connection r on W 
is at most four-dimensional. Therefore if k is larger than 3, 
there is no G invariant connection and then no geometrically 
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G invariant Vey .2-product on W. 
Remarks: 
1) We can use the above argument to prove that if k is 

sufficiently large, there does not exist a geometrically G in­
variant Vey .2-product on the cotangent bundle of W. 

2) We shall prove in Sec. V the existence ofVey .00_ 
products which are g-relative quantizations on each orbit of 
the coadjoint representation of any nilpotent Lie group. 
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IV. RELATIVE QUANTIZATION AND COVARIANCE 

Definition 7: 
(i) We denote by L ()f) the space of linear maps 

T = ~s>oA sTs from )f into itself, and by GL()f) the group of 
invertible elements in L ()f). L ()f) is endowed with the Lie 
algebra structure associated to its usual associative algebra 
structure. 

(ii) Let * be a given * product on W. D = ~s>oA sDs 
EL ()f) is called a *-derivation of)f if 

D (u*v) = D (u)*v + u*D (v);u,vEN. 

We denote by Der( )f) the space or. derivations of)f . Der( )f) is 
a Lie subalgebra of L ()f). 

(iii) We denote by Aut( )f) the subgroup in GL()f) of auto-
morphisms of()f,*). 

Theorem 1: 
(i) Let .1 = ~s>oA s.1s be an element of L ()f) such that 

.10 is a complete vector field X - on W, 

.1 s (s;:;. 1) is a differential operator. 

Then, there exists a unique one-parameter-group: t-A (t ) so­
lution of the equation 

dA (t) = .1oA (t) with A (0) = Idle' 
dt 

(3) 

A (t) = ~s>oA SAs(t) commutes with .1, and as(t) = As(t) 
oexp( - tX -) is a differential operator with uniformly 
bounded order with respect to t, vanishing on constants if 
that is the case for .1 s • 

(ii) If, moreover, .1EDer()f) for some * product on W, 
then A (t )EAut()f), VtER. 

(iii) Let 9 be a Lie algebra. If D:g_L ()f) is a morphism of 
Lie algebras such that, for all X Eg, D (X) satisfies the proper­
ties assumed for .1 in (i), then there exists an unique mor­
phismA from the connected and simply connected Lie group 
G with Lie algebra g, into GL()f) such that, for all XEg, 

~A (exptX) = D(X)oA (exptX). (4) 
dt 

If xEG, then A (x) = ~s>oA SAs(x), where Ao(x) is the action 
of G on Wobtained by exponentiation of the morphism Do 
from 9 into the vector fields on W, andAs(x)oAo(x-l)(s;:;. 1) is 
a differential operator. 

Proof The proof of (i) lies in Ref. 11. The unique solu­
tion of 

dAo (t) = X - oAo(t ) with Ao(O) = Id N is given by 
dt 

(Ao(t).u)(S) = u(exp( - tX-)·S);VUEN,VSEW. (5) 

Equation (3) is solved by induction on the order s in A. 
The unique solution of the equation of order s is 

As(t) = :t~ f exp(t - r)X - oLts_poAp(r) dr. 

Ao(t ) being a diffeomorphism of W, A (t) is invertible. On the 
other hand, B (t) = A (t ')-loA (t + t ') satisfies 

dB (t) = .1oB (t) with B (0) = IdN . 

dt 
Therefore A (t) is a one-parameter group, and it is easy to 
prove that A (t ) is the unique solution of equation 
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dA (t) = A (t )0.1, with A (0) = IdN . 

dt 
(6) 

Let us define an action ofR on the space fiJ of differen­
tial operators on Wby 

(exptXT)(u) = (exptX - o Toexp - tX -)(u); 

V TEfiJ, V tER, VuEN. (7) 

Then 

al(t) =AI(t)o exp( - tX-) = f exprX.1,dr. 

al(t) is a differential operator, with bounded order on R, van­
ishing on constants if that is the case for .1 I' By induction, 
a, (t ) is a differential operator with the same properties. 

In order to prove (ii), if u,vEN, we put 

C (t) = A (t )(u*v) - A (t )(u)*A (t ltv). 

dC (t) = .1oC, with C(O) = 0, and therefore A (t )EAut()f). 
dt 

From (i) and (ii), we deduce that D can be exponentiated 
to a neighborhood 'Y of the neutral element e of G by ele­
mentsA (x)EAut()f )(XE'Y). Moreover, Ao can be extended to a 
morphism on G. 12 

The proof of (iii) is adapted from Ref. 13. Let us suppose 
that A is a morphism on G up to order (n - 1) in A, i.e., 

or equivalently, 

ap(xy) = L aq(x)oxoap-q(y); VX,YEG,Vp<,n - 1. (8) 
q .... p 

For any element T= (To,T" ... ,Tn_ , )EfiJ n and any 
xEG, we put 

p 

(l7(x)T)p = L ap_ q(x)o(x.Tq); p = 0,1, .. . ,n - 1. 
q=O 

Using (8), it is easy to prove that 17 is a representation of 
G on fiJ n. We identify fiJ n - 1 X N X W with a separating sub­
set of the dual of fiJ n by 

(liT) = (To u + S,T,u + ... + Sn .-1 Tn _ 1 u)(S), 

where 

1= (SI,S2"",Sn -I ,u,S )EfiJ n - 1 XN X W, 

T= (To, ... ,Tn_I)EfiJn. 

G acts on fiJ n - 1 X N X W by 

(x.fIT) = (/Il7(X- I)T);VTEfiJn,VxEG, 

V IEfiJ n - 1 X N X W. (9) 

For each lin fiJn - 1 XN X W, we define a 1-formul on Gby 

(wf(X))x = (I 117(X)(Dp + 1 (X))p=O ... n _ I); VXEG,VXEg 

(g being identified with the Lie algebra of left-invariant vec­
tor fields on G ). 

D being a morphism, (D; + I (X)) is a cocycle for the coho­
mology of 9 with coefficients in the g-module fiJ n obtained by 
differentiation of 17. From this fact we deduce that w f is 
closed. Therefore, there exists a function I (x,f) on G such 
thatw! = dI(x,f). We fix Isuch thatI (e,f) = O.Computing 
Ion 'Y, we find 
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J(expX,f) = (/1(ap+ I (expX))p), 

J (exp X.exp Y,f) = J (exp X,f) + J (exp Y, (exp ( - x )/). 
Since Pfi n - I X N X W separates the points of Pfi n, we de-

duce 

(ap + I (x.x'))p = (ap + I (x))p + 1T(x)(ap + I (x'))p' 

Thus 
n 

An (x.x') = LAn_q(x)oAq(x'). 
q=O 

Then A is a morphism on G up to order n (Q.E.D.). 
Corollary: Each g-relative quantization, for a Lie alge­

bra g of observables, obtained from a group action with As­
sumption H, is G covariant with respect to the connected and 
simply connected Lie group with Lie algebra g. 

Proof Indeed, for X E g and vEN, we put 

1 
D(X)v= -(ux*v-v*ux )= [uxov]*. u 
D is a morphism from g into Der ('l!) which satisfies the 

hypothesis of Theorem 1. 
We now examine the case of compact semi-simple 

groups. 
Theorem 2: Let G be a connected compact semi-simple 

Lie group, acting under Assumption (H) on a symplectic 
manifold W. Then, each g-relative quantization (where g is 
the Lie algebra of G) is equivalent to a strongly G invariant * 
product. 

Proof With the same notations as in Theorem 1 above 
and the corollary, we write: D (X) = 1:s;.o A SDs(X). 

Let us denote by G the universal covering group of G 
and define 

T = (A (x)oAO(X)-1 dx = LAs ( as (x) dx 
~ 00 ~ 

= LAs Ts (dx = Haar measure on G). 
s;.o 

From the relation 

as(expX) = f exp(tX -)0 Ds(X)o exp( - tX -) dt 

we deduce that, for s;;;,O, Ts is a differential operator on W. 
On the other hand, by definition of T, we have 

A (x)oT= ToAo(x), VXEG. 

But since 

D(X)(u y) =X-uy, VX, Yeg, 

we have the relations 

A (expX)(u y) = expX-.uy, VX, YEg 

and 

T(u y) = uy, VYeg. 

By differentiation of (10), we obtain 

D(X)(Tv) = T(X-v), VXeg, VvEN, 

which proves that the * product 

u*'v = T-I(Tu*Tv) 

satisfies IP 2' i.e., is strongly G invariant. 

281 J. Math. Phys., Vol. 24, No.2, February 1983 

(10) 

V. THE NILPOTENT CASE 

Let G be a connected, simply connected nilpotent Lie 
group, g its Lie algebra, and Wan orbit of the coadjoint 
representation P of G. 

Proposition 6: There exists on Wa global chart 
s-( p,q)eR2k such that 

1. The canonical symplectic form on W is 

1:7= I dpJ\dq;. 
2. Each function ux(Xeg) defined by 

ux(s)=s(X), seW, 

has the form 
k 

ux(p,q) = L aj(q)pj +P(q), 
;=1 

where a j and P are polynomial functions and aaJ aqj =0, 
V j = 1,2, ... ,i. 

Proof Using essentially the methods of Ref. 10, we 
prove the proposition by induction on dimg. If dim g = 1 or 
2, dim W = 0 and the result is trivial. Let 3 be the center of g, 
the restriction of the form S to 3 is constant on W. Let I be 
this restriction. 

First case: Ker 1=1= O. 
If g I is the Lie aigebra g/Ker J, gT is canonically injected 

in g* by the transposition map 1T* of 1T: g_gl' By construc­
tion, we 1T*( gT). In fact, it is easy to prove that W is the 
image by 1T* of one orbit WI of the coadjoint representation 
in gT. Moreover, by definition, 1T* is a symplectomorphism 
from WI to Wand the conclusions of Proposition 6 follow 
immediately. 

Second case: Ker I = O. 
Then dim3 = 1 and g can be decomposed in: 

g = RXEIlRYEIlRZEIlQ, 

with 3 = RZ, [X, Y] =Zand gl = RYEIlRZEIlQ = {Xleg 
such that [XI' Y] = 0 J; gl is an ideal of g. Let sx be the ele­
ment ofg* defined by sx(X) = 1, sx(Xd = OifXlegl. We 
identify gT with the orthogonal space of X in g*. Let 1T be the 
projection from g* to gT with kernel R5 x' G I the connected 
and simply connected subgroup of G with Lie algebra gl and 
P I the coadjoint representation of G I' We have 

PI(expXdo1T = 1ToP(expXI)' VXleg l· (11) 

Thus1T(W) is a family of PI orbits in gT. Nowletsl be in 1T(W) 
and A be a real number such that SI + Asx belongs to W. 

An easy calculation shows that 

SI =p(exp - ~ Y) (SI + Asx)' 
I(Z) 

1T(W) is a subset of W. SI being fixed, let WI be itsPI orbit in 
gT. Let us define 

rp: WI X R2 _g* 

by 

rp (tl,t,s) = p(exp tX) tl + ssx tleWI, (t,s)eR2. 

First, 

rp (tl,t,s) = P (exp tX.exp _s_ Y) tleW. 
I(Z) 

Moreover, the relation rp( tl,t,s) = rp (t; ,t' ,s') impliess = s'. 
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The value of this form at Yis ;I(Y) - tf(Z) =;; (Y) 
- t '1(Z), and since Y is in the center of gl' we have 

;I(Y) =;; (Y), thus t = t'. This proves thattp is one-to-one. 
The surjectivity of tp onto W follows from the fact that G is 
the semidirect product of R by G I (Ref. 10); for each 5 in W 

5 = p(exp tX,xd( 51)' with xlEGh 

=p(exptX)(ollxl)51 +s5x) [see formula (11)] 

= tp (ollxd 51,t,s). 

Clearly, tp is Coo. Now, if we identify WI with R2(k-l) 
by our induction hypothesis, puttingpk = s, qk = t, we de­
fine a global chart on W. In this chart U x ( 5) = P k; more­
over, 

Ux, I 5) = (XII p(expqk X)( ;d) 

= L (- qk)' (ad1X(XI)1 ~I) 
, I! 

= ~ I - qd111! Ct: a/ilq) Pi + PM)) , 

wherea/i(q) andPM) are polynomial functions of qh···,qk _ 1 

and aa/ilaqj=O, V j = 1, ... ,i. Thus, the second part of our 
proposition is proved. Finally let us consider two elements 
T= T) +AX,S=SI +.uXofgwithTlandSlingl.Iq , } 
is the Poisson bracket for the form l:t 1 dpi "dqi on W, the 
above computations allow us to write 

aUT, 
aqk = U[x.T,l' U[T,.S, l = {UT" Us,} . 

Then 

U[T.S 1 = I Un us} . 

This relation finishes the proof of Proposition 6. 
Corollary: On W, there exist g-relative quantizations. 
Indeed, let us consider on R2k the. product of Moyal.I 

With Proposition 6, we can write 
ux.Uy=uxuy+Alux,uy} + ~2p2Iux'uy), 

VX,YEg. 

Then 

[ux ' Uy 1. = lux, u y }, VX,YEg. 

This. product is G covariant (Theorem 1). In fact, it is 
possible to define directly a morphism from G to ('ll ,.) in this 
case. An easy computation allows us to define this morphism 
first at the Lie algebra level. 

Lemma: Let 9 w be a finite-dimensional Lie algebra of 
functions on W = ]R2k of the form 

where Po = 1, an, ..... n. + 1 ER, the bracket being the Poisson 
bracket associated to the form l:~ = 1 dpi "dqj' Let us define 

k 

r k + 1= 0, rj = sup L ni(ri + 1 + 1) j = k,k - 1, ... 1, 
In,! i=j 

and tp;. from 9 w to 'll by 

Then 
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u Itp,dux),tp;.(uyll =tp,dlux,Uyj), VuX,uyEg w ' 

The map tp: g_'ll defined by tp(X) = tp;.(ux ) is a morphism 
from 9 to'll endowed with the bracket u.v - v.u. Now, we 
exponentiate tp to the corresponding Lie group. 

Theorem 3: Let G be a connected, simply connected 
nilpotent Lie group and Wan orbit of its coadjoint represen­
tation. If we identify W with R2k as in Proposition 6, and 
define the. product of Moyal on W, then there exists a mor­
phism </> from G into I'll,.) I. exponential). 

Proof: First, we solve the equation in'll: 

~A It) = tp (X).A It), with A (0) = 1. (12) 
dt 

If A (t) = l:s,o AS As(t )andtp (X).v = l:k,o A k DkIX) vwith 
DdX)Ei?C (the space of differential operators on W) since 
Do(X) is a function tpo(X), we have 

Ao(t) = e''I'o(X) 

and 

dA n 
_n =tpo(X)An(t) + L DdX)An_dt). 

dt k= 1 

Putting ak(t) = Ak(t) exp( -.ttpo(X)), we can solve equation 
(12) by induction as in the proof of Theorem 1. We find 

an (t) = L ktl (e - S'l'o(X)oDdX)o e-'I'o(X))(an - ds)) ds. 

The element 

A (t) = LAn an (t) e''I'O(X) 
n,O 

is invertible in 'll (Ref. 11) and the solution of Eq. (12). It is 
easy to prove thatA (t ) is a one-parameter group in 'll and also 
the solution of 

dA (t) = A (t ).tp (X), with A (0) = 1. 
dt 

Let us define 

</>(expX) =A (1), XEg, 

and suppose that </>is a morphism up to order n - 1, i.e., that 
the relation 

</>(expX).</>(expY) = </>(expX·expY) 

holds for the terms in A \ k = O,I, ... ,n - 1. Putting 
</> o( expX) = e'l'o(X), an (expX) = An ( 1 ) </> o( expX), we define on 
i?C n a representation of G by 

(1T(X) T)p = ± ap_q(x) </>o(x)oTqo</> a I(X) , 
q=O 

wherexEG, T= (To,T1, ... Tn _ 1 )Ei?Cn;p = O,I, ... ,n - 1. By 
duality, G acts on fi) n - 1 X N X W (see the proof of Theorem 
1) 

Or, 

1T·(X)(SI,sZ, .. ·,sn _ I ,U, s) 
= [Ct: Spap_q(x-

1
) </>0(X-1))q' </>O(X) u, s ] . 

tp being a morphism of Lie algebras, we define a closed form 
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OJl on Gby 

OJf(X)x = (fl1T(x)(Dp+ I (X))p=o ..... n_I). 

We now define f (x,j) as in the proof of Theorem 1. We 
have 

f(x,j) = (fl(ap+ I (x))p); 

f(xy,j) = f(x,j) + f(y,1T*(x- l )f)· 

This proves the relation at order n: 

an (xy) = i an_q(x) 4)o(x)aq(y) 4)O(y-I), 
q=O 

and 4) is a morphism up to order n. 
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The generalization of the pair-labeled Rosenberg equations for many-particle scattering are found 
in the case where there are arbitrary multiparticle interactions. These are called interaction-set 
equations because they involve auxiliary transition operators which are labeled by the same set of 
partitions which characterizes the various connectivities of the interparticle interactions. The 
technique which we employ also provides the analogous extension of a recently proposed set of 
connected-kernel multiple scattering equations for the Watson-type transition operators. 
Further, the structure of the interaction-set equations leads to the identification of an entire class 
of interaction-set connected-kernel scattering integral equations, each of which is based upon a 
distinct choice of unperturbed Green's function and its associated connectivity structure. The 
generalized Rosenberg equations and the connected-kernel Watson-type multiple scattering 
equations, which are limiting members of this class, correspond to the choice of the N-free­
particle and two-cluster-channel unperturbed Green's functions, respectively. 

PACS numbers: 03.65.Nk, 03.80. + r 
I. INTRODUCTION 

The scattering integral equations proposed by Rosen­
bergl were among the first generalizations to more than 
three particles of Faddeev's2 connected-kernel approach to 
scattering theory. These equations have played an impor­
tant, although not well-recognized, role in the development 
of multiparticle scattering theory in the last decade.3- 9 The 
distinguishing feature of the Rosenberg equations is that 
they are posed in terms of auxiliary transition operators that 
are indexed by the same partitions used to label the interac­
tions. The physical amplitudes are then recovered by selec­
tive summations over these indices. Some possible advan­
tages of the Rosenberg approach for nuclear reaction theory 
are discussed in Refs. 9 and 10. 

In all previous workl.3,5,6,9 involving the Rosenberg 
equations, only pair interactions are considered so that the 
transition operators are labeled by theN (N - 1 )/2 pair parti­
tions i', where N is the total number of particles. The deriva­
tions of the Rosenberg equations given in Refs, 1, 6, and 9 do 
not generalize in any obvious fashion to include multiparti­
cle interactions. The reason for this is basically graph-theo­
retical; namely, these derivations depend crucially upon the 
particularly simple form of the so-called almost-connected 
graphs, 1,5,11,12 which is realized when one has only pair inter­
actions. With multiparticle interactions the possibilities for 
"almost connectedness" are much more numerous, and this 
complicates matters considerably. In the present work we 
avoid these difficulties by means of an entirely different ap­
proach, which enables us to obtain the generalization of the 
Rosenberg equations to include multi particle interactions, 
We refer to these equations as the interaction-set equations 
because they are posed in terms of auxiliary transition opera­
tors which are indexed by the same set of partitions which 
characterize the interparticle interactions. 

As emphasized in Refs. 13 and 14, truncation schemes 
in nuclear reaction theory generally lead to few-body effec-

.) Present address: Department of Physics and Astronomy, University of 
Maryland, College Park, Maryland 20742. 

tive interactions which, from a microscopic point of view, 
are of a multiparticle form. Our primary motivation for tak­
ing up the generalization of the Rosenberg equations is de­
rived from this occurrence of multiparticle interactions rath­
er than merely to include the possibility of fundamental 
multiparticle forces, although the latter may prove impor­
tant in themselves. In fact, as discussed at length in Ref. 14, 
the fundamental multiparticle interactions are actually a 
very special case of the types of interaction we wish to in­
clude. The special advantages of interactions-set-type equa­
tions as proposed in Refs. 9 and 10 can then be considered in 
the context of realistic approximation schemes to nuclear 
reactions. 

The similarity of the Watson l5 and Rosenberg ap­
proaches when there are only pair interactions has been 
known for a long time and provided the original motivation 
in Ref. 1. Recently this structural similarity was employed to 
obtain connected-kernel forms of the original Watson inte­
gral equations.9 The generalizations of the Watson formal­
ism to the elastic scattering of two composite fragments with 
arbitrary interactions have also been found. 14,16 In this arti­
cle we establish the structural similarity between these gen­
eralized Watson equations and the interaction-set equations 
derived herein and then use this relationship to find connect­
ed-kernel integral equations for the generalized Watson 
transition operators, thus extending the connected-kernel 
multiple scattering equations of Ref. 9. Finally, we show that 
the interaction-set equations and the connected-kernel mul­
tiple scattering equations are simply limiting cases corre­
sponding to N and two fragments, respectively, of a whole 
class of interaction-set-type equations. Each of these equa­
tions is shown to be identical in terms of its associated con­
nectivity structure. 17 

When we refer to the connectivity of operators, we refer 
to the translational invariance properties of these operators 
with respect to various subgroups of particles. 17 This is 
known as string connectivity CrfJ o' In brief, subgroup invar­
iance (noninvariance) is correlated with disconnectedness 
(connectedness). The elaboration and extension of this con-
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ception of connectivity is reviewed in Appendix B. 

Many of the general expressions in this paper are rather 
condensed. Therefore, for illustrative purposes we explicate 
in Appendix C some features of the interaction -set equations 
in the particular case of four particles. 

II. INTERACTION-SET EQUATIONS 

Our development makes extensive use of the results ob­
tained and the notation l8 employed in Refs. 14 and 17 (see 
also Appendix A I9). 

The interaction set is the set l8 A of all partitions b of the 
N-particle system such that [V] b # 0, where [ V] b is the b­
connected part of the total interaction V: 

beA 

The ("prior") transition operators 

T a,b = va(1 + GVb) 

are expressed in terms of the external interactions 

where 

.1a,b = 1, b<t a 

=0, be;;, a. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The notation be;;, a a means that b is contained in (or equal to) 
a while b<t a signifies that b is not contained in a. 17 

The operators Ta,b satisfy the generalized BRS equa­
tions l4.19 

T= (M +1) Go IQI YG- I + (P2 +r) T}, (2.5) 

where we have used a matrix notation in the partition indices 
for the sake of brevity. For instance, Trepresents the matrix 
(Ta,b), while Y is the matrix with elements (Y)a.b = 1. Also 

M a.b = [VaGG 0- I] b 81,b , (2.6) 

where [oo·h denotes the b-connected part of the bracketed 
operator,8a ,b = 1 - Da,b' and l9 

1=.1PI[V]IYQI[G] GO-I, 

r = Q2 .J t CQI . 

(2.7) 

(2.8) 

Here Pi is the projector onto the i-cluster partitions, Qi 
= 1 - Pi and ( [ G ] )a,b = [G] a D a,b' The partition which 

contains only one cluster is denoted by 1 [cf. (2.6)]. The diag­
onal matrix C has elements 

(2.9) 

n
R 

is the number of clusters contained in partition a, while 
(G )a,b = GaD a.b' The superscript t represents the transpose 
operation while 

(2.10) 

The full and free Green's functions are denoted by G 
and Go, respectively. The channel Green's functions are Gb 
= (E + iO - Hb)-I, where Hb is the channel Hamiltonian 

Ho + Vb' the N-particle kinetic energy operator is Ho and 
Vb = V - V'. Obviously, G = GI and 
Go = (E + iO - Ho) -I, where we use 0 to denote the N-clus-
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ter partition. 
Our strategy for obtaining the generalized Rosenberg 

equations is the reverse of that employed in Refs. 1,6, and 9 
for pair interactions. We exploit the fact that Tis proportion­
al to.1, namely, 

(2.11) 
c 

in order to derive integral equations for the interaction-set 
operators 

Tc = [Vlc [1 + GV] . (2.12) 

This is done by using the inversion theorems derived in Ref. 
17 for .1.20.21 In this regard we note that the sum in (2.11) 
effectively excludes the partition 0 since [V]o = 0 and, conse­
quently, To = O. We note that when there are only pair inter­
actions, corresponding to the partitions t, then [V]c = 0 ex­
cept for [V] i' = Vi' and then the Ti' are essentially the 
Rosenberg operators. 

The original21 inversion theorem for.1 is equivalent to 
the statement that the restriction 17 

J = QO,I .1QO,I , 

QO,I =1 -PI-PN , 

of.1 to the (0,1 )-excluded space possesses an inverse: 

(2.13) 

(2.14) 

J -I = [QO,I .1QO,I] -I . (2.15) 

Ifwe note that T I,b = 0, then, for a # 0, 1, we find from (2.11) 
that 

I (J -I)a,d T d,b 
d#O,1 

= (Ta + { I (J -I)a,d} TI) Go G b- I . (2.16) 
d#O,1 

A somewhat neater inversion algorithm follows if we 
exploit the fact thae7 

.a -I = - Qo.J -I QI' (2.17) 

where 

.a = QI.1 Qo. (2.18) 

We have then from (2.11) that (recall To = 0): 

" (.a -I) Td,b= T G G- I 
~ a,d aOb' (2.19) 

d#1 

[If one uses Eqs. (3.33b), (3.49a), and (3.S0a) of Ref. 17, it is 
easy to show that (2.16) and (2.19) agree for a # 1.] 

In matrix notation (2.5) becomes 

QITQI =.1BQIGo [QIY G-IQI + (P2 +r) QITQd, 

(2.20) 

where 

B a,b = { [ [ V] a GG 0- I] b + D a,l [ V L [GG 0- I] b} 81,b • 

(2.21) 

The representation 

[ Ta h = [[ V] a GG 0- I ] b = {([ V H G]) G 0- I t,b , 

(2.22) 

where 
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([ v J.[ G ] )a.b == I c5b.auc [V L [G L , (2.23) 
c 

will prove to be useful in Sec. III. Here aue is the partition 
with the largest number of clusters which satisfies a C aue 
and c!;;;; aue. Evidently (2.23) is a sum of b-connected terms. 

If we apply the inversion formulae (2.17)-(2.19) to 
(2.20), then we obtain the interaction-set scattering integral 
equations: 

(2.24) 

where 

(2.25) 

We observe that if we callK the kernel of(2.5) or (2.20), 
then 

K = .1K1 .a -1 . (2.26) 

Hence 

Ki =.1 -I K2.1. (2.27) 

I t is shown in Ref. 14 that K 2 is a connected operator and so it 
is obvious from (2.27) that K i is connected as well. Thus 
(2.24) constitute a set of connected-kernel equations, and 
they represent the generalization of the Rosenberg equations 
to include arbitrary multiparticle forces. 

It is easy to recover the standard results when there are 
only pair interactions. First, we note the identity [Ref. 17, 
Eq. (3.61a)] 

(2.28) 

where P N _ 1 is the projector on the pair partitions. Then if 
[ V ] a = 0 except for [V,. ] i' = v,. we obtain 

Ti· = I [Vi·(l + GV)]b 
b#1 

+ I [V,.(l + GV)]r ..1 r.1 Go~' , (2.29) 
r.1 

where the sums in the kernel of(2.29) are over all pairsj' and 
all two-cluster partitions y. In that we begin with (2.20), the 
result (2.29) represents still another derivation of the Rosen­
berg equations. 

The passage from the interaction-set equations (2.24) to 
the BRS equations or other sets of channel-labeled equations 
depends entirely on the properties of the matrix..1 and its 
various submatrices square or nonsquare.9

•
10 The matrix..1, 

which was introduced in Ref. 22, and its various restrictions 
such as P ~P N _ I ,23 possess a host of remarkable properties: 
particularly in regard to inversion. Some of these properties 
have been explored in Ref. 17. A more extensive analysis of 
the inversions of the restrictions of..1 is undertaken in Ref. 
10. 

III. WATSON EQUATIONS 

As we pointed out in Sec. I, the Watson 15 multiple scat­
tering equations are the prototype interaction-set equations. 
They provided some of the motivation for Rosenberg's origi-
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nal work. In this section we show how the techniques of Ref. 
14 and Sec. II can be adapted to the problem of obtaining the 
generalization to arbitrary multibody interactions of the 
connected-kernel multiple scattering equations of Ref. 9. 

The Watson formalism is specifically designed to deal 
with the elastic multiple scattering of a particle from a bound 
target. The generalization to the case of two complex frag­
ments is straightforward. 16 A significant aspect of this for­
malism is that it singles out the two-cluster partition a, 
which corresponds to the relevant asymptotic channel. With 
this in mind, we introduce the a-biased counterparts of the 
transition operators T a.b : 

Ta.b(a) = V a.a + va.aGvb.a, (3.1) 

where 

V a•b = ,,":4 ":4 [V] ~ ,ua.c ,ub.c c • (3.2) 

The only operator among (3.1) which (in general) corre­
sponds to a physical transition operator is 

T a.a(a) = T a.a, (3.3) 

which is the object of primary interest. We note that 

p.O(a) = I..1 a,b Tb(a) , (3.4) 
b 

where 

(3.5) 

and 

(3.6) 

It is shown in Ref. 14 that the Ta (a) satisfy the (Watson-type) 
multiple scattering equations 

Ta(a) = tala) [ 1 + Ga ~ 8a,b Tb(a)] , 

where 

ta(a) = [vaL + [VaLGata(a). 

We note that 

(3.7) 

(3.8) 

tala) = [vaL + [V aLGa [a][ V aL , (3.9) 

where 

(3.10) 

Our strategy for deriving connected-kernel interaction­
set equations for Ta(a) is the same as in Sec. II. Namely, we 
use the BRS-type equations for the operators T a.b (a), which 
are derived in Appendix A, and the inversion formulae 
(2.17)-(2.19). The repetition of that same procedure, as well 
as Eqs. (3.1 H3.1O), suggests a further generalization which 
makes the structural similarity of the Rosenberg and Wat­
son equations far less mysterious. It should be clear that both 
equations are merely extreme cases of an entire class of inter­
action-set equations which are biased with respect to an arbi­
trary partition b. The relevant interaction-set operators are 
then 

(3.11) 

We obtain Rosenberg-type operators for b = 0 and Watson­
type operators when b = a is a two-cluster partition. Since 
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[VI]a = 0, the case b = 1 is trivial. The generalization (3.11) 
may prove useful, for example, in few-body treatments of 
breakup and rearrangement scattering, that single out cer­
tain multicluster asymptotic channels for special considera­
tion. 

We now return to the specific example ofthe Watson­
type operators, although all of our analysis will carry over to 
the operators (3.11). The full Green's functions in (3.1) and 
(3.5) are handled in an a-biased fashion. We note that 

H=Ha + V: + va,a, (3.12) 

where 

va
a = ~>.::ia,b [Va]b' (3.13) 

b 

Thus, if we call Ga(a)== (G;; I - V~)-I = Ga(a), then 

G = Ga(a) + Ga(a) V a,a G. (3.14) 

Equations (3.1H3.14) make evident the fact that the 
analysis of Sec. IV of Ref. 14 and Sec. II of the present paper 
carries over to the Watson case with the replacements 

GO-+Ga = Ga(O) = Go(a), 

Ga-+Ga(a) = Ga(a) , 

[V]a-+[VaL· 

(3.15) 

(3.16) 

(3.17) 

Specifically, it is shown in Appendix A that one then finds as 
the counterpart of (2.20): 

QIT(a) QI =.aB(a)QIGa {..9' O(a)-I Ql 
+ (P2 + r) QIT(a) Qd . (3.18) 

We have again employed a matrix notation in the partition 
indices [e.g., (0 (a))a,b = Ga (a) l5a,b] and, in this notation, 

B(a) =([VaHO(a)}) G;; I QI 

+PI[V]I..9'QI {O(all G;;I. (3.19) 

Here, corresponding to (2.23), we have 

([Vaj.{O(a)})a,b Ql 

(3.20) 
c 

where 

(3.21) 
a 

is the counterpart of [G h, the b-connected part of G, and 
({ G(a)))a,b = {G(alla l5a,b' We discuss the connectivity 
properties of {G (a) J b shortly. From (3.18) and the inversion 
fonnulae (2.17)-(2.19), we obtain the generalization of the 
mUltiple scattering equations of Ref. 9 [cf. (2.24) and (2.25)]: 

Ta(a) = L Ba,b(a) + L {KI(a)) a,b Tb(a) , 
b b 

(3.22) 

where 

{K1(a)la.b = L Ba.c(a) 
c.d¥1 
X (I5n<,2 I5c.d + re,d) Ga .ad,b . (3.23) 

The connectedness structure of { G (a) I b is of crucial 
importance in detennining whether (3.18) and (3.22) are con-
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nected-kernel equations or not. First we note that 

Ga(a) = L..::ia,b {G(allb' 
b 

so that, in particular, 

and 

G= GI(a) = L {G(a))b 
b 

Ga = Go(a) = {G(a)lo. 

From the resolvent identity 

Ga(a)=Ga +Ga V; Ga(a) , 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.24) and the inversion properties of ..::ia,b ,17 it is easy to 
show that 

{G(alla =l5a •O Ga + Ga Ll5a,~ [V]ba (G(all e , 
b.e 

(3.28) 

which can be compared with 

[Gla =l5a ,o Go+GoLl5a,~ [V]b [G]e' (3.29) 
b,e 

It is shown in Appendix B that { G (a) J a consists of a sum of 
operators of connectivity c, c:2a: 

(3.30) 

We also note that since [A 10 is a-connected, then 

consists of a sum of operators of connectivity auc, where 
aue:2 aub. 

Equations (3.24)-(3.31) show that, in the tenninology of 
Ref. 17, we can define an a-biased connectivity structure, 
CIJ a' This is the analog of the usual structural conception of 
connectivity in scattering theory which is called string con­
nectivity and is identical with C(f 0' except that the role of Go is 
now taken over by Ga [in going from (3.29) to (3.28), for 
example].24 The substantiation of this observation, as well as 
some of the comments to follow, is provided in Appendix B. 

As suggested by (3.26), Ga is completely disconnected 
in C(f a' Also, as illustrated by (3.28), the product rules for the 
CIJ a' or ( 1, connectivity structure are the same as for the 
usual string connectivity. Thus the product of {A la and 
{B I b has C(f a -connectivity aub. By definition, the C(f a pro­
perties of an operator are detennined solely by the interac­
tions external to the partition a (cf. Appendix B).9,24 In parti­
cular, {A la is that part of A which has CIJ 0 connectivity a 
when the interactions internal to partition a are treated as if 
they were completely disconnected operators. For example, 

(3.32) 

and 

(3.33) 

Since the product rules in C(f a for operators of different 
connectivities are the same as in C(f 0' the same proof (given in 
Appendix A of Ref. 14) that (2.5) is a connected-kernel equa-
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tion establishes (3.18) as a connected-kernel equation in CC a 

and, most importantly, in CC 0 [cf. Eq. (B13)]. Clearly (3.22) 
shares these properties with (3.1S), and we note that (3.19) 
and (3.20) can be expressed as 

(B (a))a,b = [ ~I.a U V ala GG a- I}b 

+ Ol,a [V 11 ! GG a- II b ] ~I,b . (3.34) 

Equation (3.34) is to be compared with (2.21). In the case of 
only pair interactions, it is straightforward to combine (3.34) 
with (3.22) and (3.23) to obtain the analog of(2.29): 

T,.(a) = I {Iva/;, GGa-l}b 
b;o'l 

+ I (I va);, GG ;-IL, ..1 r,l Ga ~.(a). 
r.l 

(3.35) 

This provides an alternative derivation of the result of Ref. 9. 
The development of this section is a consequence of the 

fact that the unperturbed Green's function Go plays no role 
in the connectivity analysis of Sec. II and of Ref. 14. Thus, if 
we deal with equations with the same formal structure ex­
cept for the replacements (3.15)-(3.17), then it is obvious that 
analogous connected-kernel properties will realize for the 
new equations. The same considerations apply to (3.11). For 
example, if we take as the counterparts of (3.15)-(3.17) 

GO-Gb = Gb(O) , (3.36) 

Ga-Gb(a) = Ga(b) = (G;-I - V~)-I , (3.37) 

[Vla-[VbL =..1b,a [V1 a , (3,38) 

then the relevant connectivity structure is CC b' where the 
role of Go in string connectivity is taken over by Gb (cf. Ap­
pendix B). The counterparts of(3.1S) and (3.22) are obvious, 
as is the fact that they constitute connected-kernel equations 
in CC band CC o' Since nothing we have done is predicated 
upon a being a two-cluster partition, all that is required is 
the identification a-b, CC a-CC b' 
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APPENDIX A 

Here we sketch the derivation of (3.18), With the use of 
(2.9), (3.13), and the sum rules 

(AI) 
a 

and 

(A2) 
a 

it is easy to show that 

V a,a = "C (V a,a +..1 [va]) ~ £.. b b a,l I b,l 
b 

(A3) 
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With (A3) and the resolvent identities (B5) we find that (3.1) 
can be placed in the form 

Ta,b(a) = I (r(a))a,c Gc(a) [Gb(a)-I + p,b(a)] . 
c 

(A4) 

In a matrix notation (A4) can be written as 

T(a) = rIa) G(a) [YG(a)-1 + T(a)) , (A5) 

where, e.g., (G (a))a,b = Ga (a) Oa,b' We note that rIa) can be 
expressed alternatively as 

rIa) = (VM(a) + .JPI [V1 I YQd CQI = VM(a) CQI' 
(A6) 

where 

(V M(a))a,b = V :,a ~I,b , (A 7) 

so that (A5) becomes 

T(a) = VM(a) CQI G(a) [YG(a)-1 + T(a)]. (A8) 

It is useful to express V M(a) Q\ as (note [Q\,C] = 0) 

VM(a) Q\ =.J ([ V a] + Pd V1 I YPo)..::1' QI 

=.JVa..::1 'QI' 

where the matrix [val is 

([ val )a,b = ~a,1 [vaL Oa,b . 

(A9) 

(AlO) 

In obtaining (A9) we have used (2.3), (3.13), and the identity 
YPo..::1' =Y. 

Now from (3.21) 

(All) 
a 

so that 

Go (a) = I..::1 a,b IG(a)lb' (A12) 
b 

Then, if we employ (A12), (A9), and the identity ..::1a,d ..::1a,. 
= ..::1a,dve' we can show that 

VM(a) Q\ G(a) =.J [va. I G(a)l] QI..::1' QI , (Al3) 

where (I G(a)l)a,b=1 G(a)lb Oa,b' and 

([Va.!G(a)j])a,b =IOb,eui (va)a,d IG(all •. (A14) 
d,. 

Thus (AS) may be written as 

T(a)=.J [Va.{G(a)}] Q • ..::1 tQ.C [.1' G(a)-· + T(a)], 
(A15) 

or, upon noting that..::1 t Q\CY = QIY' as 

T(a) =.J [Va.{ G(a)}] QI [YG(a)-1 + (P2 + r) T(a)] , 
(A16) 

where we have made use of the identity..::1 'CQI = P2 + r 
and r = Q~t CQI' Equations (3.18)-(3.20) follow immedi­
ately upon noting that 

[va. I G (a) 11 QI = [ [val· {G (a)}] QI 

+PI[V]I YQI {G(a)} , (A17) 

while (2.5)-(2.7) follow analogously by setting a = 0, in 
which case {G (all -[ G]. 
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APPENDIXB 

In this appendix we explicate the basis of the ~ a con­
nectivity structure and, in particular, establish Eq.13.30). 
We define 

(BI) 
a 

where [A ]~ is defined to be that part of A which has ~ 0 

connectivity a in the interactions external to partition a. That 
is, in the assignment of connectivities with respect to the 
cluster decomposition IB I), the interactions internal to parti­
tion a are treated, for the purpose of classification of terms, 
as if they were completely disconnected operators. This de­
fines a connectivity structure ~ a .17 

The sum over a in (B 1) may be restricted further de­
pending upon the structure of A. An example of this which is 
of particular importance is the Green's function Gbla) in 
which the interactions external to a are also internal to b; 
thus 

a 

The resolvent identity 

Gb(a) = Go (a) + Ga(a) V: Gb{a) , 

holds if a ~ b. It follows from (B3) that 

[Gb(a)]~ = [Ga(a)]~, a~b. 

In a similar manner one infers from 

G = Ga(a) + Go (a) va,a G, 

which holds for arbitrary a, that 

[G]~ = [Gala)): . 

We conclude from (B2HB6) that 

a 

and therefore 

[G]~ = L (.1 -l)a,b Gbla). 
b 

IB2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(BS) 

The comparison of (B7) and (BS) with (3.24) and (3.21), re­
spectively, yields the identification 

IG(a)Ja = [G]~. (B9) 

Since it is evident from the definition of [A ]~ that 

[[A ]~]c =0, actc, (BIO) 

we infer, in the case of the Green's function, the string con­
nectivity content for I G (all 0 indicated in (3.30). 

None of the preceding discussion depends upon the 
two-cluster nature of a. Consequently, all of our arguments 
generalize in an obvious fashion to a connectivity structure 
~ b defined with respect to an arbitrary partition b. In this 
context we encounter connectivity brackets [ ]!. We note 
that the usual string connectivity corresponds to 

[ ]~ = [ ]0' (Bll) 

The counterpart of (BIO) is 
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(BI2) 

restricting the string connectivity content of operators 
which are defined in terms of other connectivity structures. 
We note, in particular, that if [A 1t #0, then 

[ [A ]t ] 1 #0. (Bl3) 

Finally, we remark that in the text we have chosen, for 
the sake of contrast and emphasis, to use the I J rather than 
the [ ] a notation, where the connection is provided by (B9), 
for example. In general, however, the [A 1! designation of 
the a-connected part of an operator in ~ b is perhaps the 
more consistent notation. 

APPENDIXC 

The interaction-set equations (2.24), 

To = Do + L (KIla,b Tb, 
b 

where 

(CI) 

(C2) 

and where Da,b and (K) )a,b are given by (2.21) and (2.25), 
respectively, possess a deceptively compact appearance. In 
order to illustrate the detailed substructure of these equa­
tions, we consider the case of N = 4 with pairwise, three­
body, and four-body forces. 

It will be necessary to classify the partitions a,b, ... only 
on the basis of the number of clusters which they contain. As 
in the text, the one-, two-, three-, and four-cluster partitions 
are denoted as 1, a, i', and 0, respectively. 

The full interaction for N = 4 is 

V= LV"+L[V]a+[V]\, (C3) 
,. a 

We stress that, for the two-cluster partitions a which have 
two particles in each cluster, the a-connected operators [V]a 
do not correspond to any of the usual microscopic interac­
tions. Such seemingly unphysical operators do appear very 
naturally in truncated nuclear reaction theories. 13.14 

We recall that the full Green's function G possesses the 
cluster decomposition 

G = GDIS + [G 1 \ , (C4) 

where 

GDIS =Go + L [G];, + L [G]a (C5) 
,. a 

and where we denote the disconnected part of an operator tJ 
as tJ DIS' The following linear combinations of the variously 
connected components of G are also of interest: 

g,.==:Go + [G);, + L8a,;,u/ [G]/ 
l.a 

(C6) 

ga =Go + L.1a.,. [G],. + [G]a. (C7) ,. 
It will suffice to tabulate the nonzero components of Do 
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and (Kda,b' One finds, for the Born terms, 

Bi' = Vi' g,. Go-I = (V,.G)ms Go I, 

Ba = [V]a ga G 0- 1= [[ V]a G ] a G 0- I , 

B I = [V] I GD1S G 0- I . 

The nine components of the kernel are 

(KIl,.,I = L [Vi' G]y..1 y.l' 
y 

(KI Ii', P = (V,. G )ms 
- .1 p,i' ( [ v,. G ] p + [Vi' G ];, ) , 

(KIli', I = Vi' gi' = (Vi' G)ms , 

(Kda,P = [V]a ga 8a,p , 

(KI)aJ = [V]a ga ..1aJ ' 

(KI)a,1 = [V]a ga ' 

(Kdl,1 = [V] I GDIS , 

(KIlI,p = [V1t(GDlS -gp), 

(KlhJ = [V]I L [G]y ..1 yJ . 
y 
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Extension of the Froissart-Martin bound for complex scattering angles is improved using the 
solution of the Dirichlet boundary value problem for doubly connected domains. The Froissart­
Martin bound for physical scattering angles is used as input value on one of the two boundaries. 
The obtained bound is valid in an ellipse smaller than the Lehmann-Martin one. Possibilities for 
further improvements and applications are discussed. 

PACS numbers: 03.80. + r 

1. INTRODUCTION 

In a previous paper,1 we obtained an extension of the 
two Froissart-Martin high-energy bounds2 on the elastic 
scattering amplitudef(s,cos ()), 

If(s,cos e)1 < Cls3/41n3/2!' I sin e 11/2, for 0#0#1T (Ll) 

and 

I f(s,cos e) I < C 2s In2 s, for e = 0 or 1T (1.2) 

to unphysical scattering angles. Here, s is the center-of-mass 
(c.m.) total energy squared and e is the c.m. scattering angle. 
The extended bound is valid in a complex neighborhood of 
the physical interval - 1 ";;cos e..;; 1 inside the Lehmann­
Martin ellipse, whose semimajor axis p is equal to 1 + a/s 
with some a > 0 and whose foci are at cos e = ± 1. If we 
represent a general point z of the complex plane in the form 

z = r cos e + i(r - 1)1/2 sin () (1.3) 

(with Oo;;;e < 21T and.!> 1) and if we introduce the following 
two functions of s, 

6 = (2a)1/2 s- 1/2 1n -1 s, 

A=I+1/lns, (1.4) 

we can write the new bound 1 in the form 

I f( )1 C 6 - (r - l)A (1 5) 
soX < [6 _ (r+ - l)A P12[6 - (r- - l)A ]3/2' . 

where r ± = r ± (r - 1).112 The bound is valid for all () in­
side an ellipse with r = r2' where 

r2 = 1 + a's-lln -2 s (1.6) 
for any positive a' <a. Comparing (1.6) with the Lehmann­
Martin ellipse, YL = 1 + as-I, we see that the validity do­
main of (1.5) shrinks faster than it by In2 s with increasing 
energy. 

Setting r = 1 on the right-hand side of (1.5), we easily 
check that the formula (1.5) reproduces the original Frois­
sart-Martin bound (1.2) for forward and backward scatter­
ing, but it does not reduce to (Ll) for the other scattering 
angles, giving a bound that rises faster with increasing ener-

gy than the right-hand side of (1.1) at fixed (). This suggests 
that an improvement of (1.5) should be possible. 

In the present paper we show that such an improvement 
of(1.5) is indeed possible, by solving the Dirichlet boundary 
value problem for a ring. As boundary values of the solution 
on the inner and the outer circles of the ring, we take the 
right-hand side of (1.1) and the right-hand side of (1.5), re­
spectively. As a result, we obtain an improvement of the 
asymptotic bound (1.5) everywhere inside the ellipse (1.6), 
which is a conformal map of the ring, with the exception of 
some neighborhoods of the foci. After a brief survey ofmeth­
ods and results of Ref. 1 in Sec. 2, we find in Sec. 3 the explicit 
form of the solution to the Dirichlet problem for a ring 
(Theorem 1) and show that the solution yields a new bound 
onf(s,z) that is lower than (1.5) (Theorem 2). Proofs are de­
ferred to Appendix A. Then, in Sec. 4, we use the general 
formula (3.2) to derive the bound. As the solution (3.2) has 
the form of an infinite series, we show in Appendix B that the 
order of the summation and of the high-energy limit S-+ 00 

can be interchanged. This allows us to express the result in 
terms of hyper geometric functions [see formula (4.19)]. In 
Sec. 5, we consider various possibilities leading to a further 
improvement of the bound obtained. Concluding remarks 
are given and possible applications of the result are discussed 
in Sec. 6. 

2. BOUNDS ON SCATTERING AMPLITUDE FOR 
PHYSICAL AND UNPHYSICAL ANGLES 

The amplitudef(s,z) describing the scattering of two 
spinless particles can be expanded in the Legendre series 

(S)1/2 00 

f(s,z) = - L (2/ + l)a / (s)P/ (z), (2.1) 
2k /=0 

where k is the c.m. momentum of the particle. The unitarity 
condition implies that 

la/(s)1 0;;; 1 (2.2) 

at all energies and / = 0,1,2, .... 
Further, we consider the auxiliary function g(s,w) de-
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fined in terms ofthe partial amplitudes a/Is), 

(S)1/2 00 

g(s,w) = - L (21 + l)a/(s)wl
• 

2k 1=0 
(2.3) 

Using the well-known representation ofthe general Le­
gendre polynomial p/(z), 

P/(z)=~ r w/(w2-2wz+I)-I/2dw, 
1Tl Jr 

where r is a curve connecting the points 
z - (r - 1)1/2 = y-e- i(} andz + (r - 1)1/2 = y+eiIJ, we 
can relatef(s,z) to g(s,w) by the formula 

1 J dw f(s,z) = -: g(s,w) (2 2 1)1/2 ' 
1Tlr w-wz+ 

(2.4) 

where r is chosen so that the points y ± e ± i(} and the curve r 
connecting them lie inside the convergence circle C if of (2. 3) 
with R>R =p + 1p2 - W12• Then, following the approach 
of Kinoshita, Loeffel, and Martin,3 we made in Ref. 1 the 
additional assumption thatf(s,z) is bounded, at sufficiently 
high energies, by a polynomial in energy everywhere inside 
the Lehmann-Martin ellipse, 

I f(s,z) I <?, s>so, (2.5) 

and obtained I the following high-energy bound ong(s,w): 

Ig(s,w)I <4(2a')-1/41T-1 /2?+ 1I4(R -lwl)-2 (2.6) 

for any a' <a and Iwl <R. 
Besides the polynomial bound (2.6), an s-independent 

upper bound on g(s,w) holds inside the unit circle. It follows 
from the unitarity condition (2.2) and from the Taylor ex­
pansion (2.3), and has the form 

Ig(s,w)i < C I (l - IW!)-2, for Iwl < 1. (2.7) 

While (2.7) cannot be used at I wi> 1, its influence never­
theless extends to the ring I < I wi < R thanks to the bound 
(2.6). This is shown in Ref. 1 with the help of the three-arc 
theorem. The result is 

Ig(s,w) I <C2(1 -Iwl + R -lwl)2, l<lwl<;:, (2.8) 
In s 

where 

;: = 1 + 1 ( 2a )112 
1 + In s ---;- . 

As the first step, we derived in Ref. 1 a bound that un i-

lmw 

Re w 

FIG. 1. Integration curve ABeD for the estimate of the right-hand side of 
Eq. (2.4) in the case of physical scattering angles 8. The resulting bound is 
(2.11). 
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1m w 

FIG. 2. In the case of complex scattering angles. the integration curve r 
connecting the points r+ ei8 and r- e - 18 is chosen to be the straight line. The 
resulting bound is (1.S). 

fies (1.1) and (1.2) in one compact formula. To this end, intro­
ducing the notation 

K = w2 - 2wz + 1 (2.9) 

and expressing K as 

K={w-y+ei(})(w_y-e- iIJ ), y± =y±(y_l)I12, 

we estimate K from below 

(2.10) 

while the integration curve r is chosen according to Fig. 1. 
The resulting bound is 

C ( 1 
If(s,cos 8)1 <-t- 83/21sin 8 11/2 

Isin 8 11/2 
X arctan 8 1/2 1 ) + . 

8(8 + Isin 8\) 
(2.11) 

One can easily check that it reproduces, apart from constant 
factors, the bound (1.1) and (1.2) for 8>8 and 8<8, 
respectively. 

Both the bound (2.8) ong(s,w) and the formula (2.4) can 
be used outside the unit circle in th w plane, i.e., in a complex 
neighborhood, y> 1, of the interval [ - 1,1] in the z plane. 
This means that, replacing g(s,w) in (2.4) by its bound (2.8), 
we obtain a bound on the amplitudef(s,z) for unphysical 
scattering angles. Its form depends on the choice of the curve 
r in the w plane. In Ref. 1, we obtained the bound (1.5) by 
choosing r to be the straight line connecting the fixed end 
points y-e - i(} and y+ eiIJ (see Fig. 2). 

3. THE BOUNDARY VALUE PROBLEM FOR HARMONIC 
FUNCTIONS IN A RING 

We shall need in the next section the solution of the 
Dirichlet boundary value problem for a ring. Theorems on 
the existence and uniqueness of the solution to this problem 
are well known (see e.g., Ref. 4), as well as the explicit form of 
the solutionS (see, e.g., Ref. 6). We nevertheless derive in 
Theorem 1 the solution in a different form, one that is more 
appropriate for our purpose. A sketch of the proof is given in 
Appendix A. In Remark 2, we generalize the result to the 
case of unbounded integrable functionsgl(tp) andg2(tp). For 
the case of a general doubly connected domain, the solution 
can be obtained from (3.2) by the conformal mapping trans-
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1m S 

Re~ 

FIG. 3. The domain G: a ring in the complex {; plane, {; = r ei'P. 

forming the ring to the domain considered. 
Let Cbe the set of all complex numbers t. Denote by G 

the domain IteC:r. < It I <r2J, where r. and r2 are positive 
real numbers (see Fig. 3). If a function u(t) is defined in G we 
shall use the notation u(r,ljJ ) for it where u(r,ljJ ) = u(t ) for 
t = rel'P. 

Definition 1: A real continuous function u(t ) defined on 
G is called harmonic if it has continuous partial derivatives 
of the second order and satisfies Laplace's equation. 

Theorem 1: Letg.(ljJ) andg2(ljJ) be real continuous func­
tions given for O<ljJ<21T, and let gl(O) = g.(21T) and 
g2(O) = g2(21T). Then there exists a harmonic function u(r,ljJ ) 
on G continuous on the closure G and such that 

u(r.,ljJ) = g.(ljJ) and u(r2,ljJ) = g2(ljJ) for allljJ. (3.1) 

The function u is unique and is given by 

1 
u(r,ljJ) = ---

21Tln(r2Ir.) 

X [In r2 r21T 
gl(t/!) dt/! + In.!.... r21T 

g2(t/!) dt/!] 
r Jo rl Jo 

+ J.. r
21T 

[g.(t/!)Q (!i,.!.... ,ljJ - t/!) 
1T Jo r r2 

+ g2(t/!)Q (~ , r; ,ljJ - t/!)] dt/!, (3.2) 

where 

Q (a,b,ljJ) = ! an(b 2n - 1) [tab fn - 1] -·cos nljJ. (3.3) 
n=. 

Proof of the theorem is given in Appendix A. 
Remark 1: Certainly Q (a,b,ljJ ) = Q(lIa,lIb,ljJ )fora#O, 

b #O,and IQ (a,b,ljJ)1 < 00 for lal < 1, lab 21 < 1. The last state­
ment follows from the inequality lab I = (lal)·/2(Jab 21)1/2 < 1. 

Remark 2: Assume thatthe functiong I (ljJ ) is not contin­
uous at ljJ = 0 but is integrable. Then u(r,ljJ ) given by the 
formula (3.2) is a harmonic function fulfilling u(r,ljJ) = gl(ljJ) 
for ljJ#O. Definefn(ljJ) = gl(ljJ) for IgI(ljJ lI<n,fn(ljJ) = n for 
g.(ljJ) > n andfn(ljJ) = - nfor gl(ljJ) < - n, and Un (r,ljJ ) the 
corresponding solutions given by the formula (3.2). Then 
u(r,ljJ) = limn_ oo un (r,ljJ ) with the exception of the point 
r= r., ljJ = O. 

Let C again denote the set of all complex numbers, and 
B a bounded region in C. Denote by B,It) the domain 
I weC: I w - t I <r J, i.e., the disk of radius r around t. 
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Definition 2: A real continuous function u(t ) defined on 
B is called subharmonicifu(t )«1I21T)S~1TU(t + rel'P) dljJ for 
tEB and r> 0 such that B,(t)B. 

We remind the reader that iff(t ) is a holomorphic func­
tion on B then I f(t) I is a subharmonic function in CB. 

Lemma (Principle of the maximum): Let u(t) be a sub­
harmonic function in B. If a point toEB exists such that 
u(to) = max I u(t) : teii 1 then u is a constant, u(t) = u(to). 

This theorem can be found in standard textbooks; we 
therefore give only a brief sketch of the proof. Let toEB be 
such a point. Then there exists ro> 0 such that B,. (to) CB. 
Assume that a point t.EB,. (to) exists such that u(t.l < u(to)· 
The continuity implies that ad> 0 exists such that 
u(t) < Hu(t.) + u(to)] for tEBd (t.). Setting r. = It. - tol we 
have u(t )<u(to) for tEB and u(t) < Hu(t.) + u(to)] for 
tEBd(t.). This implies that 

I i21T 
- u(to + r .el'P) dljJ < u(to), 
217" 0 

which contradicts u(to)«1I217")S~1TU(to + rlel'P) dljJ. Thus, it 
follows that u(t ) is constant on B TO (to), Repeating this proce­
dure, we successively prove that u is constant on the wholeB. 

Theorem 2: Let the function u be subharmonic in the 
ring G and continuous on the closure G. Let v be harmonic in 
G and continuous on G. If u(t )<v(t) on the boundary of G, 
then u(t)<v(t) in G. 

As in Theorem 1, we defer the proof to Appendix A. 
This is the mathematical background of our approach. 

In the following section, we use it to improve the bound (1.5) 
everywhere inside the ellipse given by (1.6). Theorem 2 is 
used to show that the new bound, which is a harmonic func­
tion in a doubly connected domain, is better than the old one, 
(1.5). Theorem 1 gives the explicit form of the harmonic 
function. 

4. DERIVATION OF THE BOUND 

The solution (3.2) to the Dirichlet boundary value prob­
lem for the ring G can be applied to any doubly connected 
domain D, provided that the corresponding conformal map­
ping between G and D has been carried out. In our case, the 
domain D which the interval of the ellipse 
r2 cos () + i(ri - 1)1/2sin () from which the interval [ - 1,1] 
has been removed. We denote this domain by E; it is the set of 
points that is parametrized by (1.3) with O<(} < 217" and 
1 < r < Yz. Its inner and outer boundaries, (1.3) with r = 1 
and (1.3) with r = r2' are denoted by EI and Er2 , respectively 
(see Fig. 4). 

The ellipse E is mapped onto the ring G in the complex t 
plane, t = It lel'P, 1 < It I <r2 (see Fig. 3) so that 

() = ljJ, 

r=~(ltl + Itl-·)· (4.1) 

On E., the boundary value of the harmonic function is equal 
to the right-hand side of (1.1), i.e., 

g.(ljJ) = A ./lsin ljJ11/2, (4.2) 

where 

(4.3) 
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1m z 

Re z 

FIG. 4. The domain E: the set of points of the form z = r cos e 
+ i(y - I) sin e with I < r < rz. E is obtained from G (see Fig. 3) by the 

conformal mapping (4.1). 

On E yz ' the functiong2(lP) is the right-hand side of(1.5), i.e., 

g2(lP) = M (Y2)' (4.4) 

where 

is independent of lP. 
Sincef(s,z) is bounded, at sufficiently high s, by g I (lP) and 

g2(lP)onE1 andEy" respectively, it must be bounded, being a 
subharmonic function, by the harmonic function u(l; l,lP) 
everywhere in the domain E. This is the content of Theorem 
2. It applies to our situation at s~oo. Indeed, g2(lP) = M (Y2) 
on Ey, andgl(lP) <M(l) = C(2a)-1 s In2s on EI except for 
asymptotically small neighborhoods of the foci. Thus, 
u(l; l,lP) <M(Y2) holds everywhere except these neighbor­
hoods. This proves that the new bound is asymptotically 
better than the original one. 

Let us tum now to technical aspects of the derivation of 
the bound. The right-hand side of (3.2) is a linear combina­
tion off our integrals, which we denote by 11,12, J I , and J2, 

respectively. Three of them can be easily calculated: 

II = A 1(2hr)I/2[r (aW, 
12 = 21TM(Y2)' 

J2 =0. 

The integral J I has the form of an infinite series 

where a = l/randp= r/r2• 

(4.6) 

(4.7) 

In this notation, the new bound on I f(s,z) I can be writ­
ten in the form 

I f(s,z) I < u(r,lP ), 

where 

(4.8) 

u(r,lP) = _1 __ 1_ [(In r2)II + (In r)I2 + 2J1(lP )], (4.9) 
21T In r2 r 

wherezis given by (1.3), r = I; I, while rand Y2 are related to 
rand r2 , respectively, by the conformal mapping (4.1). The 
bound (4.8) is valid at all 1 <Y<Y2' where Y2 is given by (1.6). 
Thus, Y2 tends to 1 with increasing energy and, as a conse-
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quence, Y 2' r 2' and r also tend to 1. In other words, the ellipse 
E shrinks to EI and the ring G shrinks to the unit circle with 
increasing energy. 

Thus, the main aim of this paper has been achieved. We 
have found a new bound, (4.8), which is better than the pre­
vious one, (1.5). On the other hand, one should spend some 
effort to simplify the expression (4.7) for J I , in order to make 
the bound more transparent. The remaining part of this sec­
tion is devoted to this task. 

Evaluating the integrals on the right-hand side of (4.7) 
and performing some elementary operations, we can give 
Eq. (4.7) the form 

JI(lP) = 41T..[2A
1 

rm I a
2k

(1 - P
4k

) [cos(2klP)] illi., 
[rGW k~ I 1 - (aP)4k Wk 

where we adopt the notation 

(a)k = r(a + k )/r(a). 

(4.10) 

In order to simplify further the expression for J I , let us 
consider only its high-energy dominant part. Denoting 

bds)=(I-p4k)l[1-(aP)4k], (4.11) 

we notice that lims~oo bk (s) is independent of k. Indeed, tak­
ing into account that limHoo a(s) = limHoo P (s) = 1 and us­
ing the I'Hopital rule, we obtain 

b: = lim bds) =P'(s)/[a(s}.8'(s) + a'(s}.8(s)]. (4.12) 
s~oo 

The infinite sum in (4.10) can now be simplified as follows. 
Introducing the notation 

and 

ak = a 2
\ 

(l)k 
Ck = [cos(2klP)] _4_, 

Wk 
we write (4.10) as 

(4.13) 

rm 00 

JI(lP) = 41T..[2A 1 2 L akbkck' (4.14) 
[r(~)] k~ I 

Then, we use the following relations, which are proved 
in detail in Appendix B; 

!~~ ttl akbkck - bktl akck} = 0 (4.15) 

for lP1'O, 1T, and 

(4.16) 

for b = 1 and lP = 0 or 1T. 
This allows us to express the high-energy approxima­

tion to J I in terms of the hypergeometric function 2FI' Intro­
ducing the symbol CT = (r 2 - r)(r 2 - 1) - I, 

J( )-2m11uA rm [ (1 2 F(l *2)] 
IlP - I [r(~w 2FI 'l;~;X) + 2 1 'l;~;X ' 

(4.17) 

where X = (1/r)ei<p =aei<p and X * denotes the complex conju­
gate to X. We take lP to be an arbitrary fixed, s-independent 
real number. As s tends to 00, v approaches the unit circle 
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from inside. The functions 2FI( l,!;l;w) for w = X 2 and 
w = X *2 have singularities on the circle, as can be seen from 
the following well-known formula7 

2FI(l,!;1;w) = (1 - W)-1/2 2FI( - !,!;l;w). (4.18) 

Note that the series 2FI( - !,!;l;w) converges in the whole 
disk including the boundary circle and, in particular, also 
the point w = 1. 

Using (4.18) in (4.17) and insertingJI into (4.9), we ob­
tain ass-oo 

U(r,91)=(r2-1)-I{(r-l)M(Y2) 

+ [r(!\]/: [1 +F(r,91)](r2-r)AI}, 
7T(21T) 

where F(r,91) is shorthand notation for 

F(r,91) = 2FI( - !O!;l;e2i'P)(1 - a2e2i'P)-1/2 

+ F ( - 1 I·J·e - 2i'P)( 1 _ a 2e - 2i'P )-1/2 
2 I 4'2'4' 

(4.19) 

and is finite at r = 1. The original bounds (1.1) and (4.4) are 
obtained from (4.19) by setting r = 1 andr = r2, respectively, 
in which case the first and the second terms in (4.19) vanish, 
respectively. 

We have already mentioned that both Y2 and r2 ap­
proach 1 from above with increasing s. As a consequence, Y 
and r must also tend to 1. Let us now consider this problem 
quantitatively; this will give us the high-energy behavior of 
the new bound u(r,91 ). 

The high-energy behavior of Y2 is given by (1.6). Using 
(4.1), we get the behavior of r2: 

r2~1 + (2a,)1/2s-1/21n-ls. (4.20) 

The high -energy behavior of u(r,91 ) is determined by rand y. 
These two quantities, being smaller than r2 and Y2, 
respectively, 

(4.21) 

cannot approach unity slower than r2 and Y2' respectively, 
but may do so faster. This is up to our choice, and we can use 
this fact to make the bound u(r,91 ) asymptotically lower than 
the original M (y) given by formula (l.5).1t is clear that r - 1 
must vanish faster than r 2 - 1 at s_ 00 ; indeed, if r - 1 be­
haves like r2 - 1 then it follows from (4. 19) that u(r,91 ) has the 
same behavior as M (y) and represents no improvement. 
Thus, assuming now that r - 1 vanishes faster than r2 - 1, 

TABLE I. Survey of ellipses in the complex z plane. 

Lehmann-Martin ellipse 
[validity domain of partial 
wave expansion (2.1)] 

Interior of E y , 

[validity domain of (\.5)] 

Interior of Ey 
[validity domain of (4.26)] 

Semimajor 
axis 

rL = I +!!.... 
s 
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(4.22) 

with K > !, A. > 1, we obtain the following asymptotic form of 
u(r,91 ): 

u(r,91 ) ~A1/S312 - K ln3 - .. s + B (91 )s3/4 ln3/2 s, 

where, for 91#0 or 1T, 

A = _1_ aI/2a'-1/2(a _ a')-3/2c 
2v'1 ' 

(4.23) 

B(91) = [rUW2-1/21T-3/2[1 +F(I,91)]C1, (4.24) 

and 1/ is an arbitrary positive constant· 
For K = A. = 0, (4.23) represents no improvement in 

comparison with (1.5). For 0 < K < a and 0 < A. <~, the first 
term in (4.23) is dominant and u(r,91 ) gets asymptotically 
lower with increasing K and/or A.. At the same time, howev­
er, the ellipse of validity of the improved bound (4.23) 
shrinks faster with increasing K and/or A., because of (4.22). 
The corresponding Y which determines the semimajor axis 
of the ellipse is obtained from (4.22) and (4.1) 

(4.25) 

Consequently, by choosing the values of K, A., and 1/, we 
choose either a tight bound (4.23) with a narrow ellipse of 
validity (K = l, A. = ~), or a loose bound with a wider ellipse of 
validity (K and A. close to zero). The slowest increase of the 
new bound (4.8), (4.23) is reached for K = 1 and A. =~. Then 
the bound has the form 

I f(s,z) I < [A1/ + B (8 )]s3/41n3/2s, 8 #0,1T, (4.26) 

withA andB (8) given by (4.24). Its energy dependence is the 
same as that of (1.1); thus, the bound (4.26) represents an 
extension of the Froissart bound (1.1) to complex scattering 
angles. 

The ellipse of validity of (4.26) shrinks as 

Y~ 1+ !1/2 - s-3/2In- 3s. (4.27) 

For a comparison see Table I. 

5. DISCUSSION OF PERSPECTIVES FOR FURTHER 
IMPROVEMENT OF THE BOUND 

Our bound (4.26) can be further improved by lowering 
the boundary value functionsg l (91) andg2(91). Concerning 
g 1(91), let us note that we have used the right-hand side of (1. 1 ) 
[call it B 1(91); note that 8 = 0 according to (4.1)] for gl(91), 

Radius of the 
circle according to (4.1) 

r = I + "Is-3/41n -3/2 s 
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although for any given energy Sl/2 there is a small interval of 
angles, €(s), around the forward and backward directions 
(sin () = 0) for which the right-hand sideof(1.2), B2, becomes 
smaller than B I (() ). One should therefore take for g I (qJ) the 
function 

BI(qJ )e(B2 - B2(qJ)) + B2e(BI (qJ) - B2), (5.1) 

where e is the step function. As (5.1) is always smaller than 
or equal to B I (qJ), we reach by this an improvement of the 
bound (4.26) for every s. 

The functiong2(qJ), which is the right-hand side of(4.4), 
offers several possibilities of improvement. To see this, let us 
notice that, in deriving (1.5), Eqs. (2.1 )-(2.4) play the decisive 
role. Formally, we can derive a bound onf(s,z) immediately 
from (2.4): 

If(s,z)I";~ f Ig(s,w)llw2 -2wz+ll- ti2 dw. (5.2) 
1T Jr 

This suggests that the value of the right-hand side depends 
on three factors: on the estimate of Ig(s,w)l, on that of 
I w2 

- 2wz + 11- 1/2 and on the choice of the integration 
curve r, which has only its end points fixed. We discuss 
these three possibilities. 

Let us start with the estimate of g(s,w). Following the 
approach of Ref. 3, we derived I a bound on g(s,w) by making 
only the assumption of the polynomial boundedness (2.5) for 
f(s,z) in the Lehmann-Martin ellipse. Our result (2.6) is to be 
compared with Ig(s,w) I < C:/' + 3 of Ref. 3. 

Then, by using (2.6), we transform the right-hand side 
of(5.2) to 

C f1T12 .. 
_2 [b - A (bo + b l sm x + b2 sm

2 X)1/2] -2 dx, (5.3) 
1T -1T/2 

where 

b = 1 +R /lns, 

bo = r - sin2 
() 

bl = 2Y(r - 1)112, 

b2 = r - cos2 
(), 

and where the integration curve r was chosen to be the 
straight line as depicted in Fig. 2. Finally, we majorize (5.3) 
by another integral, 

(5.4) 

This integral, being evaluated analytically, leads to formula 
(1.5), on which our final result (4.26) is based. 

As we have already pointed out there are two other 
ways leading to an improvement of our bound (4.26): to 
choose a more approriate integration curve r, and to make a 
better estimate of the integrand. The former method leads to 
a variational problem of choosing the optimal curve rOP! 

lying in a domain and having its end points fixed. We do not 
have much to say concerning this problem, although we be­
lieve that, if solved, it may lead to a considerable improve­
ment of the result. 

Finally, we want to show how a better estimate of the 
integral (5.3) can be found, assuming that the curve r has 
been chosen to be the straight line (Fig. 2). It can be proved 
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(by exploiting the properties of a second order polynomial) 
that the expression 

A + B sin x + C sin2 x, 

with 

A = (b - Ay)2 + d, 

B = - 2A (b -AY)(r - 1)112, 

C=A 2(r -1) -d, 

where 

O..;d..;b (Y- - A )sin2 (), 

(5.5) 

is bounded from above and from below by the denominator 
of the integrand of (5.3) and (5.4), respectively. As a conse­
quence, the integral 

C f1T12 
_2 (A + B sin x + Csin2 X)-I dx 

1T - 1T12 
(5.6) 

leads to a better bound than (5.4). Explicit calculation leads 
to the expression 

I f(s,z) I <M(Y2)(1 + plsin () 1)-1/2, (5.7) 

with 

p = 82/[8 - (y- - 10], 

Thanks to positivity of p, (5.7) represents a lower bound than 
(4.5) and, consequently, would also lead to a better estimate 
than (4.26). Needless to say, a further improvement can be 
achieved by means of explicit numerical evaluation of (5.3) 
and then invoking the Dirichlet problem according to Sec. 3. 

The case of particles with spin can be analogously treat­
ed and the same improvement by use of the Dirichlet prob­
lem, as performed in the present paper, can be carried our for 
each helicity amplitude as described in Ref. 1. 

6. CONCLUDING REMARKS 

Rigorous bounds on scattering amplitude have been im­
portant as general, model-independent consequences of the 
principles oflocal field theory. From the practical point of 
view, they have served as guidance for model building, not to 
be violated in different calculational schemes, and the like. 
They can be also used to stabilize the extrapolation of experi­
mental information to regions which are not experimentally 
accessible. 

The fixed-angle Froissart bound (1.1) is rather low com­
pared with other rigorous bounds. It is therefore interesting 
that its extension (4.26) to the ellipse (4.27), although smaller 
than the original one, around the physical interval [ - 1.1 l, 
is at all possible. Of course, we obtained this result thanks to 
the assumption (2.5) that the scattering amplitude is polyno­
mially bounded at high energies everywhere in the Leh­
mann-Martin ellipse, a feature that has not been proved 
from axiomatic field theory. Similar assumptions, however, 
have been frequently made in the past, to obtain results that 
were later proved on a more rigorous basis. 

Let us also mention that, on the other hand, it is not 
excluded that an iteration procedure might help in finding 
better and better bounds. 

A serious obstacle to applications might be the rather 
fast shrinkage, (4.27), of the ellipse of validity of our bound. 
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Indeed, as it is seen from Table I, it is only the Lehmann­
Martin ellipse EYL that shrinks to E\ at the same rate as do 
the singularities (poles and cuts) in the t-plane. It is therefore 
desirable to try to obtain a bound valid in a larger domain 
than Ey , which is given by (4.27). 

The authors are convinced that, using the methods dis­
cussed in Sec. 5, it is possible to obtain a still better bound 
g2(ip) at the points of Ey, and, thereby, to achieve further 
improvement of the bound (4.26) as well as an extension ofits 
ellipse of validity (4.27). 
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APPENDIX A: PROOFS OF THEOREMS 1 AND 2 OF 
SEC. 3 

Pro%/Theorem 1: The functionsg\(ip) andg2(ip) can be 
expressed, in the sense of convergence in L 2, in the form 

g;(ip) = ! (u\n) cos nip + v\n) sin nip), i = 1,2. 
n=O 

We seek the solution in the form 

u(r,ip) = ! Un (r,ip ), 
n=O 

where Un (r,ip) are harmonic functions in G fulfilling 

Un (r;.ip ) = u\n) cos nip + v\n) sin nip, i = 1,2, (AI) 

for n = 0,1,2···. 

Using the fact that the real part of a holomorphic func­
tion is harmonic we put 

uo(r,ip ) = Re(ao + bo In z), 

Un (r,ip) = Re(anzn + bnz - n), n> 1. (A2) 

The relations (AI) imply a set oflinear equations for an and 
bn that allow us to give (A2) the form 

Un (r,ip ) = ! f~g\(¢) (~r [(~yn - 1] 
X [ c: yn - 1] - 1 cos n(ip - ¢) d¢ 

+ ! f~ g2(¢l(;Jn[ (r; yn - 1] 
X [(~:)2n _ 1] - 1 cos n(ip - ¢) d¢. 

First we prove that l:: = 0 Un (r,ip ) exists and fulfills our 
assumptions under the condition that the functions g I (ip) and 
g2(ip) have continuous derivatives. In this case, nu\n), ... ,nv~n) 
are the Fourier coefficients of the derivatives g; (ip ) and 
g~ (ip ) and, because of the Parseval identity 
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_1_ r2~ [g; (ip )]2 dip = ! n2 [(U\n))2 + (v\n))2], 
217' Jo n = 0 

_1_ r2~ [g~ (ip)]2 dip = ! n2 [(u~n)j2 + (v~n))2]. 
217' Jo n=O 

We can show now that the functions l:~ = 0 Un (r \,ip ) and 
l:~ = OUn (r2,ip) converge, respectively, for N-+oo tog1(ip) and 
to g2(ip) uniformly with respect to ip. The convergence is 
proved with the help of the following inequalities: 

) f un(r;.ip)-g;(ip))< i Iu\n) cos nip + v\n) sin nip I 
n=O N+l 

< i ((u\n))2 + (v\n))2)\/2 = i n((u\n))2 + (v\n))2) \ 12 ...!... 
N+l N+l n 

( '" )1I2( '" 1 )112 < L n2[(u\n))2 + (v\n))2] L 2 ,i = 1,2, 
N+I N+ln 

where the last expression converges to zero with N-+oo. 
The principle of the maximum for harmonic functions 

implies that l:~ = 0 Un (r,ip ) converges to u(r,ip ) 
= l::= 0 Un (r,ip ) uniformly on G so that u(r,ip ) is the harmon­

ic function in G continuous on G and fulfilling the given 
boundary conditions. 

In the general case we can approximate the continuous 
functionsgl(ip) andg2(ip) by a sequence offunctionstt)(ip) and 
t{)(ip ), respectively, such that 

lim sup Igi(ip) - tt)(ip) I = 0, i = 1,2, (A3) 
5_00 tp 

where tt)(ip) and t{)(ip ) have continuous derivatives. Denote 
by uiS)(r,ip ) the corresponding solution of the boundary value 
problem. The principle of the maximum together with the 
relation (A3) implies again that uiS)(r,ip) converges to a har­
monic function u(r,ip ) fulfilling the boundary conditions 
withg1(ip) andg2(ip). Relation (A3) and Remark 1 yield that 

r2~ 
Jo Ig\S)(¢) - g;(¢)1 d¢-+O 

and 

fP Ig\S)( ¢) - g; (¢) I I Q (a,b,ip - ¢) I d¢-+O 

for S-+oo if lal < 1, Ib I < 1. This implies that formula (3.2) is 
valid in the general case, too. This completes the proof of 
Theorem 1. 

Pro%/ Theorem 2: The function w(z) = u(z) - vIz) is 
subharmonic in G, continuous on G, and satisfies 

w(z)<O (A4) 

on the boundary of G. Assume there exists a point Zo such 
that w(zo) > O. Then, max { W(Z):ZEG 1 > 0, and a point z lEG 
exists such that w(zd = maxI W(Z):.xEG I. Because of (A4) the 
point z I certainly cannot be on the boundary of G such that 
z lEG. We can apply the principle of the maximum and obtain 
a constant w(z), w(z) = w(zd > 0, which contradicts (1). 

APPENDIX B: PROOF OF RELATIONS (4.15) AND (4.16) 

Let a(s) and P (s) be functions defined for s > a and hav­
ing continuous derivatives. Assume that 
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lim ,8 '(s)/[a'(s) +,8 'Is)] = b 

is finite, and that 

O<a(s)<I, 

0<,8 (s)< 1, 

,8 (s) is nondecreasing, and 

lim a(s) = lim ,8 (s) = 1. 
S __ co 5--00 

Theorem 3: For a(s) and,8 (s) defined above, the relation 
(4.15) holds for sin ,p:/=O, where ak,bk, and Ck are defined by 
(4.13). 

Proof First of all, we notice the following asymptotic 
formula for k_ 00 : 

I
Uk - rw _1_\ <_I_k -5/2 

Wk rw.Jk 64 
(Bl) 

(see Ref. 8). This formula indicates that the series 'I.k' = OCk is 
not absolutely convergent. 

In the following, we shall need the following three state­
ments on infinite series: 

Statement 1: 
n n-l 

I A;B; =SnBn - I S;(B;+I -B;), 
;=k ;=k 

where SI = 'I.: = kA;. 
Statement 2: Let 'I.7= IA; be uniformly bounded and 

{B; J a monotonic sequence with lim;~ao B; = O. Then 
'I.;""= IA;B; is convergent. 

Statement 3: Let 'I.;""= IA; be convergent and {B; J a 
monotonic sequence with a finite lim;~ao B;. Then 
'I.;""= IA;B; is also convergent. 

Lemma 1: The series 'I.k' = I Ck and 'I.k' = I akCk are con­
vergent if sin ,p:/=o. 

Proof Certainly, 

Wk 
Ck =-cos(2k,p)=Hk +Lk' 

Wk 
where 

H - [ (!lk r (l) 1 ] (2k.I.) 
k - (a)k - rw (k)l12 cos '1" 

_rw 1 
Lk - rw (k )1/2 cos(2k,p). 

The sum 'I. k' = I H k is absolutely convergent because of (B 1). 
The sum 'I.k' = I Lk is a convergent series because k -1/2 is a 
monotonic sequence and 

i cos(2k,p) = [sin(2n + 1),p - sin ,p] (2 sin ,p)-I 
k=1 

are bounded for sin ,p:/=O. So, using Statement 2 we obtain 
that 'I.:' = ICk is convergent. Then, using Statement 3 we ob­
tain that 'I.k' = I akck is convergent since {ak J is a monotonic 
sequence [see (4.13)]. 
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Define 
k 

Sk = I a;c;. 
;= 1 

00 

s= I a;c;. 
i= 1 

Lemma 2: There exist four constants d l , d2, d3, and d4 

such that 

d d a2k + 2 

IS - Sk 1< __ 1_ + 2 for l<k<n, (B2) 
n k + 1 (k + 1)1/2 Isin,p1 

and 

ISk l<d3 + d4/lsin ,pl· 

Proof 

Sn -Sk 

n n [Wj r(3) 1] . 
= I ajCj = I aj - - .:.....l£. --uz cos(2J,p) 

j=k+ I j=k+ I (a)j rw (jj 
r(3) n a· 

+ .:.....l£. " _1_ cos (21'.1.) 
r( l) . ~ (.)1/2 'I' . 

4 J=k+1 J 

(B3) 

Using relation (B 1 ) we can estimate the first term on the right 
hand side of (B2) by 'I.j = k a2jcj - 512. Denote 

k 

Zk = I cos (2j,p) = (sin[(2k + 1),p] - sin ,p)/(2 sin ,p). 
j=1 

Applying Statement 1 we obtain 
n a I ad- 1/2 cos(2jf/J) = (Zn - Zk)-Ttl 

j=k+1 (n) 

-;t~ (Zj - Zk{U ~+1;1/2 - U~:12) 
= sin[(2n + 1),p] - sin[(2k + 1),p] an 

2 sin ,p (n)1/2 

_ nil sin [(2j + 1),p] -:- sin[(2k + 1),p] 

j=k 2s1O,p 

X(U ~+1;1/2 - (;:12)' 

Since the sequence {a/V) 1/2 J is monotonic we obtain 

I i a:
12 

cos(2jf/J) I <ca2k+2(k + 1)-1I2(sin,p)-I. 
j = k + I vj 

By this, the inequality (B2) is proved. The inequality (B3) is 
proved analogously. We have 

S ~ [Wj rw] (2 .• 1,) 
k = j-=-I aj Wj - rWW12 cos 1'1' 

+ [ sin[(2k + 1),p] - sin,p ~ 
2 sin,p .Jk 

_ kfl sin[(2j + 1.),p] - sin,p 

j=1 2s1O,p 

X (V: ~ ;1/2 - v;:12)] ~ :i: . 
Since laj I = la2j l" 1, relation (B3) is proved, too. 

Lemma 3: The sequence {bk (s) J is monotonically in-
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creasing in k for any s. Further, we have 

(B4) 

and 

(B5) 

Proof: Relations (B4) follows from the fact that 
0<.{3 (s)< 1. (B5) follows from the l'Hopital rule. The fact that 
bds) is monotonic, 

bds)<bk + tis) (B6) 

is equivalent to 

(1 _ P4k)(1 _ p 4k + 4)-1 

< [1- (aP)4k][ 1 _ (aP)4k+4]-I. 

As 0 < a < 1, it is sufficient to prove that 

h (x) = (1 - xk)/(1 _ xk+ I) 

is decreasing in x for all xe(O.I). To prove this, it is sufficient 
to notice that 

h '(x) = xk- I(1 - xk+ 1)-2(1 - x) 

X (x + x 2 + ... + Xk - k )<0. 

Thus, (B6) holds. Lemma 3 is proved. 
We are now in a position to prove Theorem 3. Because 

of Statement 1, we can write 

_ n-l 

= Sn (s)[bn (s) - b] - L Sk(s)[bk+ I (s) - bds)]. 
k=1 

This equality can be rewritten in the following way: 

i akck(bk - b) = Sn(s)[bn(s) - b] 
k=1 

- I I Sk(s)[bk+ tis) - bds)] 
k=1 
n-I 

- L (Sk(s)-Sn(s)](bk+tls)-bds)] 
k = no 

- Sn(s)[bn(s) - b,..(s)], 

where l<no<n - 1. Finally, 

= Sn (s)[b,.. (s) - b] - I ISk(S)[bk+ I (s) - bk(s)] 
k=1 

n-I 

- L (Sds)-Sn(s)](bk+tls)-bk(s)]. 
k= no 

Because of Lemma 2, the values of S k (s) are uniformly 
bounded for sin "'=1=0. We have 

I ktl akcdbk - b) I «d3 + d~lsin "'Illbn.,(s) - b I 

+ ~ I Id3 + I .d4"'11 . Ibk+ tis) - bds) I k=1 sm Of' 

n - I I d I d2a
2

"o + 2 I 
+ L -+ 1 + ( + 1)1/21' "'I . Ibk+l(s)-bds)l· 

k = no no no sln 
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Since I bds) J is a monotonic sequence we obtain 

\ ktl akck(bk - b) \ «d3 + ISi~4"'1) Ib,.. (s) - 6 I 

+ (d3 +~) [b,..(s) - bl(s)] 
Ism "'I 

( 
d d a 2no + 2 ) 

+ no~1 + (no +\)1/2 ISin "'I [bn(s)-b,..(s)]. 

Applying the Statements 2 and 3 we see that 
l:k= lakcdbk - 6) is a convergent series. We have 

\ k~1 akck(bk - 6) \ « d3 + ISi~4"'1) 
X [Ib,..(s) - 6 1+ b,..(s) - bl(s)] 

( 
d d a 2no + 2 ) 

+ no~1 + (no+\)1/2 Isin"'l [1-b,..(s)]. 

Let s---+ 00 and no be fixed; then 

!~ sUP\k~lakcdbk -6)\ 
«_d_I _+ d2a2nu+2 )(1-6). 

no + 1 (no + 1)1/21sin "'I 

Since the number no can be arbitrary, the relation (4.15) is 
proved. By this, the first part of the Theorem 3 is proved. 

It is now easy to prove also the second part, i.e., relation 
(4.16). Because of Lemma 3, we have 

0< bl(s)<bds)< 1 

and 

bl(S)<L~1 a2kbd!)k/Wk ][k~1 a2k(!)k/(~)k] -1<1. 

Since lim
Hoo 

bl(s) = 6 = 1, relation (4.16) is proved. This 
completes the proof of the Theorem 3. 
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We study the integrability of the Einstein equations for a class of empty homogeneous space-times 
(Bianchi class A), once the self-duality constraints are imposed on the space-time itself. This 
system is integrable in the case of Bianchi type I and is a subset of Bianchi types VIo and VIIo' 
Bianchi type II space-times do not admit self-dual solutions and for the case of Bianchi VIII and 
IX we were unable to find a general integrability condition. 

PACS numbers: 04.20.Jb 

Until very recently relatively little work has been done 
in vacuum homogeneous anisotropic solutions of the Ein­
stein equations. Although we know that these solutions exist 
for any Bianchi types, I they were regarded for their math­
ematical significance only. The interest in the field has been 
raised in connection with the Euclidean approach to quan­
tum gravity2 where, analogous to the Yang-Mills case, the 
main contribution to the vacuum-to-vacuum transition am­
plitudes is supposed to come from the vacuum field configu­
rations which are stationary phase points for the classical 
action. The analogy with Yang-Mills instantons is then car­
ried further and brings special importance to metrics whose 
curvature is self-dual. As a matter of fact it has been shown 
that self-dual (or anti-self-dual) metrics are local minima in 
the action amongst vacuum metrics. 

The aim of this paper is to study the constraints im­
posed by the self-duality conditions over the vacuum Bian­
chi class A solutions of the Einstein equations. To this pur­
pose we write down the field equations and the self-duality 
conditions separately and we investigate the integrability of 
the Einstein equations under these particular constraints. 

In what follows we start with a pseudo-Riemann space­
time which admits a simply transitive, three-parameter 
group of motion G3 acting on spacelike hypersurfaces. There 
exists an orthonormal tetrad { ea J, where eo, which is normal 
to the spacelike hypersurface, can be identified with the four 
velocity U. We can therefore define the "electric" and "mag­
netic" parts ofthe Weyl tensor C't,.,d' Eab , and H ab , respec­
tively, according to 

Eac~CabcdUbUd, Eab = E ba , 

E~ =0, EabUb=O, 

Hac~*CabcdUbUd, Hab = H ba , 

*Cabcd==~,j - gEablm Ccd 1m, 

Haa=o, HabUb=O, 

(la) 

(lb) 

C cd = 20. E (CUd) + /j(c Ed) _ C-::g(E umH*ud) ab (a b) (a b) ,,- ~ abmn 

whereg is the metric and ( ) denotes antisymmetrization. We 
can perform a dual transformation on the structure con­
stants of the group of motion C 't,." obtaining the quantities 
cad defined by C~b = Eabd C dc, where Eabd is the three-di­
mensional Levi-Civita tensor. 

We can also profit from the "tensor" properties of cad, 
dividing it in its symmetric and antisymmetric parts: 
cad = nad + ~dcac' The following canonical choices are al­
ways allowed: 

(a) to take the vector {eu 1 as eigenvectors of the sym­
metric tensor naP; 

(b) to reduce nod to the principal axes, i.e., diag(nad) 
= (n l,n2,n3) and to assume ac = (a,O,O), with ani = 0. The 

Bianchi solutions in which a = ° are known as Bianchi-Behr 
class A solutions and in the following discussion we shall 
restrict ourselves to this case. (There are the Bianchi types I, 
II, VIo, VIIo, VIII, and IX.) 

At this point we make use of the following relation, 
valid for pseudo-Riemannian manifolds: 

(C + i*C)abcd = (gabpq + i17abpq)(gcdrs + i17cdrs) 
X UPur(E + iH)qs, (2) 

where 

17abcd=f=-iEabcd' 

gabcd=(gacgdb - gadgbc)' (3) 

The Weyl tensor is self-dual, i.e., - C = i*C, ifE = - lH. 
On Euclidean section this condition therefore becomes 
E = H. We point out that in the following these equations 
are to be regarded as integrability conditions on the existence 
of the Euclidean solution of the field equations which are 
taken in the same form of the pseudo-Riemannian case. For 
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present purposes, we will not investigate the problem of the 
existence and form of such solutions. 

The Einstein equations for vacuum Bianchi class A 
space-times,3 when written in the orthonormal basis, read4 

(here and henceforth we use geometrical units and we set the 
cosmological constant A = 0) 

hi = - (02 + 03 - 0l)n l, 

h2 = - (01 + 03 - (2)n 2, (4) 

h3 = - (01 + O2 - (3)n3, 

el = - 001 - !ni + ~(n2 - n3)2, 

e2 = - 002 - ~n~ + ~(nl - n3)2, 

e3 = - 003 - ~n~ + ~(n2 - nlf, 

(5) 

where the dot represents differentiation with respect to the 
Euclidean time; Oab is the expansion, 0 = Oa a, and diag(Oab) 
= (01,02,03), We shall search for the integrability conditions 

ofEqs. (4) and (5) under the following constraints. 
The first one is the condition 

0102 + 0203 + 0301 

= !(ni + n~ + n~ - 2n ln2 - 2n2n3 - 2n3nl), 

which represents the Hamiltonian constraint. 
The Euclidean self-duality constraints read 

- !ni + !(n2 - n3)2 - eel + 0i 
= - ~nlall + ~(n2 - n3)(02 - ( 3), 

-~n~ +!(n3-nlf-002+0~ 

= - ~np22 + ~(n3 - nl)(03 - Od, 

-!n~ +!(nl-n2f-003+0~ 

= - ~n3a33 + !(n l - n2)(01 - ( 2), 

(6) 

(7a) 

(7b) 

(7c) 

where aab denotes the shear tensor. Equations (7) are an ex­
plicit writing of the conditions Eaa = Haa. Since the tetrad 
vectors satisfying the condition nabab = 0 can be chosen as 
eigenvectors of the shear tensor aab' we obtain aab = 0 
whenever a=l=b, and au = OJ - jO. We observe also that 
Hab = Eab = 0 whenever a=l=b and, since both Hand E are 
trace-free tensors, only two out of the three constraints (7) 
are independent [e.g., (7a) and(7b)]. 

To study the integrability conditions of the system con­
sisting of Eqs. (4)-(7) we were unable to find a general algo­
rithm and the following discussion considers separately all 
the different cases. 

TYPE I 

The eigenvectors na are n l = n2 = n3 = O. 
The self-duality conditions read 

0 1(02 + ( 3 ) = 0, 

O2(03 + Od = 0, 

(8a) 

(8b) 

Notice that in this simple case the Hamiltonian constraint (6) 
coincides with the sum of Eqs. (8). In order to prove the 
integrability of the system consisting ofEqs. (4), (5), (6), and 
(8), we differentiate Eq. (8) with respect to time and we obtain 
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e l(02 + (3) + 01(e2 + (3) = 0, 

e2(03 + OJ! + 02(e3 + el) = 0, 

Using the field equations (5) which now read 

el = -001, 

e2 = - 002 , 

(9) 

and substituting into Eqs. (9) we reproduce the self-duality 
constraints (8). The self-dual solutions are then found as the 
solution of the system formed by Eqs. (8) together with the 
first integral (6) and they are 

Oa =1=0, Ob = Oe = 0, (10) 

so that there is only one of the expansion factors different 
from zero. The nonzero expansion factor is found by direct 
integration of the corresponding equation (5). 

TYPE II 

The eigenvectors are n l =1=0, n2 = n3 = O. The indepen­
dent self-duality conditions read 

- !ni - 01(02 + (3) = - nlOI + !n l(02 + ( 3 ), 

!ni - O2(03 + ( 1) = - !n l(03 - ( 1), 

Let us define a as 

(lla) 

(lIb) 

0102 + 0203 + 0301=a = !ni. (12) 

Using Eq. (12) we can eliminate ni from Eqs. (lla) and (lIb), 
obtaining 

2a + Od02 + (3) = nl[OI - !(02 + (3)], (13a) 

(13b) 

We can demonstrate that, in order for Eqs. (13) to be compa­
tible with the field equations (4) and (5), the matrix of the 
coefficients of n I (formally considered as unknown) has to be 
of rank 1. In particular, 

(01 - ( 3 )=1=0 

or otherwise we would get a < O. 
The conditions to be satisfied in order for Eqs. (13) to be 

solved are given by equating to zero the matrix of the coeffi­
cients and the known terms; that is, after some manipula­
tions 

(02 - (3)(Oi + a) = 0, 

which implies (02 - ( 3 ) = 0; 

that is, 

a = 20103 + O~. 
Putting Eq. (14) into Eqs. (13), we obtain 

2(30103 + 0 ~) 

(01 - ( 3 ) 

(14a) 

(14b) 

At this juncture, as in the former Bianchi type I case, in order 
to prove integrability differentiate the constraints (14b) with 
respect to time and use the field equations (4) and (5). We thus 
get the new constraints 
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(01 + ( 3) = 0, (15) 

and substituting Eq. (14a) we arrive at the expression 

a = - O~ <0, 

which contradicts Eq. (12). This incompatibility implies that 
there are no self-dual type II solutions. 

TYPE Vlo AND Vllo 

Theeigenvectorsna aren3 = 0, n l, nz#O. Theindepen­
dent self-duality constraints are 

- !n~ + !n~ - 001 + 0 ~ 

= - ~nlOI + !nlO + !nz(Oz - ( 3 ), (16a) 

- !n~ + !n~ - OOz + 0 ~ 

= - ~nzOz + !nzO + !n l (03 - OJ!. 
Let us define a as 

OIOZ + OZ03 + 0301=a = l(n l - nzf. 

Adding together Eqs. (16a) and (16b), we get 

a + OIOZ = !(Oz - OJ!(nz - nd 

(16b) 

(17) 

(18) 

and squaring, we obtain an algebraic constraint that depends 
on OJ only and reads 

(a + olOzf = a(Oz - 0l)z. (19) 

By use ofEq. (18) and the field equation (4) it is possible to 
notice that the following properties are valid: 

(pI) a = 0 ¢::> 01 = Oz = 0, 

(p2) a#O ¢::> (01 - Oz)#O or (a + 0IOZ)#O. 

Moreover, in the (p 1) case the Hamiltonian constraint (17) 
reads n l = nz#O and in the (p2) case (nl - nz)#O. 

The existence of these two properties provides a natural 
way to classify the several possibilities. 

Case (pI): nz = n l #0; 01 = O2 = O. These last condi­
tions satisfy identically the self-duality constraints (16). 

The integrability conditions are obtained again by time 
differentiation ofEqs. (16), substitution by Eqs. (4) and (5), 
together with the new constraint 01 = Oz = O. We find that 
the system so obtained is completely integrable, by imposi­
tion of the new Hamiltonian constraint which under the 
property (pI) reads n l = nz. In this case both the Hamilton­
ian constraints nz = n l #0 and 01 = Oz = 0 and the self-dua­
lity conditions are first integrals of Eqs. (4) and (5) and define 
a family of self-dual solutions. These solutions are explicitly 
obtainable by integration of the equation for nl' nz, and 03, 

Case (p2): n l - nz#O, (02 - Od#O, a>O. From Eq. 
(18) we get 

2(a + OIOZ) 
n2 =n l + . 

O2 - 0 1 

Substituting this expression for n2 into Eq. (16a) we get 

n l [2(a + 01( 2) - (02 - Olf] = (a + O~)(OI - ( 3), (20) 

By time differentiation ofEq. (18) we get 

2n!(02 - 0dF= - 2(a + 01(2)F- 03(01 + 02f(Oz - Od, 
(21) 
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where F is defined by 

F=2(a + 01( 2) + 2a - !(Oz - ( 1)2. 

By use ofEq. (19) it is possible to show that 2(a + OIOZ) 
- (Oz - Olf#O. Therefore, we can express n l, with the help 

of Eq. (20), as 

n l = z· 
2(a + OIOZ) - (Oz - ( 1) 

From the explicit expressions for n I and nz and from the 
hypothesis (p2), we derive that all the terms (01 - ( 3 ), 

(01 + Oz), etc., are different from zero. 
Substituting the last expression for n I into Eq. (21) we 

get 

2F(OIOz - O~) = - 03(01 + 0zH2(a + OIOZ) - (Oz - OdZ]. 
(22) 

Comparing Eq. (22) with Eq. (19) we observe that the new 
constraint is given by 

40~ - (a + OIOZ) = O. (23) 

Now, the integrability condition should be given by differen­
tiation ofEq. (23) and use of Eqs. (4), (5), (18), and (19). Ifwe 
do so we obtain a = 0, which contradicts the hypothesis 
a > O. This incongruence shows that there are no self-dual 
solutions in the (p2) case. 

TYPE VIII AND IX 

The eigenvectors are n l, nz, n3#0. The self-duality con­
ditions are the complete Eqs. (7). 

Our purpose here, to find the integrability conditions of 
the system (4)-(7), could not be attained by any ofthe mani­
pulations we tried. The manipulations of this work allowed 
us to identify all of the self-dual solutions and only those for 
any of the empty homogeneous space times here considered. 
In the Bianchi type VIII and IX case we could not find such 
an existence theorem. Our procedure was of an essentially 
algebraic nature. However, in this last case our failure to find 
the integrability does not mean that such solutions do not 
exist. As a matter of fact we know of a self-dual Bianchi type 
IX class of solutions by Belinsky et al., 5 whose existence, 
however, has been demonstrated by direct construction. 
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The Riemann geometry of a space with conformal symmetries is written in terms of intrinsic 
objects defined from the action of the symmetries. Its application in the study of generalized 
Kaluza-Klein theories is discussed. 

PACS numbers: 04.40.Ky 

1. INTRODUCTION 

Sixty one years ago Kaluza suggested the unification of 
gravitation and electromagnetism by means of considering a 
five-dimensional Riemannian space. 1 The idea of eliminat­
ing the dependence of the fifth dimension by imposing a sym­
metry on it was of considerable interest in the following 
years.2 

If one extends the Kaluza-Klein theories to spaces of 
higher dimensions, then one naturally incorporates nonabe­
lian gauge fields. 3 

One starts with a Riemannian manifold of 4 + q dimen­
sions which is assumed to be the cross product of the four­
dimensional space-time with a q-dimensional compact 
manifold. A Lie Group acts on the last space transitively 
usually as a group of actual symmetries. In general, the di­
mension of the Lie group has been considered to be the same 
as that of the compact manifold, but lately the suggestion of 
having a group of greater dimension has been raised.4 

The introduction of extra dimensions has caught much 
attention among the supersymmetry theorist, as for example 
in the construction of the N = 8 supergravity theory by 
Cremmer, Julia, and Scherk.5 

With these sort of ideas in mind one was led to look for 
suitable expressions related to the geometrical ideas just 
mentioned. More concretely the expressions of the Riemann 
tensor for a space with conformal symmetries will be dis­
cussed below, where linear dependence of the conformal 
Killing vectors will be allowed. 

In spite of the somewhat specialized motivations of this 
work, all the expressions are of a geometrical character only, 
in particular they are developed around the skeleton of the 
Riemann geometry. So for example the expressions of the 
Ricci tensor calculated here, offer a useful tool for the study 
of space-times with symmetries in general relativity. 

In Sec. 2 the action of the conformal Lie group G on the 
manifold P with metric g is used to separate the tangent 
bundle of P as a direct sum of two vector bundles, one (usual­
ly called vertical) is spanned by the fundamental vector 
fields6 corresponding to the symmetries, and the other 
(called horizontal) is the orthogonal complement of the for­
mer. This split of the tangent space could be thought of as 
providing a generalized connection, analogous to the Yang-

8) On leave of absence from Instituto de Matematicas Astronomia y Fisica, 
Universidad Nacional de COrdoba, (5000) COrdoba, Argentina. 

Mills connection. And correspondingly the "generalized" 
curvature is introduced here (the abstract index notation 7 is 
extensively used in the horizontal space). 

In Sec. 3 the definition of objects introduced before is 
extended. Also a linear connection is presented mainly with 
the purpose of abbreviating the subsequent expressions. 

The Riemann connection, Riemann and Ricci tensors, 
and the Ricci scalar are expressed in Sec. 4 in terms of the 
intrinsic geometrical language presented before. 

An extensive list of appendices is added mainly for the 
purpose of completeness for future reference, and to give also 
a more "coordinate approach" of the notation used in this 
work. 

2. LIE TRANSFORMATION GROUP ON A MANIFOLD 
WITH METRIC 

This section is intended mainly to describe the nota­
tions that are going to be used in this work. Let P be a C '" -
differentiable manifold of dimension p, G be a Lie transfor­
mation group on P; denote by g its q' -dimensional Lie 

"'-
algebra, and by Val the elements of a base of g. Use Va' to 
represent the fundamental vector field on P corresponding to 
Val. Assume that the space V spanned by the Val at the 
point uEI' has dimension q, VuEI'. Then the assignment 
u-+Vu is an involutive distributionS denoted by Go. 

The local Frobenius theorem9 tells us that we can find 
an open set UCPisomorphictoA XB, where A is an integral 
manifold of Go; that is given u = (U 1,U2)EU, u1EA, u2EB we 
have Vu = Tu, (A ), and B is a (p - q)-dimensional submani­
fold of P. 

Define 11': U--B by 1T(u) = U2' 
Let g be a nondegenerate metric on P, with gal pI 

g(Va' ,V pI ) being a matrix of rank q, VuEI'; then 
Theorem 1: Given a vector field vat1T(u)EB, fEC "'(B); 3 

a unique V v ETu (P) such that 
(a) V v (11'*f) = 11'*(v(f)) , 
(b) g(Va' , V v) = 0 . 

One calls V v the lift of v. 
Proof in Appendix A. 
In this way, for the case in which G is a conformal Lie 

group, one is providing a "generalized" connection in the 
sense that for any UEUCP one has defined a subspace 
Hu C Tu(P) such that 

(a) Tu(P) = Vu (!)Hu . 
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(b) If h is an element of the component of G connected to 
the identity Huh = (Rh).Hu, whereRh is the transformation 
of P induced by heG, Rh u = uh, 

(c) Hu depends differentiably on u. 
Later (b) will be shown to be obvious. 
In particular, if G were acting freely on P, there would 

be cases in which P is a principal fiber bundle over Band 
where one would have defined a connection in P. 

If veTu (P) one can write 

v=vv+vH=VV+V1T.(V)' (2.1) 

Let a,b,c, ... be abstract indices in B. Define va by 

Va==1T. (v)a , (2.2) 

then it is natural to define Va by 

vava=v1T.(V) • (2.3) 

Similarly if ro is a I-form in B, define () a: 

T:;u)(B~T!(P)by 

roa(}a=(}",=1T·(ro) . (2.4) 

In general, any tensor in B will be denoted by T; that is, 
yaeT(B), roaeT*(B), feC CO(B). See Appendix B for more 
discussion involving this notation. 

Note that 

0= !f Va' 1T*(ro) = roa!f Va' (}a Vroa , 

so 

!f Va' (}a = 0, (2.5) 

where !f denoted Lie derivative. 
Now consider G to be a Lie group of conformal trans­

formation; that is, 

[Va' , Vp,] =Ca,p,u'Vu" 

.5t'v
a
,g = Aa' g . 

(2.6) 

(2.7) 

Then 

0= !f va,g(V P' ,vv) = g(Vp".5t' Va' Vv) 

so 

but 

O=!f Va' (Vv (1T*f)) 

= (!f Va' Vv )(1T*f) = W
aV a (1T"'f), Vf 

so wa = 0, 

and 

o = .5t' V a' V V 

= Va' yaVa - yaVa Va' = yG[Va' ,Va] Vya 

so 

(2.8) 

This is equivalent to last property (b). 
By taking UCPsmall enough it is possible to express 

Va' = ba , a Va' a' = 1,2, ... ,q' (2.9a) 

ba
P = ~aP, a = 1,2, ... ,q . (2.9b) 

Given the vector fields ya and wb at 1T(u), define at u the 
"curvature" 

304 J. Math. Phys., Vol. 24, No.2, February 1983 

(2.10) 

From the discussion in Appendix C, one gets that Rv ... is of 
the form 

(2.11) 

3. EXTENDED DEFINITION OF '1 B 

In this section the action of Va is defined to act on quan-
tities with lower case latin indices. 

One requires the following properties: 
(a) yaWb [Va'V b ](f) = Rv ... (f), 
where y and ware vector fields in B,J eCco (P). 
(b) Vagbc = 0, 

where 
gbc g(Vb,vc)' 
Theorem 2: There exist a unique Va satisfying (a) and 

(b). 
Proof Here one uses a construction that is going to be 

useful later. 
Let a torsion-free connection Da be given on B. Then if 

x is a vector field and T a tensor in B, one denotes the covar­
iant derivative ofT with respect to x by 

Dx T , 

where 

Dx=xaDa · 

Now define D a such that if v is a vector field in P and 
feC co (P 1. one has A 

(I)D~(f)=vaDa(f) = vaVa(f), 
~ A b b 

(II) Da(v (}"'~) = Da(v )rob + v Da(rob)' 
where .rf , fjJ , CrfJ denote abstract indices in P. Note that us­
ing the notation of Appendix B one can easily calculate 
A b A b 
Da(v ). Now define Ya c by 

b _"'" b Abc (3 Va(v )=Da(v ) + Ya cV . .1) 

From Appendix D one can see that with this definition 
one has 

Rv .... (f)=yawa{[Va,Vb] + (Ya\ -YbCa)VcJ(f), 

so from condition (a) one gets 

(3.2) 

And condition (b) gives 

Vagbc = Dagbc -Yaebgec -Yaecgbe =0. 

Defining Yabc=Ya ecgeb one can easily see that the solu-
tion is 

Yacb = !(Dagbc + Dbgac - Dcgab ). (3.3) 

Similarly one extends the definition of the Va' s to act on 
quantities with latin small indices by requiring 

(3.4) 

Let the indices A,B,C, .. · = a,/3,(7', ... ; a,b,c; that is, if 
veTu(P), 

v = zrtVA = vaVa + vaVa . 

Now define the linear connection D' by 

D~(VB)=O, 

D A(vB) = VA (vB) , 
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D~(f)=VA(f), feC"'(P). (3.6c) 

Note that up to now the index that denote the tensor 
character of V A has been omitted; that is, if v is a vector field 
in P, one would write 

v""" = vAVA""" = vava""" + vava""". 

From the discussion in Appendix E and G, one gets 

[D~,D;,] =RabaD~ +~abcDlcD' (3.7a) 

[D~,Dp] =~alJcDlcD' (3.Th) 

[D~,Dp] =CalJuD~, (3.7c) 

where the derivation I ~ is defined by 

I~(v""") = vCV D""", I~(~) = ISD EVC 

I~(f) = 0 for feC "'(P) , 

(3.8a) 

(3.8b) 

and ~ABC D is the curvature of the connection just defined 
and 

C U-C {Vb U 
a'I1' = a' pi 6'· (3.9) 

Defining 

CAB C = CaIJ U if A,B,C are greek indices, (3. lOa) 

CAB C = Rab U if A and B are latin and C is greek, 
(3. lOb) 

and 

CAB C = 0 otherwise 

one can write 

(3.10e) 

[D~,D ~] = CAB CD::: + ~ABcDI~ . (3.11) 

4. RIEMANNIAN CONNECTION IN P 

In this section a Riemann connection D is introduced. 
One first defines () a by 

()~ V; = lSap , 

(}~V: =0, 

(4.la) 

(4.lb) 

which implies 

.!f Va(}P = (}UCuaP. (4.2) 

Now one can write 

g=gaIJ(}a®(}P+gab(}a®(}b gAB(}A®(}B. (4.3) 

As usual one uses g to raise and lower indices. It can easily be 
found that 

Vagpu = Aag{Ju + CaIJ 6g[jq + Cau 6g{jfJ , (4.4a) 

Vagab = Aagab , (4.4b) 

Vegab = 0 . (4.4c) 

These and other relations are discussed in Appendix F. 
Let v and W be vector fields in P, then one will express 

the covariant derivative of w respect to v by 

Dvw=vADAw. 

In particular, one wants to extend the definition of D A 

to act on quantities with small latin index. This is done by 
defining 

DA D~+YABclcB' (4.5) 

where YA B C is uniquely determined by the requirement of 
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D A to be a Riemann connection. 
The equations to be satisfied are (see Appendix G) 

YA CB - YB CA = CAB C , (4.6a) 

gDAYCDB +gDBYCDA = VCgAB , (4.6b) 

with solution 

YACB = !(V AgBC + V BgAC 

- V CgAB + CABC + CCBA + CCAB) . (4.7) 

Explicitly one has 

Ya up = !(CalJu + Ca up + Cpua 
+ AalSp U + AplSa U - A UgaIJ ) , (4.8a) 

Ya ap = - (g"b /2)VbgaIJ ' (4.8b) 

Ya a p = (g"u /2)V agofJ ' (4.8c) 

YaPa = (g'3u/2)Vagau , (4.8d) 

Ya ab =!( - A agab + Rab a), (4.8e) 

Ya ab = !(AalSa
b + R aoo ), (4.8f) 

Ya ba = !(AalS/ - R/a), (4.8g) 

Ya be = 0 . (4.8h) 

Let u, V, and w be vector fields in P. Then one expresses 
the curvature tensor by 

R (u,v)w== [ [Du,Dv] - D[u,v] J W = R ABC D~vBwCV D , 
(4.9) 

where (see Appendix G), 

RAIlCD = VA (YB D cl- V B(YADcl + YBECYADE 
E D C E D +R D - YA CYB E - AB YE C _ABC' (4.10) 

Explicitly, one has 

RalJu 6 
= !g"brV.gu[a V bgP]p 

+ !(A EAEIS6[ pga]u + AuA[ p lSa ]6 + A 6A[agp]u) 

+ 1S6
[ p Va ]Au - gu[ P Va ](Ap~ 

+ (Ap/2)gu[ p Ca ]p6 + (Ap/2)g,,[ p Ca ]¥ 

- (Ap/2)O"\agp]u + (Ap/2j15[a 6Cp ]u
p 

+ (Ap/2j15[a 6Cp t u + (Ap/2)CuP[ p lSa ]6 

+ !Cu[ p ECa]E 6 
- !C6

[ p ECa]EU 
- Cu &' CE, [aIJ ] + !Cu &Ca,& 

+ !C[ p &Ca]UE - !CUE[ p Ca ] E6 

+ !C6
E[ p Ca}Eu - !CEu[ p C1EI

6 a] 

- !C[PIEuI Ca{6 + !C/[aCp]u E 

- !CEu[a Cp ]6E , (4.lla) 

RaPu 6 = (lSp 6/2)Va A" - ~6 /2)g{Ju VaAE 

+ (...t E/4~g{Ju VagEp - (A E/4j15/VagEu 
+ (Cu &/2)VagE/J + (CJ4)pE6VagEu 
- (C/4)p EurVagEp + (C/4)p&vagEu 
- (c/4){Ju E~VagEp + (c&p/4)VagEu 
- (C/4)u Epgp6VagEp 

+ (Ra eu/4~V.gEP - (Ra e6/4)V.g{Ju , (4.llb) 
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RaPe {j = (gE{j/2)V(a Ve)gEP - (gEP/4Jgr{jVa(gpr)Ve(gEP) 

+ (gae/2)gE{jVw,1E) + (A E/4)AEgae8p {j 

- (gaJ4)ApA {j 

+ (gaJ4)A ECEp{j + (gaJ4)AEI(;E{jp 

+ (Rae {j /4)R eeP - (Rae E/4)Cp {jE , (4.11c) 

Rabe d = (8b d /2)VcAa - (gbJ2)~eVeAa 

+ (gbc/4)~eA EVegaE - (8b d /4)A EVegaE 
+ (ged /2)gaE Vb (Ree E) + (Rb dE/4)VegaE 
- (Rb//4~eVegaE + (R/E/2)VbgaE , (4.11d) 

Rabe d = (A E/4)AEgae 8b d - (A E/4)AE8a dgbe 
+ (gbJ4)Ra dEAE - (8b d /4)Rae EAE 

+ (8a d /4)Rbe EAE - (gaJ4)Rb dEAE + (Rae E/4)Rb dE 

- (Ra dJ4)R be E + (Rab E/2)Re dE 

- (8e d /2)Rab EAE + 13 abc d . (4.11e) 

One is usually interested also in the components of the 
Ricci tensor, RAC==.RABC B. 

One has 

Raa = (~b /2)V a V bgaa - (~b /2)g"EV a gap V bgaE 

+ (~b /4JgPEVa(gaa)Vb(gpE) 

+ ((p - 2)14)(.1 EAEgaa - AaAa) 

+ ((p - 2/2)(V(aAa) + ApO'(a,,)) 

+ (gaa/2)tg/3EVpAE + ApO'pP) 

+ CE ' Pia Calle' + !Ca/CaP E 

+ CEP(a cP ,,) E + !CaPECaPE 

+ Cia E a) Cp/ - !CPEa CPE a 

- !Raba R ab" , 

Raa = ((p - 2)/2)(VaAa - (A E/2)VagEa) 

+ (CaPE/2)VagPE + (Cp EP /2)V agw 

+ (geb /2)gc7E Vb (Rae E) + (Ra e,,/4)gPEVegPE 
+ (Ra eE/2)VegEa , 

Rac = (gPE/2)V(a VC)gPE - (gEP/4JgrPVagpr VegPE 
+ (gae/2)gPEV pAE + (( P - 2)/4)A EAEgae 
+ (gaJ2)AEI(;EpP + (Rab E/2)Re bE + 13(ae) . 

The Ricci scalar R = RABgAB is 

R =~b~PVa Vbgap + ~bVa(~P)Vb(gaP) 
+ (~b /4)~PVa(gap)ga{jVb(ga{j) 
+ ((p - 2)(p - 1)14)A EAE + (p - 1) 

X(~PVaAp + AacapP) 

+ C PE' calC "Ca P 
a E' P - '2 ap " 

+ lC caPa + C ac up 
4 apa aa P 

+ !RabaR aba + 13 . 
5. COMMENTS 

(4. 12a) 

(4. 12b) 

(4.12c) 

(4.13) 

One could think of other possibilities of organizing 
these ideas, but the splitting of the tangent space introduced 
in Sec. 1 seems to be very convenient for calculations. In 
particular, the use of abstract indices for the horizontal space 
produces very compact expressions. 

The "components" written in Sec. 3 generalize the tra­
ditional expressions of the Kaluza-Klein theories lO in sever-
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al ways; by allowing conformal symmetries in contrast to 
actual symmetries, by considering linear dependence among 
the fundamental vector fields corresponding to the symme­
tries, or by not demanding from the beginning the structure 
of a principal fiber bundle. 

The expressions derived are trivially reduced for the 
case of Killing symmetries (Aa-o) and/or for the linear in­
dependent symmetries case (Cap" ~CaP "l. 

It is particularly interesting to observe the form of the 
Ricci scalar in which the Yang-Mills term, a G term, a con­
formal term, and a dynamical term can be clearly separated. 

From the discussion of Appendix H one also notes that 
the cross terms of the metric can be thought of as been given 
by the Yang-Mills gauge potentials ll of the Yang-Mills 
fields RiJ a [see also Eqs. (F4) and (FS)]. 

From another perspective the expressions given here 
seem to offer a useful tool for the study of solutions of the 
field equations in general relativity; in particular, as a sort of 
check the metrics for a highly symmetric low-dimensional 
manifold and for a well-known solution of the Einstein vacu­
um field equation were derived using the expressions of this 
work. 

APPENDIX A 

Proof of Theorem 1: Consider first the case in which 
ga' a' = 0 for some a'. The question is, can ga' P' = 0, 
V /3 ' =/= a'? Because if it were so, and 

g(V P' , V y) = 0 V /3' , 

then 

v; = Vy + fVa " feC "'(P) 

will also satisfy 

so 

g(Vp' ,V;) = 0 V/3'. 

By carefully choosing U it is possible to express 

Va' = ba , aVa' a' = 1,2, ... ,q' , 

ba
P = 8a

P , a = 1,2, ... ,q, 

0= ga' P' ~ = ga' p-:::::;,ba, agap = 0, 

but gaP is a nondegenerate matrix so the only solution to 
ba, agap = 0 is ba, a = O. So there is no Va' such that 
ga'P' =OV/3'=/=a'. 

By the local Frobenius theorem it is possible to choose 
UCP with a coordinate system (yp ... ,yq'xt,,,,,xp _ q) with 
Iy; 1 < S, IXj 1 < S, SeR, so that 

a 
Va' =aa"-. for Va,eTu(U)' 

ay' 
By condition (a), Vy must be of the form 

__ I a . a 
V =r-+v'-

v axi a/ ' 
where 1T*(vl ) is identified with vl. 
Let 

gij g(;; :J)' gij g(;i a~)' giJ g(~I. ~). 
Y.~ Y. 

Then condition (b) gives 
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so 

APPENDIXB 

This Appendix contains comments on the notation. 
If the vector fields el • i = 1 ..... p - q form a basis of 

T 1Ij") (B) VueU. then at u VI =efVa form a basis of a sub­
space H" C T" (P); in particular. any vector veT" (P) can be 
expressed by 

v = vaVa + VIVI = vaVa + vaVa • 

where va = Jef and so V y = v"Va = viVI. Actually one 
should write V y = 1T·(J)VI • but all the 17'. and 17'. aredeliber­
ately omitted for the sake of simplicity in the notation. 

Similarly. let d'eT·(B) be such that d'aea
j = 8 1

j ; then 
one defines 

(}'==.d'a()a . 

Denote with .Q/ • f!lJ • '1{; •••• abstract indices in p. then 

(}"'~v~ = 11'·(ro)~V~ = roa11'.(Vt = roava VroeT·(B). 

so 

(}a~Va~=O. 

(}~Vb~ =8 a
b • (}1~Vj~ =8 Ij . 

If W is a one-form in p. define 

WI=W~VI~' wa==W~V:. 

then one easily gets the following relations 

(}a = ea
l ®(}I. Wa = d'aWI • 

(}'=d'a(}a. WI = ealwa • 

Va =d'a ®V I • va = vlea
l • 

VI=eaiva • v'=vad 'a · 

APPENDIXC 

Using the notation of Appendix B. one writes 

[v,w] = [v(wl)-w(vl)]el +v'wl[eped. 

Let I eeoc> (P). then 

so 

V v V'If I = v'VdwlVj (f)) 
= VIVI (wi)Vj (I) + ~wlVi Vj (f) • 

R y .... = v(wi)Vj - w(v1)Vj + v'wl 
X [VI,Vj] - [v(wi)-w(v1)]Vj 

- v'wl [el.ej ] kVk 
= vlwJ([V"Vd - [e"edkVk) . 

If feeoc> (B ) one easily observes that 

Rv ... (f) = 0 

so that it must be that 
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APPENDIX 0 

Rv . .,,(f)=([Vv,v .. ] - V[v.w,)(/) 
= vaVa WbVbl - WbVb vaVaI- [v,w]aVa I 
= va(Dawb + Ya bcWC)Vbl + vawbVa Vbl 

- wb(Db v" + Yb acvC)Va I 
- WbVaVb Val - [v,w]aVa(f) 

= [Dv(~) - D.,,(va) - [v,w]a]Val 

+ vawb {[Va,Vb] + (Ya cb - Yb Ca)Vc J(f) 

= vawb {[Va,Vb] + (Ya cb - Yb calVc J(f). 

because Da is a torsion-free connection. 

APPENDIXE 

Let z be a vector field in P; then 

Va(z<) = Va (ieC;) = Va(i)e~ + zlVa(en 

= Va (i)eC, + i(Ya ci + Ya CI ) 

= Va (i)eC, + (Ya Cd + Ya cd~' 
V b Va (zC) = Vb (Va (i) ) eC

I + Va (i)fb ci 
+ Vb (fa cl)t + fa ci Vb (i) • 

where 

and 

Da(eC;) = Ya ci • 

fa bc=Ya bc + Ya bc • 

(Va Vb - Vb Va)(z<) = (Va Vb - Vb Va)(i)eC, 

+i(Va Vb - Vb Va)eC

I 
= Rab av a (i)eC, + ~abd czd • 

where 

also 

~abc d=V a(fb dc) - V b(fa dc) + fa de fb ec 
d e (e e) d - fb e fa C - fa b - fb a Ye C 

A 

~abdC = Rabd c + Rabd c , 

where Rabd C is the curvature of the connection D and 

Rabdc=Da(Yb Cd) - Db(Ya Cd) + Yb edYa Ce - Ya edYb ce • 

so 

so 

[Va.V b]zd = Rab ava(zd) + ~abc dzC 

[Va,vb ] (wdzd) = Rab aV,,(Wdzd) 

= Rab av" (Wd ~ + WdRab aVa (zd) 

= [Va,vb ](Wd~ + Wd [Va,Vb ](zd) 

= [Va. Vb] (Wd ~ + WdRab av" (zd) 

+ Wd~abc dzC • 

[Va. Vb] (Wc) = Rab av a(Wc) - ~abc dWd . 

Let the derivation lCd be defined by 

lCd(z) =z<Vd • 

lCd(f) = 0 if lee oc>(P). 
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Then 

so 

0= /cd(W""r"') = /cd(W",,)z"" + W""JCd(r"') 

= /cd(W",,)z"" + w""rV d "" 

=/Cd(W",,)z"" +wdr 

= JC d(W"" )(z"Va "" + z"Va "") + Wdr , 

JCd(W",,)Va"" = 0, 

/Cd(W",,)Va"" = -wd8ca~/cd(W",,) = - fr""wd . 

With this definition, one writes 

[D ~,D ~ ]lveVe) = (Rab aD ~ + ~abe dJCd)(V'Ve) . 

Now 
A A 

(Va Vp - VpVa~ = Va Vp(r) - Vp(Dar + Ya \i') 

so 

= Da Vp(r) + Ya cb Vp(i') - VpDa(r) 

- V p(Ya cb~ - Ya cb V p(zb) 

= -Vp(Yacb~' 

[D~,D;' ]lz) = ~afJc drV d = ~afJc d/cd(Z) 

and 

[Va,vp] = CafJ6'V6, = CafJ6' b6, "V U . 

Defining CafJ u=CafJ 6' b6, U one has 

[Va,vp] =CafJ"Vu 
and 

APPENDIXF 

so 

but 

(Ja"" Va "" = ~'G' aPa = O. 

One has 

!t'~"g = V a/gpu)(JP ® (J U + gpuC/jaP(J 6 ® (J U 

+ gfJqC/ja u(JP ® (J6 + Va/gab)(Ja ® (J b = Aag, 

so 

Vagpu = AagfJq + CafJ 6g/ju + Cau 6g6{J 

and 

[D~,D~]g 
= [Va ,vb] /gafJ)(Ja ® (JP = Rab "V u/gafJ)(J a ® (JP 
= Rab "V ug - Rabe dgde (J C ® (J e - Rabe dged (J C ® (J e 

= Rab "V u/gafJ)8 a ® (JP + Rab "V u(gCd)(J C ® (J d 
- (~abee + ~abec)(J C ® (J e 

so 

Rab uAuged = ~ab(cd) . 

From 
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(Ft) 

(F2) 

(F3) 

I [Va,[Vb,Vc]] + [Vb,[Vc,va]] 

+ [Vc,[Va,Vb]]J(F)=O, 

one gets 

V[aRbe]a = O. (F4) 

0= .2" vJVaWb [Va' Vb]) 

= .2" V (R.,,) = yOW
b.2" V (Rab "V u) 

a • a 

so 

Va(Rab P) = Rab uCuaP. (FS) 

[D ~,D;']g = D ~(VP/gu6)(Ju® (J6 + Apgab(Ja® (Jb) 

so 

- D ;'(Va/gu6 )(Ju ® (J 6 + Aagab(J a ® (J b) 

= [Va,Vp ]/gu6)(Ju®(J6 

+ (VaAp - V pAa )gab(J a ® (J b 

= Cap 'V ~ /gu6)(J u ® (J 6 + CafJ u Augab (J a ® (J b 

VaAp - V pAa = CafJ u Au . (F6) 

0= !t'va. Vy = Va' (v')V\ - Vy(ba, a)Va + ba, QyO[Va,Va] 

so 

or 

So 

or 

Va(CafJ) = O. 

.2"v
a
Va' =Va(ba,P)Vp +ba,P[Va,Vp ] 

= (Va(ba,P) + ba, UCauP)Vp 

= Caa, 6'V6 , = Caa,Pvp . 

Va(Cu6 P) = Cu6 a' Caa, p + Cu6 ~C~aP . 

.2"v
a
'Vp, = ba,aVa(bp'P)Vp 

- bp, Pv p(ba, a) Va + ba, abp, p [ Va,v p ] 

= [ba, a(CafJ' 6 + bp, uCua 6) 

- bp' P(CfJa' 6 + ba , uCafJ6)]V6 
+ ba, abp' PCafJ 6V 6 

(F7) 

(F8) 

= (ba, aCafJ' 6 + bp' PCa' / - ba, abp, PCafJ 6)V 6 
6' 6V = Ca,p' V6 ' = Ca'P' 6' 

so 

Aa' = ba, aAa , (FlO) 
6' [Va"Vp' ]gu6 =Ca,p' V6,gu6 

so 

= Ca, p' 6' (A6, gu6 + C6, uPgplj + C6, 6Pgup) 

= Ca ' p' ~(A~gu6 + C~uPgplj + C~6Pgop) , 

Ca , p' ~, C~, (u6) = Ca' p' ~C<1u6) . (Fll) 

The Jacobi identity gives 

O. M. Moreschi and G. A. J. Sparling 308 



                                                                                                                                    

C ~'"... {) C ~, "... {) C 'C {) 
0= a'p' 'LU'E' + P',,' 'La'E' + u'a,E 13'£' . 

(F12) 

APPENDIXG 

Evaluation ofYA CB, RABCD, R AC' R. Let v and w be 
vector fields in P, then the torsion is given by 

T(v,w)-Dvw - Dwv - [v,w] 

= vADA(wBV B) - wBDB(vAVA) - vAVA(wB)V B 

+wBVB(vA)VA -vAwB[VA,VB ] 

= vADA(wB)VB - wBDB(vA)VA 

- vA VA (wB)V B + wBv B(vA)VA 

+vAwB{DAVB -DBVA - [VA,VB]J 
= vAwB(YA cB - YB cA - CAB C)V C ; 

so torsion-free means 

YA CB - YB CA = CAB C. 

One also has 

0= Dcg = DC(gAB)8 A 
® 8 B + gABDc(8 A) ® 8 B 

+ gAB 8 A ®Dc 8 B 

= (VC(gAB) -gDBYCDA -gADYCDB)8 A® 8 B 

so 

VCgAB =gADYCDB +gDBYCDA , 

YACB=HYABC + YACB + YBAC + YBCA - YCAB - YCBA 

Then 

+ YACB - YBCA + YCAB - YBAC + YCBA - YABC] 
= ~[VAgBC + VBgAC - VCgAB 

+ CABC + CCBA + CCAB] . 

YaofJ = ~(CaPu + Caup + CPua 
+ Aagpu + Apgau - AugaP ) , 

Yaa{3 = - ~VagaP , 

YaaP = ~VagaP ' 
YaIJa = ~VagaP ' 
Yaab = ~( - Aagab + R aba ) , 

Yaab = ~(Aagab + R aba ) , 

Yaba = !(Aagab - Raba)' 

Yabe = O. 

Let u, v, and w be vector fields in P, then 

R(u,v)w={[Du.Dv] -Dru.vJlw 
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= {uADA~DB - ~DBUADA - [u,v]CDc Jw 

= {uADA(~lDB - ~DB(UAlDA 

+ UA~ [DA.DB] - UAVA(VClDc 

+ uBv B(uClDc - UA~CAB cDc J w 

= uAuB{DADBW -DBDAW - CABCDcwJ 

= uAuB{DA(D~(wC)Vc + wDYBCD Vel 
-DB(D~(wC)Vc + wDYA CD Vc 

- CABC(Dc(wD)VD + wE'YcDEVd)J 

= uAuB {[D~.D ~ ] (wD)V D +D ~(WC)YADcVD 

- D ~(WC)YBDcV D + D ~(wD)YB CD Vc 
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-D~(wD)YA CD Vc + wD [D ~(YB CD) 

-D~(YACD)]VC +WCYBECYADEVD 

-WCYAECYBDEVD -CABCDc(wD)VD 

- WCCABEYEDcVDJ 

= UAUBWC {D ~(YBDC) - D ~(YADel + YBECYADE 

- YAECYBDE - CAB EYED C + llABc D JVD 

- R ABC DuAuBwCV D . 

Note that the only nontrivial components of R ABC Dare Rabe d 
and llabe d = -llbac d. --

APPENDIXH 

Let the vector fields el , i = l, ... ,p - q be now a coordi­
nate basis, and define AI a by 

VI =~+AlaVa. (HI) 
axl 

Then one sees that 

[VI,Vj ] =RlJaVa 

and so 

RlJa = ~At) - ~At) +A/AjUCpu a. 
axl ax1 

And from 

[Va,v.] = 0, 

one gets 

Va(A/) =AluCuaP. 

It is also easy to see that 

or 

- A a j glk - - I aa gjk . 

And defining 

gla g(VI,va), 

one has 

Ala = -gifJ~ 

or 

where ~ = ajaVa 
ay' 

(H2) 

(H3) 

(H4a) 

(H4b) 

(HSa) 

(HSb) 
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Convergence of multitime correlation functions in the weak and singular 
coupling Iimits8
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For a system coupled to a thermal bath we prove the convergence of the multitime correlation 
functions of system observables in the weak and singular coupling limits. The limiting correlation 
functions are given by the quantum regression law. Therefore, our result implies that in the limit 
the dynamics ofthe system are governed by a quantum stochastic process in the sense of Lindblad. 

PACS numbers: 05.30. - d, 02.50. + s 

1. INTRODUCTION 

We consider a quantum mechanical system coupled to a 
quasifree heat bath. The total Hamiltonian is given by 

H=Hs +HB +H[. (1) 

The system Hamiltonian Hs is a self-adjoint operator on 
JY's, the system Hilbert space. The bath Hamiltonian, acting 
on the bath Hilbert space JY' B' is formally given by 
HB = Sdk w(k )a+(k )a(k ) and the interaction isH[ = Q®F, 
where Q is bounded and self-adjoint on JY's and 
F = Sdk A (k) (a+(k) + a(k)). We denote by Y(£') the Ban­
ach space of trace class operators with the trace norm 11·111 
and by f!lJ (£') the Banach space of bounded operators on JY'. 
The initial state of the system is specified by the state opera­
tor W = P ® wpE3""(JY's ® JY' B)' wherepE3""(JY's) is an arbi­
trary state operator of the system and wp is the thermal equi­
librium state of the reservoir at temperature p -I. The time 
evolution of density operators of the joint system is given by 
U(t)W = e - iHtWeiHt. We are interested in thereduceddyna­
mics of the system defined by 

T(t~=TrB[U(t~®wp], (2) 

where Tr B denotes the partial trace over the bath Hilbert 
space. 

The reduced dynamics is governed by the Nakajima­
Zwanzig generalized master equation. 1-3 This equation con­
tains memory terms which make the evolution non-Marko­
vian. But if the decay time of the reservoir time correlation 
function g(t) = Tr[eiHBt Fe - iHBt Fwp ] becomes short com­
pared to the typical relaxation time of the system, then T(t) 
may be approximated by a dynamical semigroup. There are 
two different approximation procedures. In the weak cou­
pling limit H[ becomes weak of order E. To obtain a nontri­
vial effect one has to observe the system up to times of order 
E-

2
. In this case Davies4 proved that T(t) converges to a 

dynamical semigroup. In the singular coupling limitg(t ) con­
verges to a delta function. This may be achieved by scaling 
the interaction as E- I and speeding up the free reservoir mo­
tion as E-

2 (Ref. 5). The convergence of the reduced dynam­
ics in this limit was first proved by Hepp and Lieb6 for quasi­
free systems and studied in more detail in Refs. 7 and 8. 

It was pointed out by Lindblad9 that a semigroup law is 

"'This work is part of the author's doctoral dissertation submitted to Fakul­
tat ltir Physik, Universitat Miinchen. 

not sufficient for the system dynamics to be Markovian. As 
in the classical case the Markov character can be established 
only by considering all higher order time correlation func­
tions. The purpose of this paper is to show that in the weak 
and singular coupling limits the dynamics of the system is 
indeed governed by a Markovian quantum stochastic pro­
cess in the sense of Lindblad. 10 Technically we prove the 
convergence of all multitime correlation functions and show 
that in the limit the structure is given by the quantum regres­
sion law. II

-
16 

We briefly indicate the precise result and its physical 
interpretation. 

Let Xi' YiE.%' (JY's) be system operators and define the 
map 

EiW=Xi ®IWYi ®1. (3) 

Furthermore, we define 

T(En,tn;···;EI,tl~ 

= TrBEnU(tn -tn_I)En_I···EIU(tl~®WP (4) 

as a map on Y(JY's). Tracing over the system results in the 
multitime correlation function for the system in the form 

TrsT(En,tn;···;El,tl~ 

= Tr[(YI ® l)(t l)"'(Yn ® 1)(tn)(Xn ® 1)(tn) 

",(XI ® l)(t I~ ® wp ], 

where (A ® l)(t ) = eiHtA ® Ie - iHt. 

In Secs. 2 and 3 we prove the convergence of 

(5) 

T(En,tn; ... ;EI,tl~ in the weak and singular coupling limits, 
respectively. If To(t ) denotes the asymptotic semigroup, then 
T(En,tn;···;EI,tl~ converges to 

En To(tn - tn _ I )En _ I ... E I To(tl~' (6) 

where Ep = XiPYi. Equation (6) is a quantum mechanical 
analog of the formula for the finite dimensional probability 
distributions for classical Markov processes. 

T(En,tn;···;EI,tl~ has the following physical interpre­
tation. Let Ai = ~jCI/)P II) be observables of the system, cl}) 
being the real eigenvalues and P \/1 the corresponding eigen­

projections. We set Xi = Yi =pV). Then T(En,tn; ... ;EI,tllo 
is the reduced state of the system at time tn subjected to 
measurements of Al at time tl, ... ,An at time tn' At time ti the 
value c~j/) is observed and at each measurement the state is 
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reduced according to the von Neumann projection 
postulate. 

2. THE WEAK COUPLING LIMIT 

The Hamiltonian is scaled as 

HE = E- 2Hs + E- 2HB + €-IHI . (7) 

This Hamiltonian describes the time evolution on the re­
scaled time scale. On the original time scale the Hamiltonian 
reads Hs + HB + €HI , where the interaction is weak of or­
der€. 

The bath is assumed to be an infinite quasifree fermion 
system. It is well known that thermal eqUilibrium states of 
infinite systems cannot be represented by state operators on 
Fock space, in general. In the algebraical framework of 
quantum statistical mechanics the GNS construction associ­
ates to each state a Hilbert space, and the state is represented 
by a state vector. 17 Let 7t' B be the Hilbert space associated 
with the initialstate liJ p of the bath. The representation of the 
algebra of field operators in 7t' B satisfies the canonical anti­
commutation relations in the form 

4> (f)4> (g) + 4> (g)4> (f) = 2Re(f,g). (8) 

The initial state liJp of the bath is completely specified by the 
two point function 

liJp(4) (f)4> (g)) = (g,(1 + eP(h -1"1)-1 f) 

+(/.(1 +e-P(h-I"I)-Ig), (9) 

where h is the one particle Hamiltonian, f3 is the inverse 
temperature, and It is the chemical potential. Bath correla­
tion functions of odd order vanish and even order correlation 
functions are given by 

liJp(4) (f1)···4> (f2n)) 
n 

= L sgnp II liJp(4) (fP(2k-II)4> (fp(2kl))' (10) 
pEP(2nl k = 1 

where the sum is over all ordered pairings of 1, ... ,2n. 18 

WeputF(t) = /H"'Fe - iHat = 4> (eihtA), whereAisafixed 
test function. Ong(t) = liJp(F(t)F) we impose the condition 

f: 00 dt Ig(t)1 < 00. (11) 

This condition is satisfied for h = -.:! on L2 (RV) and v;;;.3. 
We define the Liouville operators 

LsW= -i[Hs,W],LBW= -i[HB,W], 
LI W = - i[ HI' W] and put UE(t) 
=exp(E- 2L s +E-2L B +E-ILI)t, U~(t) 
= exp(E-2L s + E- 2L B)t. 

Furthermore, we define the semigroup 

T~(t) = exp(€-2Ls + K )t, (12) 

where 

(13) 

TE(En,tn; ... ;EI,td is obtained from (4) with U(t) replaced by 
UE(t). 
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Theorem 1: Assume (II). Then for all t>O and all 
pe.r(7t's) 

Proof We prove the case n = 2. The prooffor arbitrary 
n is analogous. The steps of the proof are as follows. Consid­
ering LI as a perturbation UE(t) is expanded in a Dyson 
series, 

UE(t) = ! E- k r dsk ... ds l U~(t - tdLI .. ·LI U~(td. 
k = 0 )o.;;s,.;; ... .;;Sk.;; t 

(14) 

This expansion is inserted in T€(E2,t2;EI,tl lp. The resulting 
series is majorized by an absolutely convergent series uni­
formly in E. Finally, we show that most ofthe terms in the 
series vanish in the limit and that the remaining terms con­
verge to corresponding terms in the series expansion of 
E2T~(t2 - tdEIT~(tllp· 

In the proof we rely on technical results by Davies.4 

To simplify the notation of the integrations we intro­
duce.:! (t l ,k,t2) = !(sl, ... ,sk)ERklt l<sl<,,,<sk,:t2j and 
.:! (t l,k,t2,l,t3) = !(SI, ... h,sk + p ... h + I) ER k + II 
t l<SI<"'<Sk<t2< Sk+ 1 ""<Sk+l<t3 j· 

(1) The uniform estimate 

Using (14) we obtain 

T€(E2,t2;EI,t1lp = ! ! RkIP, (15) 
k=OI=O 

where 

RklP = € - (k + 1)1 ds TrB [E2U~(t2 - Sk + I)LI 
.:I (O,k,t"I.t,) 

···LI U~(Sk + 1 - tl)EI 
XU~(tl-Sk)LI· .. LIU~(Sllp®liJp]. (16) 

We have 

LIW= -i[C,B,W-CrBrW], 

where 

CIW= Q®lW, CrW= WQ®l, 

B,W= l®FW, BrW= Wl®F. 

(17) 

Letll(n) denote the set off unctions ! 1, ... ,n j---.!r,lj. For 
7TElJ(n) we define sgn 1T = (_ l)card l1T-'(II11I. 

Using (17), we obtain from (16) 

RklP = (iE) -(k+ II r ds L sgn 1T 
).:1 (O,k,'"I,t,1 - 1TEfl(k + II 

.- €- 2LsI - E~ 2Lsl 
XE2e 'C1Tjk+ I)(Sk + 1)",C1Tjk + II(Sk+ I)e 

-- £-2L t 
XEle s 'C1Tjk I (Sk),,,C1Tj11 (SI)P 

XTr[ B1Tjk + I) (Sk + 1)· .. B1Tjk + 1) (Sk + II 
XB1Tjkl(Sk) ... B1TjII(sdliJp ], (18) 

where 
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i = r,l. 

Now we estimate 

IIRk/ll<E- lk + I)lIxlli II YIII IIx2 11 IIY2 11 IIQ Ilk+1 

X 17'E1Tj.f+ I) Llo,k'I"I,") dSI Tr B1Tjk + 1)(Sk + I) 

... B1TjI) (s.)cup I, 

To each 1TEll(n) we associate a permutation iT: 
{ 1, ... ,n )---+{ 1, ... ,n) defined in the following way, Set 

jo = card 1'IT- I ({1 lli. We put iT(1) = min {j11T(JI = I}, 
~i) = min {j > iT(i - 1)I1T(JI = I), i = 2, ... ,jo, 
1T(jo + 1) = max {jl 1T(JI = r), iT(i) = max{j < iT(i - 1)1 
1T(JI = r), i = jo + 2, ... ,n. Using this definition we write 

(19) 

where all field operators are commuted to the left of cup. 
For odd k + 1 Rkl vanishes. For even k + 1 = 2n we 

obtain from (10) 

Tr F(E-2s~2n) ) ... F(E-2S~I)cup 

= L sgn p ft ~(Soj2Jl - Soj2) - I))' (20) 
pePl2n) }= I 

with u = ;'op and~(t) = g(e- 2t). To estimate the time inte­
gral of the correlation function in (19) the domain of integra­
tion is enlarged, 

i 
dSI"'I<i dsl .. ·I, 

.<IIO,k,I"I,I,) .<IIO,2n,l) 

and with the estimates from the proof of Theorem 3.4 of Ref. 
4 and the symmetrization trick of Lemma 3.3 of Ref. 4 one 
obtains 

i 
dslTr B1Tj2nds2n)···B1TjI)(SI)cuP I 

.<IIO,2n,l) 

<~n (lIglllt)" . 
n!2n 

This proves that the series (15) is majorized by 

! r IIR21' - v,vplll 
1'=0 v=O 

< IIXIII II YIII IIX2 11 II Y2 11 1v>1I1 

X! ~ (2i1gillllQ i1 2t)!', 
I' = 0 "'. 

which is absolutely convergent for all t and independent of E. 

(2) Term by term estimates: vanishing terms 

Inserting (20) into (18) one gets 
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RklP = (iE) - 2n L sgn 'IT 
17'EflI2n) 

X L sgnpi ds 
J>EP12n) .<IIO,k,I"I,I,) -

- E-'LsI 
XE2e 'C1Tj2n)(S2n) 

... E I",C1TjI) (Silo 
n 

X II ~(Soj2Jl - Soj2) - I)) 
}=I 

= L L RkIP, (21) 
17'EflI2n) J>EP12n) 

where R kl is defined by the last equation. 
First we show that in the limit E-o all R kl vanish for 

which there iSjo with u. = min(u(2jo - 1), u(2jo))<k and 
U2 = max(u(2jo - 1), u(2jo))>k. We estimate 

i 
ds I.ft ~(soj2Jl - soj2i - I) ) 1 

.<IIO,k,I"I,I,) J= I 

<il'dS2n .. ·i"dSk+ I ("dsk· .. ("dSII.ft~(Soj2Jl - Soj2}_I))1 
I, I, Jo Jo J = I 

<~n-2tn-llIgll~-1 r dSu,dsu, I~(su, -su,)1 
)0<0"1<tl <0"2<t2 

= ~ntn-llIglI~-IG(E,tl,t2)' 

where G(E,tl ,t2) = E- 2 S.<lIO,I,I"I",)~~(S2 -s.JI. In Lemma 
Al(i) ofthe Appendix we show limE-oOG(E,t l ,t2) = O. 

For the remaining terms the integrals S .<IIO,k,I,) ds and 
S.<I 11,,1,1,) ds factorize. Therefore, it is sufficient to discuss one 
of them, say the first one. We show that in the limit all R kl 
vanish for which there iSjo such that 
I u(2jo - 1) - u(2jo) I > 1. With u I'U 2 defined as in the preced­
ing paragraph we get 

i kl2 

ds.I1 1~(Soj2Jl - Soj2} - I)) 1 
.<IIO,k,l.I J= I 

< r dsu, dsu, + I dsu , r .. (' ds I"" ···dsk 
Jo<so.<Sq, + I<Su~<t Jo Jo 
k/2 

X III~(Soj2Jl - Soj2) _ I)) 1 
}=l 

<~t k/2 - 211gll~ - lfdS G (E,s,t), 

where dsl··.'···dsk indicates that the variables S , s + I' S 
0"1 U 1 tT2 

are lacking. According to Lemma Al(ii) S~ds G (E,s,t) con-
verges to zero for E-o. SO only terms with 
1u(2j - 1) - U(1JII = 1 contribute in the limit. 

(3) Term by term estimates: contributing terms 

For the terms contributing in the limit we obtain the 
series 

f f i dsE2eE-'L~I'-Sk+l) 
k = 0 1=0 .<IIO,k,I"I,I,) 

XK.-(t2 _sk+/)e'--'L~Sk+I-Sk+I-I) 

XK.-(Sk+1 - Sk+l_ d··· 

X E-'L~Sk + I - ")E- E-'L~I, - ski e Ie 
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where 

On the other hand we have 

E2TW2 - tl)EITg(tllP 

= f f r dsE2e
c 'Li.t,-Sk+/) 

k ~ 0 I ~ 0)<1 (O,k,t"L,t,) 
X K ... KeE-'Li.Sk + 1- t,) 

X E- C'Li.t, - sk)K Y E-'L"" Ie ·"n.e p. 

Applying the inequality IIKE(t) - K 11..;;4I1Q 112 
XfR ,[ _ C't.E-'t ]dslg(s) I completes the proof of the 
theorem. • 

The semigroup Tg does not preserve positivity, in gen­
eral,19 and consequently the quantities E" Tg (t" - t" _ I ) 
E" _ I ... E2Tg (t2 - tl)EI Tg (tl1o do not define a quantum 
stochastic process. To obtain a quantum dynamical semi­
group Tg should be replaced by T~(t) 
= exp(E- 2L s + K #)t constructed from the averaged gen­
erator 

K# = lim _I_JT dte-Ls'KeLs'. 
T~", 2T -T 

(22) 

We assume that H s has a purely discrete spectrum. Then the 
limit exists in the strong sense and T~(t) is a completely 
positive dynamical semigroup. Under assumption (11) Da­
vies20 proves for all pE.'T(JIt" s) and all t> 0 

This result can be extended to prove the convergence of all 
multitime correlation functions. 

Theorem 2: If Hs has a purely discrete spectrum and if 
(11) holds 

lim sup IITE(E",t,,; ... ;EI,tllo 
~ O<t,< ... <t"<t 

-E"T~(t" -t,,_dE''_I· .. EIT~(tl10111 =0 

for all f> 0 and all pE.'T(JIt" s)' 
To prove the theorem we need 
Lemma 3: For every n and every D > 0 there exists a 

compact set Kfj and a decomposition E" T~ (f" - f" _ I) 
..• EIT~(fl1o = p~ (fl, ... ,t,,) + p;(fl, ... ,t,,) satisfying 

p~ (fl, ... ,f" )EKfj, 

11.0; (t I, .. ·,t" )111 < D, 

for all E> 0 and all (f l , ... ,t,,)51 (O,n,t). 
Proof The proof is by induction over n. 
(1) LetHs = ~iUJiPi be the spectral decomposition of 

Hs and put Qk = ~~~ IPi , Define f!J1 k:.'T(JIt"S~.'T(JIt"s)' 
~QkPQk' Clearly s-limk~'" f!J1 k = 1. {eLs' f!J1 kPltElR} is 
compact for kEN. As Ls and K # commute T~(t) = f!'#t 
eE-'Lsl. From the continuity of(t,p~#~ we conclude that 

{EIT:'(tl)f!J1 kPIO.;o;;tl.;o;;f,E> O} is also compact. The esti­
mate 
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shows that for some k = ko the right-hand side is less than D. 
Ch~oseKfj = {EIT~(fl)f!J1.5>pIO.;o;;tl.;o;;f,E>O} andp~(fl) 
= E IT:'(f l )f!J1 koP,P;(tl ) = EIT:'(f l ) (1 - f!J1 kola. 

(2) Suppose the lemma holds for n = no. Then there is a 
decomposition E"o T~ (f"o - t"o _ d···EIT:'(fl)p 
= p~ (fl,· .. ,f".) + p; (fl ... "f".) satisfying the assumptions of 

the lemma. As (1 - f!J1 k) converges to zero for k_ 00 uni­
formly on compact sets there is a ko such that 11(1 - f!J1 k.l 
p~(fl, ... ,f"JII <D. We put 

p~ (fl, .. ·,f"o + I) = E"o + I T:'(fno + I - f".)f!J1 koP~ (fl, .. ·,f".). 
.0; (fl, .. ·,f"o + d = E"o + I T:'(f"o + I - f"o)(1 - f!J1 ko1o~ (f l , ... ,t".1 

+ E"o+ I T:'(f"o+ I - f"o)P;(tl,· .. ,f".). 

We obtain the estimate lIP; (fl, .. ·,f"o + I )III.;o;;21IE,,0 + I liD. We 

put K211Eo"+ tllfj = {E"o+ I T:,(s)f!J1 koP I O.;o;;s.;o;;t,E > 0,pEK6}' 
K211Eoo+ tlI6 is compact andp~(fl, ... ,f"o+ I )EK21IE .. +11l6' As D is 
arbitrary the lemma is proved. 

Proof of Theorem 2: It is sufficient to prove 

... EITg(fl1o-E"T:'(f" -f,,-I) 

... EIT~(tl10111 = O. 

The proof is by induction over n. For n = 1 Davies's result 
applies. Suppose the theorem holds for n = no. Then we 
estimate 

IIE",,+ I Tg(t"u+ 1- t".lE", .... EITg(tl1o 

-E",,+ I T:'(f"u+ 1- t,,JE,,,, ... EIT:'(tl10111 

.;o;;IIE"u+ I Tg(f"o+ I - f"J 

X [E"o ... E I Tg (tilp - E"u ... E I T:' (fl1o ]111 

+ liE [TE (t - f ) - TE (t - t )] "0+1 0 "0+1 no w no+l "0 

xp~(tl,· .. ,t".llli + 2I1E,,0+ I II 11.0; (tl,· .. ,f"JIl I' 

where we used the decomposition of Lemma 3. Byappropri­
ately choosing D the last term becomes abritrarily small. For 
E-D the first term converges to zero by assumption and the 
fact that E"" + I T g (t "0 + I - t "0 ) is bounded. The second term 
converges to zero becausep~ (tl, ... ,f"J belongs to a compact 
set. This concludes the proof of the theorem. 

The result may also be formulated in the interaction 
picture. There one considers the dynamics relative to the free 
motion ofthe system. Using the commutativity of Ls and 
K # we obtain s-limE~e -E-'Ls' Tg(f) = f!'#t. Instead of (4) 
we consider 

TrBE" ( - t")UE(f,, - f,,_1 )E,,_I (- t,,_I) 

···EI( - tl)UE(flla®UJp, 

where 

Ek(t)W 

= (iE-'HslXke - iC'Hsl ® 1) W(eiE-'Hs'Yke - ie-'Hsl ® 1). 

Slightly modifying the proof of Theorem lone obtains 
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lim sup IITrBEn( - tn)UE(tn - tn_ Il 
£-+0 O<tl<···<tn,t 

LetHs = !,iEIWiPi be the spectral decomposition of the 
system Hamiltonian. For simplicity we assume that all ei­
genvalues are nondegenerate. T~(t) leaves invariant the set 
of density matrices commuting with Hs. T~(t) induces a 
classical Markov process X (t ) on the state space I with the 
initial distribution P (X (0) = i) = Tr PiP and the transition 
probability 

P(X(t2) = iIX(t.) =j) 

= Tr PiT~(t2 - t.)Pj" 

The joint probabilities are given by 

P(X(tn) = in, ... ,x(t.) = i.) 

= IP(X(tn) = in IX(tn - Il = in_.) 
ioE! 

P(X(tn_ Il = in_.IX(tn_ 2 ) = in_ 2 ) 

···P(X(t.) = i.IX(O) = io)P(X(O) = io) 

= Tr Hi. T~(tn - tn _ • )"'E;, T~(t.lo, 
where 

Hi =PiPPi · 

However, only in the limit a classical stochastic process is 
imbedded. The corresponding quantities 

pE(X(tn) = int··,x(t.) = i.) 

= Tr Ei• UE(tn - tn _ .) 

... Ei, UE(t.lo ®wp 

for finite € do not form a consistent set of probability mea­
sures, in general. 

3. THE SINGULAR COUPLING LIMIT 

According to Palmer the singular coupling problem 
can be transformed to a weak coupling problem. One scales 
the Hamiltonian as 

H~g = Hs + €-2HB + €-·H[. 

We put U~g(t) W = e - iH;"WeiH ;". In this case the dynamics 
of the system and the dissipation are on the same time scale. 
The generator does not depend on Hs, 

Ksgp = I'" ds TrBL[eLslL[p ® wp. 

The semigroup Tsg(t) = exp(Ls + Ksg)t is already a com­
pletely positive dynamical semigroup and no averaging is 
necessary. 

315 

Theorem 4: If (11) holds 

XEn_.···E.U~g(t.lo ®wp 

-EnTsg(tn -tn_IlEn_. 

... E.Tsg(t.loli. = 0 
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for all t>O and allpEY(Yrs). 
The proof is similar to the proof of Theorem 1. Only 

minor changes are necessary to account for the different 
scaling of the system Hamiltonian. 

ACKNOWLEDGMENT 

The author would like to thank H. Spohn for suggesting 
the problem. 

APPENDIX 

Lemma A 1: Put G(€,t.,tz) = €-2 fo<,sl<'I,<.s,<I,ds2 ds. 
IgE(SZ - s.)1 for O<t. <t2. Then 

(i) lim G (€,t.,t2) = 0 for t. < t2 
E-oO 

and 

(ii) lim f'ds G (€,s,t) = O. 
E-->O Jo 

Proof: (i) Setf(x) = S;dy Ig(y)l. Then I f(x) I <llgll.forall 
x and limx~oof(x) = O. Using the substitution 
s; = €-2(S2 - s.) in the definition of G and extending the 
upper bound of the resulting integral to infinity one obtains 

1'2 
G (€,t.,t2 )< dSz/(€-2(S2 - t.)). 

I, 

(AI) 

The conclusion follows by dominated convergence. 
(ii) G (€,s,t) converges pointwise for s < t and from (AI) 

followsthebound IG (€,s,t II <t IIgll.· ApplicationoftheLebes­
gue theorem completes the proof. 
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A rational von Neumann lattice is defined as a lattice in phase space with the constants a and b in 
the x and p directions given by a ratio of integers. Zeros of harmonic oscillator functions in the kq 
representation on such lattices are found. It is shown that the number of zeros of the kq function 
determines the number of states by which a set on a von Neumann lattice is overcomplete. 
Interesting relations between theta functions are derived on the basis of their connection with the 
harmonic oscillator states in the kq representation. 

PACS numbers: 05.30.Ch 

I. INTRODUCTION 

The concept of a set of states on a lattice in phase space 
was first introduced by von Neumann in the early thirties. I 
This lattice has an underlying unit cell of area h, the Planck 
constant, which shows that the fundamental commutation 
relation of x and p is explicitly contained in its construction. 
Because of this striking feature such a lattice in phase space 
becomes physically very attractive. Thus, von Neumann 
stated I that a set of coherent states2

•
3 on this lattice is com­

plete. Later this statement was proved independently by Per­
elomov4 and by Bargmann et al.5 It was turned out that 
completeness also holds for general sets of square integrable 
states on a von Neumann lattice6 (phase space lattice with a 
unit cell of area h ). This leads one to a very elegant way of 
constructing complete sets of states in quantum mechanics. 
There remains, however, a very intriguing feature of sets of 
states on a von Neumann lattice which is connected with 
their nonorthogonality. It was first noticed by Perelomov4 

that a set of coherent states on a von Neumann lattice is 
overcomplete by exactly one state. This is a rather strange 
feature whose physical meaning is not clear. It turns out that 
the overcompleteness by one state is connected with the fact 
that coherent states in the kq representation have exactly one 
zero in each unit cell of the von Neumann lattice.6 The exis­
tence of this zero influences strongly the nature of the expan­
sion in the discrete set of coherent sets. 7 In particular, if a kq 
function C (k,q) has any zeros, the von Neumann set built out 
ofC (k,q) cannot be orthogonal on different sites of the lattice, 
because orthogonality requires I C (k,q) I = 1.6 This feature of 
von Neumann sets was recently used in proving what is 
called the strong uncertainty principle in quantum mechan­
ics.8 

In this paper we show that the von Neumann set built 
out of the wave function C(kq) is overcomplete to an extent 
that depends on the zeros ofC (kq) in number and kind. Nota­
bly, if C (kq) has r isolated simple zeros (zeros of order one) 
then overcompleteness is by exactly r states. It was recently 
proved that any continuous wave function C (k,q) has at least 
one zero.9 This means that the von Neumann set built out of 
any continuous C (k,q) will be overcomplete by at least one 
state. In particular, we investigate zeros of the harmonic os-

aJ On leave from Department of Physics, University of Surrey, Guildford, 
England. 

cillator states CN(k,q) in the kq representation. As is well 
known, the harmonic oscillator state depends on the param­
eter..i (..i 2 = ii/mOl) while the kq representation is defined by 
using a lattice lO (we put the constant a of this lattice as a 
superscript on the function) 

c(a)(k,q) = (2:) 112 n =~ '" exp(ikan)¢'(q - na), (1) 

where ¢,(x) is the wave function in the x representation. The 
constants ..i and a appear also in the definition of the von 
Neumann lattice7 

1 ( . b) b = 211" '2. a mn =-- na +lm , /I. 

..iYL a 

In the particular case, when 

b/a=s/I 

(2) 

(3) 

wheres and I are integers we shall say that the set of points in 
Eq. (2) forms a rational von Neumann lattice. Thus, a special 
case of a rational von Neumann lattice is a square lattice with 
b = a. In this paper we find sets of zeros of harmonic oscilla­
tor states for rational von Neumann lattices. In particular, 
we consider the lattices b = sa with s = 1,2,3, and 4. For 
these particular rational lattices we find zeros for infinite sets 
of harmonic oscillator states in the kq representation. These 
zeros are located at symmetric positions in the unit cell of the 
von Neumann lattice. For finding the zeros we use a relation 
connecting kq functions for a lattice with a constant a and a 
superlattice with a constant sa, s being any integer. This rela­
tion together with a canonical transformation gives zeros of 
harmonic oscillator states on rational von Neumann lattices. 
Although it is at present uncertain whether there are more 
zeros than the ones we have found, we gain a great deal of 
insight into the properties of harmonic oscillator lattices. 
These results are contained in Secs. I-III. In Sec. IV we 
discuss the relationship between the zeros and the degree of 
overcompleteness of the von Neumann lattice set. Finally, 
Sec. V presents some interesting relations between theta 
functions that come out as a by-product of the search for 
zeros of harmonic oscillator states. That there is a connec­
tion between coherent states on a von Neumann lattice and 
theta functions has been known for some time.4

,11 It turns 
out that this connection is a very far reaching one and it is 
extended in this paper to higher harmonic oscillator states. 
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II. RATIONAL VON NEUMANN LATTICES 

The Hamiltonian of a harmonic oscillator 

H'" 1 (A2 + ,,2 A2) =- P -x, 
2m A. 4 

(4) 

with A. 2 = "lmOJ, is invariant under the following canonical 
transformation: 

T
A A.2A 
:x---+--p " , 

A "A p~x. (5) 

In the x representation the transformation T assumes the 
following form: 

Tt/l(x) = A. (2~)1/2 f: 00 exp() 2 XY)t/l(Y)dY 

_ ,,1/
2 

( fvc) 
-TF -T2' 

where F(p) is the Fourier transform of t/l(x) 

F(p) = 1 I Joo exp( - ~ PX)t/J(X)dx. 
(21rli) I 2 _ 00 " 

When t/J(x) is the Nth harmonic oscillator state t/lN(X) its 
Fourier transform FN(P) is well known l2 

(6) 

(7) 

FN(p) = exp - ~ HN J!.... , (8) 
(..1)1/2 (..122) (A.) 

iN(2NN !".[ii) I 12 2fz2 " 
whereHN(x) are the Hermite polynomials. FromEqs. (6) and 
(8), andfrom the explicit form for t/lN(X) [see Ref. (12)] we find 

Tt/lN(X) = iNt/lN(X). (9) 

This means that the canonical transformation (5) when ap­
plied to the harmonic oscillator states multiplies the latter by 
iN. Such a behavior of the states IN) is in agreement with the 
fact that they are nondegenerate. 

Let us now find Eq. (6) (the first half of it) in the kq 
representation. For defining the kq function C (k,q) one can 
also use the Fourier transform F (p) of the wave function 10 

( " )112 C (al(k,q) = -;; exp(ikq) 

X n ~~ 00 exp(iq 2a
1T 

n )F( fzk + n 2; ,,). (10) 

From Eqs. (1), (6), and (10) it follows that 

Tc(al(k,q) = eXP(ikq)C(b{ - A.q2 ' A. 2k); b = ~ A. 2, (11) 

where as in Eq. (1) the superscripts denote the lattice con­
stant. Note that the same relationship between b and a oc­
curs as in Eq. (2). Equation (11) expresses the canonical 
transformation (5) in the kq representation: a kq function 
C (al(k,q) is transformed by Tinto a kq function C (b I( _ ql A. 2, 

A. 2k) for the constant b, multiplied by the phase exp(ikq). It is 
interesting that while in the x representation the canonical 
transformation (5) is given by an integral [Eq. (6)], in the kq 
representation one just has to replace in the function 
k---+ - qlA. 2, q---+A. 2k, multiply it by the phase exp(ikq) and 
change the constant from a to b. This replacement corre­
sponds to the orignal transformation (5) if one remembers 
that in the kq representation p is replaced by fzk and x by q. 

For rational von Neumann lattices [see the definition 
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(3)] the right hand sideofEq. (11) can be expressed as a linear 
combination of kq functions for the constant a. This can be 
achieved by using formulas expressing kq functions C (sal(k,q) 
for constant sa (s an integer) via C lal(k,q), and vice versa. 
Such formulas are very easy to obtain and a short derivation 
ofthem is given in the Appendix. [Formulas (A4) and (AS)]. 
By using these formulas, the canonical transformation (11) 
can be written in terms of kq functions for the constant a. 
Thus, when b = sa we have 

TClal(k,q) = exp(ikq) S~I c(al( _.!L + r 21T, A. 2k ). 
(S)1/2 r~O A. 2 sa 

(12) 

For a general rational von Neumann lattice b = sail 
[Eq. (3)], we can combine the formulas (A4) and (AS) in the 
Appendix and express C (b I(k,q) as a combination of the func­
tions Clal(k,q). We have 

Clbl(k,q) =_I_s~1 Cla/ll(k+r 21T,q) 
(s) I 12 r~o sa 

1 s - I I - I ( 21T a ) 
=~ I I Clal k+r--,q-r-

(sl) r~Or'~O s(all) I 

X exp(ikr' all). (13) 

It is easy to see that for I = 1 (b = sa) this formula goes over 
into (A4), while for s = 1 (b = all) it is equivalent to (AS). 
Correspondingly, the formula (13) can be used in order to 
express the canonical transformation (11) in terms of kq 
functions for the parameter a only. 

It is interesting that in the general case the canonical 
transformation (11) connects the function C (al(k,q) for the 
constant a with the kq function for the constant b. These two 
constants a and b are related to one another by Eq. (2) and 
they appear in the definition of a von Neumann lattice. That 
is, the canonical transformation (11) connects functions for 
the particular constants a and b belonging to a von Neumann 
lattice, which therefore appears quite naturally in this con­
text. Other lattices, where ab #- 21TA. 2 (cell area #- h ) lead ei­
ther to incompleteness (ab > 21TA. 2) or to infinite overcomple­
teness (ab < 21TA. 2).4,5 The von Neumann lattice, on the other 
hand, will permit exact completeness or overcompleteness 
by a finite number of states, depending on the function 
c(al(k,q). 

For harmonic oscillator states CN(k,q) we can use Eq. 
(9) and obtain an interesting formula from the canonical 
transformation (11) 

iNC~(k,q)=exp(ikq)C~I(-qIA.2,A.2k); b= 21T ..12. (14) 
a 

This formula connects harmonic oscillator functions for the 
constants a and b on a von Neumann lattice. As we show in 
Sec. V it is equivalent to the Jacobi imaginary transforma­
tion of elliptic functions l3 or a derivative thereof. When 
combined with Eq. (13) for a rational von Neumann lattice 
formula (14) leads to the following results [for b = (sll )a]: 
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iNc(a)(k ) = exp(ikq) S~I I~I CIa) 
N,q ( I 1/2 £.. £.. N 

S ) r=Or'=O 

( 
q 21T 1 2k ,a ) x --+r--,/\' -r-

,12 s(al/) I 

xexP(ikr' ~). (15) 

This formula connects harmonic oscillator functions at dif­
ferent points in the unit cell of the rational von Neumann 
lattice with b = (s//)a. Since 21TA 2 = ab [from (14)] we also 
have 

a2 I 
-2 = 21T -. (16) 
A s 

The unit cell in formula (15) is therefore given by a = A (21TI I 
s)I/2andb = A (21TS//)I/2. Formula(15) has a numberofinter­
esting consequences, which are discussed in the Secs. III and 
V of this paper. 

Ill. ZEROS OF HARMONIC OSCILLATOR STATES IN 
THE kq REPRESENTATION 

As was mentioned in the Introduction, every contin­
uous kq function has at least one zero in the unit cell of the 
von Neumann lattice.9 From some general considerations it 
is easy to show that any C~~en (k,q) which is built from an 
even function "'even (x) in the x representation, "'even ( - x) 
= "'even (x) has a zero at k = 1Tla, q = al2 

C Ia) (.!!... a)_ 
even a'"2 - o. (17) 

Similarly, one can show that C ~d (k,q) which is built from an 
odd function "'odd ( - x) = - "'odd (x), has zeros at the fol­
lowing three points in the unit cell of the von Neumann lat­
tice: 

C~d(O,O) = C~d(O,a/2) = C~d(1Tla,O) = O. (IS) 

For showing this we use the boundary conditions satisfied by 
any kq function 10 

c(a)(k + 21Tla,q) = c(a)(k,q), 

c(a)(k,q + a) = exp(ika)C(a)(k,q), 

(19) 

(20) 

and the fact which follows from the definition (1) that 
C~~en( - k, - q) = C~~en(k,q) and C~d( - k, - q) 
= - C~d(k,q). Thus, for an even function Ci~en(k,q) we 

have from the boundary conditions (19) and (20) 

C~~en(1Tla,aI2) = C~~en( -1Tla, - a12) 

= - Ci~en(1Tla,aI2). (21) 

From here the zero in (17) follows. In a similar way we verify 
the zeros of an odd function C~d (k,q) as given in Eq. (IS). It 
immediately follows that for harmonic oscillator states for 
any Mwehave 

Cka1(1Tla,aI2) = 0 (22) 

Cka1+ 1(0,0) = C~1+ I (0,aI2) = C~1+ I (1Tla,O) = O. 
(23) 

These zeros appear for an arbitrary constant a and are con­
nected with the fact that harmonic oscillator states are even 
for N = 2M and odd for N = 2M + 1. 

From Eq. (14) we can also obtain for the harmonic oscil-
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lator states the following general results about their zeros. 
Let us assume that thereisa zero ofC~(k,q) atk = a1Tla and 
q = /3a12 with 1 a 1 < 1 and 1/31" 1. From Eq. (14) it then fol­
lows that C~) ( - /31Tlb, ab 12) = O. Since the harmonic os­
cillator functions "'N(X) are real, it is easy to see that C ~(k,q) 
= CN ( - k,q). We arrive therefore at the following general 

results if 

c~{a :/3 ~)=O 
then 

C ~( ± a :' ± /3 ~) = 0, 

C(b)( +/3.!!... ± a~) = 0 
N - b' 2 ' 

(24) 

where the constants a and b are connected by Eq. (2). Equa­
tion (24) does not tell us, however, where the zeros actually 
are. In order to look for them we now use the results of the 
previous section for rational von Neumann lattices. 

Let us start with the simplest case of a square von Neu­
mann lattice, b = a. In this case, Eq. (14) becomes (A 2 = a21 
21T), 

iNC~)(k,q) = eXp(ikq)C~( - 27,~ k). (25) 
a 21T 

From this it follows that for N :;f4n (n is any integer), 
C~(O,O) = O. For an odd N this is not a new result and it is 
contained in Eq. (IS). However, when N = 2 + 4n, this is a 
new zero and we have 

Cka~4n(0,0) = 0, n arbitrary, ,12 = a2/21T. (26) 

This relation shows that the even harmonic oscillator func­
tions in the series N = 2 + 4n have a zero in the kq represen­
tation at the origin of the square von Neumann lattice unit 
cell. 

From Eq. (25) we find also the following new zero for 
odd harmonic oscillator states. It is easy to check that 

C (a) ( 1T a) _ 0 . 2 a2 

3 + 4n -;;'"2 - , n arbitrary, A = 21T' (27) 

It is to be remarked from (17) that for general von Neumann 
lattices the point k = 1Tla,q = a/2 is a zero only for even 
harmonic oscillator states. It is therefore interesting that for 
square lattices Eq. (27) holds for the odd states of the series 
N = 3 + 4n (we shall see in Sec. IV that (26) and (27) are 
actually zeros of order two). 

Next we consider the rational case b = 20. By using Eq. 
(15) for s = 2, I = 1 (or Eq. (A4) in the Appendix for s = 2) we 
have (A 2 = a2/1T), 

iNc ~)(k,q) = ex~kq) [c ~{ - ~~,: k ) 

+ C~( - ~~ + :' : k )]. (2S) 

Consider Eq. (2S) at the point k = 1T12a, q = a12. We have 

iNC (a) (~.!!....) = exp(i1T14) [c(a)( _ ~ .!!....) 
N 20'2 v1 N 20'2 

+C~(~, ;)]. (29) 
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However, since 

C~( - ~, ~) = ( - 1texP( - i ; )c~(~, ~). 
we find 

c(a) (1T a) 
2+4n 2;'2 -c(a) (1T a) 

- 3+4n 2;'2 
2a2 

= 0, n arbitrary, A 2 = -. 
1T 

(30) 

This shows that the point k = 1T12a, q = al2 is a new zero 
for both the above series of even and odd states when b = 2a. 

In a similar way, one can carry out the zero-searching 
process for a rational von Neumann lattice with b = 3a. In 
this case the zeros for the functions C ~a~ 4n are at k = 1T 13a, 
q = al2 while for the functions C ~~ 4n they are at k = 21T I 
3a, q = O. We have 

C~~4n(1T13a,aI2) = c~a~4n(21T13a,0) 
= 0, n arbitrary, A 2 = 3a2/21T. 

(31) 

We have also looked for the zeros in the case of b = 4a. 
We found no new zeros for the kq functions of even harmon­
ic oscillator states. For odd states we have 

c~a~4n(1TI2a,0) = 0, n arbitrary, A 2 = 2a211T. (32) 

The results of the zeros for harmonic oscillator states in 
the kq representations are summarized in Table I and Fig. 1. 
In Table I we list the zeros of the functions C~~ 4n (k,q) and 
C~~4n(k,q) [correspondingly, for Cn4n(k,q) and 
C ~ l4n (k,q); see Eq. (24)] for rational lattices b = sa, 
s = 1,2,3,4. In this Table we summarize also the zeros for 
even C2M(k,q) and odd C2M + I (k,q) harmonic oscillator func­
tions. Figure 1 shows the zeros in the unit cell of the rational 
von Neumann lattices for the series N = 2 + 4n and 
N= 3 +4n. 

Knowledge about the zeros of the harmonic oscillator 
functions is pertinent for an examination of the completeness 

Cia) Cia) Ib) Ib) 
2+4n 3+4n C2+4n C3+4n 

S=1 ill ill ill ill 
a="A.fiTi b=XIftt 

S=2 rn ill E+-++I fiE 
a= x.fIT. b= n.fIT. 

S=3 rn B Et-H++~ ± reI 
a=xff¥ b=3A/2f 

S=4 0 ~ I I r 
a=XJt b=4Xq 

FIG. 1. Zeros of harmonic oscillator functions in the kq representation for 
rational von Neumann Lattices. a and b are the constants of the rational 
lattice. b = sa. The q-coordinate is on the horizontal axis and k is on the 
vertical one. The numerical values for the zeros are given in Table I. Filled 
circles show zeros derived from the rationality condition; open circles show 
zeros present for arbitrary a. 

of the corresponding von Neumann lattice sets. This is dis­
cussed in the next Section. It also turns out that the new 
zeros [Eqs. (26), (27), and (30)-(32)] lead to some interesting 
relations for theta functions. This is described in Sec. V. 

IV. ZEROS AND COMPLETENESS 

Zeros of the kq wave function C (k,q) play an important 
role for the completeness properties of the set of states gener-

TABLE I. Zeros of harmonic oscillator functions. In the upper part zeros are listed for rational von Neumann lattices. The lower part contains the zeros of 
even and odd functions for an arbitrary constant a. nand M are arbitrary nonnegative integers. 

e~~ •• qa~ •• en •• en •• 

(0.0) (: . ; ) (0.0) ( ; . ~ ) 
s = 2: a = ..t .[iT (b = U .[iT) (± ;:.;) (± ;:.;) (;.± !) (~ ± ~) 

b' 4 

(± ~.;) (± ~: .0) (;.± :) (0. ± ~) 
(± ;: .0) (0. ± !) 

Cia) 
2M e~l.+ I 

( : . ~ ) (0.0) 

(0. ~ ) 
( : .0) 
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ated from C1a)(k,q) on the von Neumann lattice. It was 
shown in Ref. 9 that this set has the simple form 

C~~(k,q) = exp(i 2: qm - iakn)C1a)(k,q) (33) 

in the kq representation. Physically, this corresponds to a set 
of functions generated by shifts in position and momentum 
corresponding to the points a mn of the lattice (2). The set is 
complete when 

211" f dk fdqf*(k,q)C~)n(k,q) = 0 (34) 

for all pairs (m,n) implies thatf(k,q)=O (the zero function) for 
any square-integrable statef(k,q). 14 It follows9 from (33) and 
Fourier-sum theory that completeness holds if and only if 

f*(k,q)C la)(k,q)=O=>f(k,q)=O. 

In the case of the harmonic oscillator state C~)(k,q) com­
pleteness certainly holds because C ~)(k,q) does not vanish on 
a finite area of kq coordinates. In fact, the C~(k,q) are ana­
lytic functions of k and q. To begin with, c~a)(k,q) has been 
shown6 to be related to a theta function 13 

(
a 1 )112 ( q2) C~)(k,q) = 21T A (1T)1/2 exp - U 2 

Xe (~-i~ I~) (35) 
3 2 U 2 21TA 2 

whereas for the higher functions 

C~(k,q)=(N!)-1/2[A~ (q+i :k _A
2 ~)rC~)(k,q). 

(36) 

Here the operator in brackets is the creation operator 

At 1 (A . A 2 A) 
a = AV2 X-l--:jFP 

in the kq representation. 10 We know from the properties of 
theta functions I3 that C ~)(k,q) vanishes only at the one point 
k = 1Tla, q = a12, and it is clear from (35) and (36) that all 
C~(k,q) are analytic functions and vanish at most on sets of 
zero measure. 

We saw in Sec. III that C~)(k,q) always has at least one 
zero when N is even and at least three when N is odd. This 
holds for the general case, i.e., arbitrary a. For values of a 
corresponding to rational von Neumann lattices we disco­
vered further series of zeros (Table I and Fig. 1) when 
N = 2 + 4n and N = 3 + 4n. In addition we can show that 
these new zeros (indicated by filled circles in Fig. 1) are actu­
ally of order two for the square lattice s = 1, i.e. their first 
derivatives also vanish. This is seen from the recurrence rela­
tions 

_1_ (q + i ~ _ A 2 ~)C~)(k,q) 
Av'2 ok oq 

= (N + 1)1/2C~)+ I (k,q), 

_1_ (q + i ~ + A 2 ~)Cla)(k q) = N I/2c 1a) (k q) Av'2 ok oq N' N-I , , 

obtained by operation with creation and annihilation opera­
tors. Evidently, if C ~)(k,q) has a zero at (k,q) then it is of 
order two thereifand only ifboth C~)+ I (k,q)andC~_1 (k,q) 
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have zeros at the same point. A glance at Fig. 1 then shows 
that for s = 1 the zero at (0,0) for N = 2 + 4n is of order two, 
and the zero at (1Tla, a12) for N = 3 + 4n is also of order two, 
where we also use (18). 

Although we have not yet complete information on the 
zeros of C ~)(k,q), the discovery of new zeros and of zeros of 
order higher than one, prompts the question of the relation 
between the completeness properties of the von Neumann 
set generated from C~) as in (33) and the zeros themselves. It 
was pointed out in Ref. (9) that in the N = 0 case, which gives 
the von Neumann set of coherent states, the single zero (of 
first order) of C~)(k,q) has the consequence that the set is 
overcomplete by just one member. We can prove the follow­
ing: 

If C (a)(k,q) has r isolated zeros of order one, the corre­
sponding von Neumann set is overcomplete by just r 
members. (There is no unique choice of members.) We as­
sume C1a)(k,q) to be at least differentiable. 

Thus we show that we can always find r members whose 
removal leaves the set still complete. Let us remove the 
members labeled by the r points of the lattice 

[(jL,jL ')Ij = O,l, ... ,r - 1 j, (L,L I integers) 

on a line through the origin and (L.L '). From (13), (34). and 
Fourier theory any f(k,q) orthogonal to the remaining set of 
states satisfies 

f*(k.q)C1al(k,q) = ;t: ajeXPj(i 2: qL - iakL ') (37) 

for some set of coefficients aj . Since C la)(k,q) has zeros of 
order one. forf(k.q) to be square integrable it is necessary and 
sufficient that the right-hand side of (37) vanish at these ze­
ros. Suppose they are at (k/,q/), 1= 1.2, ... ,r. Then we have 
only to choose the lattice point (L,L ') such that the r quanti­
ties 

exp(i 2: q/L - iak/L ')j. 1= 1,2 •...• r 

are all different. and this is always possible. With such a 
(nonunique) choice, Eq. (37) for the arguments (k/.q/) gives a 
set of homogeneous linear equations in the aj with a nonvan­
ishing determinant. The last assertion holds because the de­
terminant is a simple alternant of different arguments. 15 

Consequently, all aj = 0 and thusf(k.q) O. 
To complete the proof we point out that the removal of 

any (r + 1) members always leaves an incomplete set. This is 
because we will arrive at r homogeneous linear equations in 
(r + 1) unknown coefficients with, consequently, a nontri­
vial solution for the aj • There exist then nontrivial (square 
integrable)f(k,q) orthogonal to the remaining set. 

The extension of the above proposition to the case when 
there are zeros of order higher than one goes along similar 
lines but is considerably more tedious. For each zero at 
which higher derivatives vanish we can remove just so many 
members as the number of vanishing derivatives in addition 
to the original member, and retain completeness. Thus for 
each zero of order two. we can remove three members. We 
omit the proof, except to remark that it is similar to the above 
but involves so-called confluent alternants. 15 

The above results applied to von Neumann lattices of 
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harmonic oscillator states mean that for the general case 
(arbitrary a) overcompleteness is by at least one member 
when N is even and by at least 3 members when N is odd. (For 
N = 0 overcompleteness is by precisely one6 from our earlier 
discussion, a fact that was originally proved in a totally dif­
ferent manner4

.) For rational lattices with s = 1,2,3,4 we 
learn from Fig. 1 that for the series N = 2 + 4n overcomple­
teness is by at least 3 and in the square (s = 1) case by at least 
4· likewise for the series N = 3 + 4n overcompleteness is by 
a~ least 5 and in the square case by at least 6. (Here we recall 
that in the square case one zero is of order two.) The qualifi­
cation "at least" is, of course, inserted because for N> 0 we 
are not yet sure to have made an inventory of all the zeros. 

V. HARMONIC OSCILLATOR STATES AND THETA 
FUNCTION RELATIONS 

The results which hold amongst kq representations of 
harmonic oscillator states lead to quite a variety of relations 
among 8 functions. Many of these relations appear to be 
new. The connection between C~)(k,q) and the 8 3 function is 
given in (35). We note that Eq. (14) for N = 0 amounts to the 
Jacobi imaginary transformation, 13 whereas for N> 0 it 
gives derivatives of that transformation. When (35) is put 
into the superlattice transformation formula (A4) for N = 0 
it leads to the following additive decomposition result for 8 3: 

s83(szlsT) = sII 8 3(Z + r1T1 !.), 
r=O S S 

(38) 

writing Z = !(ka - iqa/ It 2). 
A decomposition of 8 4 (SZ Is1') in product form is known, 

namely 16 

(39) 

where Qo(x) = IIi(1 - x2n) with x = exp(i1T1'). (Weusex and 
not the usual q to avoid confusion with the symbol used in 
the kq representation.) A product decomposition of 8 3 may 
be found from (39) using the result 8 3(zl1') = 8 4(z + 1T/al1'). 
However, (38) is new to us and we have not found it any­
where. Equation (38) is directly obtainable from the defini­
tion of 8 3 as 

00 

8 3(zl1') = I exp(i1Tn21')exp(2inz), (40) 

for then from (40) 

s-I ( ml1') I 8 3 z+- -
r=O S S 

00 (1' )S-I ( r) n=~ 00 exp i 1Tn2 ~ + 2nz r~oexp i 21T~ n 

n =~ 00 exp i( 1Tn2 ~ + 2nz)(s m =~ 00 8".ms ) 
00 

= s I exp i(1Tm21'S + 2msz) 
m= - ex) 

= s83(szls1'). 

If instead of using N = 0 in (A4) we use greater values of N 
we obtain the derivatives of (38). 

Equation (36) can be conveniently expressed in the form 
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l-+q 

(
.a ) 

C~(k,q) = (2N~WI2 HN a\ C~)(k,q), (41) 

whereHN is the Nth Hermite polynomial. Formula (41) can 
be obtained in the following way. In the x representation the 
Nth harmonic oscillator state is 

tPN(X) = (2N~!)1/2 HN(~) tPo(x), 

where tPo(x) is the ground state. In the kq representation this 
will assume the form (41), if we look at H N(X/ It ) as an opera­
tor applied to the ground state [see Eq. (35)] and remember 
that x = q + ia/ak in the kq representation. \0 An alterna­
tive expression of harmonic oscillator states in the kq repre­
sentation was given by Janssen.9 

In Sec. III zeros of C ~)(k,q) were found for various sand 
(k,q). These, when expressed in terms of 8 functions (Table 
II), lead to such a plethora of identities as to be almost em­
barrassing. Consider for example the square lattice for 
which C ~~ + 2 (0,0) = O. Using T.l of Table II it is almost 
trivial to derive such results as 

1T8 ~(Oli) + 8 3(0Ii) = 0, (42a) 

~8;i(0Ii) + 15~8~V(0Ii) - 3083(0Ii) = 0, (42b) 

which are the first two members of T.1. 
However, a direct proof from properties of 8 functions 

is by no means obvious, and we sketch one here to show the 
difficulties. It is known thae 3 

8;(zl1') -f( I )-4~ (-l)'xr . 2 
-'--'-- - Z l' - £... sm rz. 
8 3(zl1') r= I 1 - x2r 

(43) 

For l' = i, x = e - 1T; then 
00 

f(zli) = 2 I (- l)'csch(m)sin 2rz, f(Oli) = O. 
r= I 

TABLE II. Some 8-function identities derived from Rels. (35) and (41) and 
the new zeros. Here n;;.O and z = !(ak - iaq/ .P). 

s = I (Square) lattice: a = A (217')1/2 = b 

C4n+2(0.0)=0=>H4n+2 (i.Jf !)e3(zli)lz~o =0 T.l 

C4n +3(:.;) =0=>H4n+3 (i.Jf :Jel(ZII)lz~o =0 T.2 

s = 2 lattice: a = A ,fii = b /2 

C4n+2 (:a,; )=0=>H4n +2 (i~ !)e2(zl ~ )IZ_"/4 =OT.3 

C4n+3( :a. ~ )=0=>H4n + 3 (i~ :Je2(zl ~ )IZ_"/4 =OT.4 

s = 3 lattice: a = A (217'/3)1/2 = b /3 

C4n +2(:a. ~ )=0=>H4n + 2(iJf !}e2(zl ~ )L"/6 =0 T.5 

C4n +3( ~; ,O)=0=>H4n +3(iJf !)e3(zl ~ )1 Z~V/3=O T.6 

s = 4 lattice: a = A (17'/2)112 = b /4 

C4n+3(:a ,O)=0=>H4n+3(iJf :J03 (zI ! )IZ~"/4 =0 T.7 
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By continuous differentiation with respect to z we have 

"" /,(zli) = 4 L (- l)'rcsch(nr)cos 2rz, 
r=1 

00 

j"(zli) = - 8 L (- l)'rcsch(nr)sin 2rz. 
r= I 

It is evident thatj2n(0Ii) = 0 for all n. Now from (43) 

8 ;(zli) = 8; (zli)j(zli) + 8 3(zli)/'(zli), 

hence 
00 

8 ;'(Oli) = 8 3(0Ii) X 4 L (- l)'rcsch(nr). (44) 
r= I 

The sum ~;c= 1(- l)'rcsch(nT) has a long history17 and 
it was first evaluated by Cauchyl8 who showed that it is 
equal to - l/41T. Equation (42a) follows immediately from 
(44). By further differentiation (42b) may also be proved with 
the aid of the unexpected result that in addition to the even 
derivativesj2n(0Ii) = 0, alsoF(Oli) = ~;c= 1(- l)'r 
X csch(nr) = O. This result also goes back to Cauchyl8 and is 
part of a general formula, namely 

oc 

L (- l)'r4n + Icsch(nr) = 0, n> 1. (45) 
r= I 

The similarity between T.l of Table II and (45) is evident but 
the connection not obvious. 

The second result for the square lattice (Table II, T.2) 
gives for its first two members 

1T8 ;"(01 i) + 38; (Oli) = 0, (46a) 

~e r;i(Oli) + 21r8 r (Oli) - 2108; (Oli) = O. (46b) 

Again, these results may be proved directly with some diffi­
culty in the same manner as for (42) using the result 

8; (zl1') 00 x2r . 
-~.:-:.. = cot z + 4 L --- sm 2rz. 
8 1(zl1') r= I 1 _ x2r 

Equation (46a) can be proved knowing that 

00 r 1 00 1 1 L =- L csch2(nr)=---. (47) 
r = I e2Trr - 1 4 r = I 24 81T 

To prove (46b) and higher analogs requires knowing that 

00 r4n + I 0 
" 4n + 2 1 r~le2Trr_l =4(2n+l)' n>, (48) 

where On is the nth Bernoulli number. Equations (47) and 
(48) are closely connected with Ramanujan's work and are 
discussed by Berndt. 19 Again there appears a tantalizing 
connection between (48) and T.2 of Table II. Direct proofs of 
results obtained from the rectangular lattices are even more 
difficult to furnish since the 8 functions concerned and their 
derivatives have to be evaluated at finite z. Thus, for exam­
ple, the lattice b = 3a (T.5, Table II) yields with little labor 

(49a) 

~8 vi(.!!...1 i...) + 45r8 iv(.!!...1 i...) - 8108 (.!!...I i...) = 0 263 263 263' 
(49b) 

for n = 0 and 1. An attempt to prove (49a) directly following 
the lines already indicated was successful, but is very long 
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and elaborate. Another method, shown here, makes use of 
the infinite product representation \3 of 8 2: 

8 2(zl1') = 2x1/4QO(X) IT (1 + 2x2rcos 2z + x4r). (50) 
,.=1 

We also have for all 8 functions the relation \3 

8 "(zl1') = - 4x a8 lax. Hence, differentiating (50)logarith­
mically with respect to x and multiplying by - 4x we have 

_8_;_'(z....:..,I1'_) = i: _8_rx_2_r 
8 2(zl1') r= I 1 _ x2r 

"" rcos 2zx2r + rx4r 
- 1 - 16 L . (51) 

r= I 1 + 2x2rcos 2z + x4r 

Puttingz = 1T16 and taking just the last term of (51), by 
successive rearrangement we have 

_ 8 ~ rx2r + 2rx4r 

r~1 1 + x2r + x4r 

_ _ 8 i: rx2r + rx4r - 2rx6r 

r= I 1 - x 6r 

"" ~ "" ~ 
=-8L~+24L~' 

r = I 1 - x2r r = I 1 _ x 6r 

Hence 

8;( il1') 
8 2(; 11') 

Ifwe now put l' = il3 and x = e - Tri3, (52) becomes 

(52) 

Then, using (47), Eq. (49a) is proved. No attempt has been 
made at a direct proof of (49b) and it would seem a formida­
ble proposition even if it could be carried out. 

To summarize, it seems that each zero ofa C~I(k,q) 
function yields a nontrivial relation between 8 functions and 
their derivatives. For given s, infinite sets of relations are 
found. In each case it is comparatively simple to write down 
a 8-function relation from the given zero, whereas direct 
proofs of these relations from definitions of 8 functions are 
laborious. It is remarkable that these relations are so easily 
formulated with the aid of the kq representation. 

VI. DISCUSSION 

The interest in von Neumann lattices stems in large 
measure from the desire to study at a fundamental level the 
relationship between classical quantities and their quantum 
mechanical counterparts. For this two concepts are basic: 
phase space and the elementary area h. From there it is na­
tural to give particular attention to quantum states whose 
properties can also be given an approximate classical inter­
pretation in phase-space terms: coherent states and higher 
harmonic-oscillator states as well. The question of the com­
pleteness oflattices of these states, one per Planck cell, is 
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essentially a density-of-states question and it is not surpris­
ing that it can be verified that they are indeed complete.4-6 
What is surprising is that they are overcomplete, albeit by a 
finite number only. This paper carries further the investiga­
tion of overcompleteness, and of its strong relationship with 
the zeros of the wave function in the kq representation. The 
relationship is mathematically well determined but remains 
physically mysterious. The paper also announces the discov­
ery of new zeros for the higher harmonic oscillator states in 
the case of certain rational relationships between the sides of 
the unit cell of the von Neumann lattice and discusses some 
of the extraordinary wealth of mathematical relations which 
follow from the existence of these zeros, especially those 
among theta functions. Other such relations, involving La­
guerre polynomials, will also automatically follow from for­
mulas derived in Ref. 9 (Sec. IV). Finally it should be men­
tioned that lattices of coherent states have interesting 
applications in communications theory8.14 and the theory of 
a Bloch electron in a magnetic field. 20 

In connection with the last example there is a striking 
feature of the rational von Neumann lattices. Equation (16) 
reminds one very much of the definition of rational magnetic 
fields in the problem of the dynamics of a Bloch electron.21 •22 

In the Bloch electron system A 2 = lic/eH and (16) then be­
comes 

Ha2 I 
=-. 

(he/e) s 

This is just the rationality condition for a Bloch electron in a 
magnetic field. 
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APPENDIX 

Let C lal(k,q) be a function defined on the constant a and, 
correspondingly, C1sal(k,q) for the constant sa. We shall be 
looking for a transformation connecting these two functions. 
We use the definitions lO 

(
a )112 

(xlkq)lal = - L exp(ikan)O(x - q - na), 
21T n 

(AI) 

(xlkq)lsal = (.!!!.-)1I2 L exp(iksan)<5(x - q - nsa). (A2) 
21T n 

The transformation matrix is Isal(k 'q'lkq)lal. The latter can 
be found from (AI) and (A2) 

323 J. Math. Phys., Vol. 24, No.2, February 1983 

Isal(k 'q'lkq)lal = _1_ ~ <5(k _ k' _ n l:!!..) 
(S)I/2 ,,~~ 00 sa 

00 

X L exp(ikam + ik 'sal) 
1= - 00 

m =O, ...• s-1 

X<5(q' - q - ma -Isa). (A3) 

Byusingthematrix(A3)wefind,forO<q' <a;O<k' < 21T/sa, 

C1sal(k ',q') = f'SQ1(k 'q'lkq)laIC1al(k,q) dk dq 

= _1_ S~I C1al(k' + r 21T ,q') 
(S)I/2 r~O sa 

(A4) 

integrated over the kq cell for the constant sa. Correspond­
ingly, for the same range of k' and q' 

C1al(k ',q') = f,al(k 'q'lkq)lsaIC1sal(k,q)dkdq 

1 s- 1 
= - ~ C1sal(k' q' - ra)exp(ik 'ar). (A5) 

(S)I/2 r~O ' 
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Supposef(r) is an attractive central potential of the formf(r) = 1:7= 1 t')(jl')(r)), where If II) ) is a set 
of basis potentials (powers, log, Hulthen, sech2) and It')) is a set of smooth increasing 
transformations which, for a given/, are either all convex or all concave. Formulas are derived for 
bounds on the energy trajectoriesEnl = Fnl(V) of the HamiltonianH = - ~ + vf(r), where v is a 
coupling constant. The transform A (j) = Fis carried out in two steps:j-+I-+F, wherel(s) is called 
the kinetic potential offand is defined byl(s) = int'ltfJ.tf) subject to ~ CL 2(R 3), where..9 is the 
domain of H, IItfll = 1, and (tf, - ~tf) = s. A table is presented of the basis kinetic potentials 
I 111)(s)); the general trajectory bounds F. (v) are then shown to be given by a Legendre 
transformation of the form (s,]. (s))-+(v, F. (v)), wherel. (s) = 1:7= It')(II')(s)) and F. (v) 
= mins> 0 Is + v f. (s)). With the aid of this potential construction set (a kind of SchrOdinger 
Lego), ground-state trajectory bounds are derived for a variety of translation-invariant N-boson 
and N-fermion problems together with some excited-state trajectory bounds in the special case 
N = 2. This article combines into a single simplified and more general theory the earlier 
"potential envelope method" and the "method for linear combinations of elementary potentials." 

PACS numbers: OS.30.Fk, 05.30.Jp, 03.65.Ge 

I. INTRODUCTION 

We consider Schrodinger Hamiltonians of the form 

H= -~ + vf(r), v>O, (1.1) 

wherefis a central potential (r = Ir/) and v is a positive cou­
pling constant. We suppose thatf has the form 

k 

fIr) = L t')(jl')(r)), (1.2) 
;=1 

in which the basis potentials I f l')) are certain well-known 
attractive "soluble potentials" [powers sgn (p)r P, p> - 1, 
rIO,log(r), sech2(r), and Hulthen; see Table I in Sec. III], 
and the transformation functions It')) are smooth (e2 ), in­
creasing, and either all convex or all concave on the ranges of 
the correspondingfl,). 

Formula (1.2) therefore generates a large variety of 
smooth increasing potentials. The purpose of the present ar­
ticle is to provide recipes for upper and lower bounds on the 
eigenvalues of H defined in some suitable domain 
f$CL2(R 3). 

Fortunately, the functional analysis of nonrelativistic 
quantum mechanics is now readily accessible in text books 
(for example, Prugovecki, 1 Reed and Simon,2 and Thirring3); 
we refer the reader particularly to Chap. XIII of Ref. 2. Let 
us assume that, by appropriate control of the transformation 
functions [gI')) , the potentials we generate by Eq. (1.2) also 
satisfy 

(i) /'(r) > 0, r> 0, 

(ii) liml~f(r)1 = 0, 
rIO 

(iii) lim [ J(r)exp( - ar)) = 0 for some a > O. (1.3) 
rl00 

With these restrictions and v sufficiently large, the bottom E 
of the spectrum of H = - ~ + v fIr) will always be a nonde-

generate discrete eigenvalue; assumption (iii) conveniently 
allows us to use exponential and Gaussian trial functions. 
These assumptions can, of course, be weakened and, more­
over, since we shall only use variational arguments, our re­
sults in any case apply to the bottom of the spectrum of H, 
whether or not it it is an eigenvalue. We shall discuss higher 
eigenvalues in Sec. VI. 

We call the curve which describes how E depends on v 
the energy trajectory off and write this 

F=A (j) and E=F(v). (1.4) 

We know the exact "component" trajectories FI I
) = A (f ll)), 

and we wish to relateF = A (f) to these for a potentialf gener­
ated by Eq. (1.2). In earlier articles, ~ which we shall hence­
forth call Papers I, II, and III, we dealt with convex (or 
concave) transformations of soluble potentials (the method 
of potential envelopes4,S) and with linear combinations of 
basis potentials. 6 In the present paper we combine these re­
sults into a single theory, which is at once simpler and more 
general. The principal new idea can be thought of as a factor­
ing of the A transform so that the trajectory F is reached 
from the potentialfin two stages:f-+ l-+F. The new curvesl 
are called kinetic potentials (short for "minimum mean iso­
kinetic potentials") which, for the bottom of the spectrum, 
are defined by 

Its) = inf (¢,j¢). 
I/>EY' 

11"'11= 1 
(",.-.<1"')=s 

(1.5) 

In terms of the kinetic potential we have, for the second 
stage of minimization, 

F(v) = mints + vl(s)), (1.6) 
s>O 

or 

V-I = -]'(s) 
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and 

F(v) = s + v](s). (1.7) 

Equations (1.7) are parametric equations for the energy tra­
jectory in terms of the parameter s > 0 which is equal to the 
mean kinetic energy. We note that the () function that was 
introduced in Paper III is related to the corresponding kine­
tic potential by the equation () (s) = - {]'(s) }-I; we shall not 
need to use these () functions in the present article, which is 
self-contained. 

A quantity like]will be useful generally when one is 
discussing a sum of operators having essentially common 
domains. We shall see later that](s) = F'(v) in the present 
problem; in a more general situation, objects like](s) would 
be related to the partial derivatives of the eigenvalue with 
respect to the coefficients of the corresponding operator 
terms. However, in this paper we are mainly concerned with 
describing a constructive approximation theory for a specific 
class of Schrodinger operators. We shall first find the kinetic 
potentials {](/l) and {]~)} (where ifJ is the shape of a trial 
function) corresponding to the basis potentials {f(i)}. Our 
approximation FA to the energy trajectory 
F = A (L7 ~ Ig(i)(j(i))) is then expressed in terms of the {]I'l} 
or the {]~)} by general parametric equations having the 
form 

k 

FA (v) = s + v I g(i)(](i)(s)), 
i=1 

(1.8) 
V-I = -.!!...- Ig(i)(](i)(S)). 

dSi~ I 

If the {g/)} are all convex and the { P')} are all exact, then FA 
is a lower bound to F; if the {gi} are all concave and 
{](/l) = {n)}, i = 1,2, ... ,k, then FA is an upper bound to F 
(see Theorem 4). The table of { f(/)} and {] (I)} and the gen­
eral recipe (1.8) provide us with a potential construction set 
for which the in-house name has become "Schrodinger 
Lego." 

The main motivation for this work remains our interest 
in the N-body problem whose energy is intimately related to 
the energy trajectories of the corresponding two-body sys­
tem4

,7-9; we discuss N-boson system in Sec. V, N-fermion 
systems in Sec. VII, and we present some new examples in 
Sec. VIII. 

Even for the two-body system itself with, say, a linear 
combination of powers and the log potential, it is very useful 
to have a recipe [e.g., Sec. IV, Eq. (4.10)] for the energy as a 
function of the potential parameters; no computer output 
can as yet compete with this is terms of visible information 
content. In Sec. VI we extend some of these results to higher 
eigenvalues. The purpose of our geometrical theory is to pro­
vide a construction set for potentials whose energy trajector­
ies are then automatically estimated by the bounds (1.8), very 
often to within a few percent, as functions of the potential 
parameters. 

II. TRAJECTORY FUNCTIONS AND KINETIC 
POTENTIALS 

In this section we present some fundamental convexity, 
monotonicity, scaling, and ordering properties of the trajec-
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tory functions and kinetic potentials. Higher eigenvalues 
will be discussed in Sec. VI. 

An energy trajectory F (v) tells us how the energy E de­
pends on the coupling constant v. However, our parametric 
equations (1.8) for the bounds on the energy trajectories (yet 
to be established) suggest that it may be more natural to work 
with the quan tities E I v and 11 v . We therefore define for v > 0 

u = I/v, 

G = H Iv = - u.d + fIr), (2.1) 

G (u) = F(v)/v. 

Consequently, 

G (u) = inf (¢,G¢) = uK (u) + P (u), (2.2) 
r/JEg 

11\b1l~1 

where K (u) = (¢, - .d,¢) > 0 and P (u) = (¢,f, ¢) are, for a 
given value of u, the expectation values we get after the mini­
mization. Meanwhile, with the kinetic potential](s) given by 

](s) = 

we have 

inf (¢,j¢), 
f/1EfP 

11\b1l~ I 
1\b,-.1\b)~s 

G (u) = min(us + lIs)). 
S>O 

(2.3) 

(2.4) 

The properties we need to establish may conveniently be list­
ed together; they are: 

Theorem 2: 
(a) G (u) is monotone increasing and concave, 
(b) F(v) is concave, 
(c)](s) is monotone decreasing and convex, 
(d)f(r) = A + Bfl(rlb ) with B > 0 and b > 0 implies 

lIs) =A + B]I(b 2S), 
(e)fl < fi~]1 < ]2~GI <G2~FI <F2· 

Proof We use variational arguments based on the pre­
mise that for u sufficiently small the bottom of the spectrum 
of G is the discrete eigenvalue. From (2.2) we have 

G(u) = uK(u) +P(u)<uK(u*) +P(u*), u*j:.u. 

Hence, G (u) < G (u*) + (u - u*)K (u*), u* j:. u. Since K~O, 
Theorem 2(a) follows (See Feller,1O p. 153). Since 
G (u) = uF(lIu), Theorem 2(b) immediately follows from 
2(a). From (2.4) we have for a given u (sufficiently small) 

G (u) = min (ut + ](t)) = us + ](s)<,us* + ](s*), s* j:.s. 
1>0 

Hence -lIs);;;, -](s*) + (s - s*)u, s* j:.s. Since u > 0, 
2(c) follows. Theorem 2(d) is derived with the aid of a change 
ofvariables in definition (2.3) and the fact that b 2.d r = .drib' 

The ordering Theorem 2(e) follows directly from (2.3) and 
(2.4) by simple variational arguments. Of course, it is under­
stood that G1 is compared to G2 only over the common do­
main, and similarly for FI and F 2• 

A theorem which is essentially Theorem 2(b) may be 
found in the book by Thirring (Ref. 3, p. 153). The consisten­
cy of the inequalities in the ordering Theorem 2(e) explains 
why we have chosen to work with]rather than with -7: 
The latter alternative, however, would have allowed us di-

Richard L. Hall 325 



                                                                                                                                    

TABLE I. Some basis potentials and their ground-state kinetic potentials. The basis potentials have been selected according to their usefulness and the 
simplicity of the corresponding kinetic potentials defined by Eqs. (2.3) or (3.8). The subscripts g and e correspond, respectively, to Gaussian and exponential 
trial functions t/J in Eq. (3.8). The coefficients for the power-law and log potentials are given in Table II. 

Potential J(r) J(s) J.(s) I.(s) 

Power sgn(p)rP, p> - l,piO 2GI pi (PSPI2)- I 2G kPi(psPI2)-1 2G ~Pi(ps PI2) - I 

Log In r ~ In(vlO/2es) ~ In(v. /2es) ! In(v.J2es) 

Hulthen -Ie' -I)-I - WI + 4S)I/2 - I] 

sech' - sech'(r) - 2![(s + 2)2 + S]I/2 - (s + 2)J 

Exponential _ e-- r 

Gauss _ e- r 

Yukawa - e-' Ir 

rectly to use the notion of the "Legendre transformation" 
(e.g., Ref. 11, p. 71), which underlies the relation between 
-landG. 

III. THE BASIS POTENTIALS AND THEIR ASSOCIATED 
KINETIC POTENTIALS 

There are two types of kinetic potential which we shall 
need: exact kinetic potentials and kinetic potentials labelled 
by the shape,p of a trial function. We consider only the lowest 
eigenvalue and discuss the exact case first. 

Since the basis potentials, by hypothesis, yield soluble 
eigenproblems, we do not use the general definition (2.3) to 
findl but rather the following procedure. From (2.4) we 

TABLE II. Coefficients for power-law and log kinetic potentials. These 
coefficients are required for the kinetic potentials of Table I. The numerical 
values have been rounded up or down so as to preserve the validity of the 
trajectory bounds. For the power-law potentials, if 
E(pi = inf( t/J, (-.Ii + sgn(p)rP)t/Jl,IIt/J1l = I, then G(pi = [IPE(PIII 
(p + 1)]lp+2)l2 [see Paper III, Eq. (5.3)]. The value E(41 = 3.799 67 was 
taken from Hioe and Montroll17 [Eq. (IV.16)] and is the energy of the first 
excited state of the problem in one dimension. Similarly, we have obtained 
E( pi for p = 6 and 8 from Hioe, MacMillen, and Montroll 17 [Eqs. (III. 7) and 
(111.8) by using the correspondence E(pi = 2p/(p+ 21 E. and n = I. 

J(r) G G. G, 

-I/r 0.5 0.460 659 0.5 
r 0.688041 0.690988 0.75 
r 2.25 2.25 3 
r4 16.25417 16.875 45 
I' 112.11 132.9 

'" 797.21 1196.1 

sgn(p)rP GkPi = Ipl3PI2 [F((p + 3)12)/F(3/2)]2 - Ip+ 2!12 

p> -I 
piO G~pl = IpIF(p + 3)2 -(p+ 21 

In r VIO = 8.07 [n = I and 1= 0; see Eq. (8.24)] 
v. = i exp(3 - y) = 8.457 92 
Ve = ! exp(4 - 2y) = 8.605 68 
Y = Euler's constant 
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- (I + 3/2s) 3/2 

S>3/4=>E<0 

have 

G (u) = us + I(s), 

u = -I'(s). 
It follows that 

s = G '(u) = F(u) - ur(u) 

and 

_ 8S3/2(1 + 2s1/2) 3 

s> 1/16=>E <0 

_ 4s'/2(1 + 2s1/2)-2 

S> 1/4=>E<0 

(3.1) 

(3.2) 

I(s) = G (u) - uG '(u) = r(u). 

In practice, therefore, we solve Eqs. (3.2) forl(s). In Paper III 
we used the term "elementary potential" to label the situa­
tions where this is possible. Ifit is hard to solve forl(s) expli­
citly, we can instead use either u or u as the trajectory param­
eter. Since the basis potentials have been discussed already in 
Papers I and III, we simply list the results here in Tables I 
and II. It is interesting that all the exact kinetic potentials are 
defined for all s> 0 so that the question of the various do­
mains of the G (u) functions is automatically looked after by 
the uniform constraint s> O. 

Now we consider real central trial functions,p (r) and 
suppose 

(3.3) 

and define 

(3.4) 

where the integrations are over all of R 3. Then, for a given,p, 
we consider the domain fiJ '" C fiJ given by 

fiJ", = !7/'I7/'(r) = C,p(r/O"), 0">0, CER J. (3.5) 

It follows that 

(7/', - ..17/')/117/'11 2 
= K (,p )/a2, t/JE.!» ",. (3.6) 

Consequently, we define 

I",(s) = (7/''/7/'), t/JE.!» "', 117/'11 = 1, (7/', - ..17/') = s 
(3.7) 
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and find 

l?(s) = f t,6 2(5)f([K(t,6 )/s] 1/2t) d 3t· (3.8) 

Therefore. by the variational principle. 

G(u)<G?(u) = inf (us + l?(s)) 
5>0 

(3.9) 

and 

l(s)<l?(s). (3.10) 

In Tables I and II we list some kinetic potentials la­
belled by the exponential and Gaussian trial functions: 

e: t,6 (r) = Cle - rl2. K (t,6 ) = 1. 
g: t,6 (r) = C2e-r'14. K(t,6) = a. 

where C1 and C2 are normalization constants. 

(3.11) 

In this way the upper bounds are described in the same 
framework as the lower bounds: we simply restrict g to 
g? that is to say. we usel? instead off 

Of course. it is straightforward to find kinetic potentials 
for problems in one dimension (see Papers I and III) or to 
project the three-dimensional problem into an angular mo­
mentum subspace: The corresponding trajectory bounds 
(1.8) remain essentially the same (see Sec. VI). 

IV. THE TRAJECTORY BOUNDS 

In this section we establish the trajectory bounds which 
are a principal result of the paper. These bounds are given in 
terms of the kinetic potentials which are functions of the 
kinetic-energy parameter s > O. The kinetic potentials obey 
some basic inequalities from which the trajectory bounds 
(Theorem 4) quickly follow. The potentials themselves are 
smooth increasing potentials which are not too singular at 
r = 0 [see (1.3)]. 

Lemma 4: 

(a) ( JlI) + f'2))(S» .ru(s) + ?(s). 
k 

(b)f(r) = L a]('1(r). a j > O. implies 
;=1 

k 

l(s» L a; 1(,1(s). 
;=1 

(c)f(r) = 100 

a(v)f(V)(r) dv. a(v»O. implies 

l(s) > 100 

a(v)l(v)(s) dv. 

(d) Suppose g is increasing; then g convex implies g(f) 

>g(l). and g concave implies g(f)<g(l). 

Proof of Lemma 4: Lemma 4(a) follows directly from 
the definition of the kinetic potential for if 
fIr) = f(l)(r) + f(2)(r). then 

l(s) = inf (1/1. (f(l) + f(2))1/I»I(I)(s) + 1(2)(s) 
r/JE2J 

11",11=1 
("" - .d",) = 5 

and this immediately implies Lemmas 4(b) and 4(c). Lemma 
4(d) is a consequence of Jensen's inequality (for example. 
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Ref. 10. p. 153). In the case that the kinetic potentials are 
labelled by a trial function t,6. the inequalities in 4(a). (b). (c) 
become equalities because in definition (3.7) 1/1 is determined 
up to a factor of modulus 1; in 4(d) the corresponding in­
equalities follow from Jensen's inequality provided the 
"bar" is understood in terms of definition (3.8) with the same 
shape t,6 of the trial wave function on both sides. The integral 
mixtures which we have accommodated by Lemma 4(c) al­
low examples like 

fIr) = - 100 

a(v)(evr - 1)-1 dv. 

which represents a mixture of Hultben potentials with dif­
ferent ranges. Of course. the weight function a( v) will have to 
be controlled so thatf(r) meets condition (1.3). 

We now proceed to our main result. For conciseness we 
state the result in terms of sums of potentials; the corre­
sponding result for integral mixtures is. of course. exactly 
similar. Positive weights like the {a j ) in Lemma 4(b) are now 
omitted because they are allowed for by the scaling Theorem 
2(d). 

Theorem 4: Suppose the functions i'1 are all increasing 
and 

k 

fIr) = L i'1(f(')(r)). (4.1) 
;=1 

k 

lA (s) = L i')(f(')(s)). (4.2) 
;=1 

G (u) = min (us + l(s)). (4.3) 
5>0 

and 

GA (u) = min (us + lA (s)). (4.4) 
5>0 

then 
(a) If the {l(')) are all exact and the {i')) are all convex. 

GA(u)<G(u). 
(b) Ifll') =n\i = 1.2 ..... k.and the {i'1) are all concave. 

GA (u»G?(u»G (u). 
(c) If there is only one term in (4.1) so that 

fIr) = g(l)(f(l)(r)) and ifJ<1) is exact and g(l) is concave. then 
GA (u);;.G (u). 

Proof of Theorem 4: For 4(a) we apply Lemmas 4(b). (d) 
to givelA (s)< l(s); the ordering Theorem 2(e) then yields the 
required result. For the upper bound via the trial function t,6 
we have by the definition (3.8) of I? (s): 

G (u)< inf (1/1. { - u~ + f) 1/1). 
r/JEfP. 
11"'11=1 

i.e .• 

G (u)< inf (su + I? (s)). 
5>0 

(4.5) 

But by definition (3.7) and Lemma 4(d) we have 
k 

I? (S)<lA (s) = L i')(f~)(s)). (4.6) 
;=1 

Hence 

G (u)< inf (su + lA (s)) = GA (s). 
5>0 

(4.7) 
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This establishes Theorem 4(b). Similarly, Theorem 4(c) im­
mediately follows from Lemma 4(d); this upper bound is dis­
tinct from Theorem 4(b) and does not require a trial function 
t/J. 

Since, for the potentials we are considering, the minima 
always exist for u sufficiently small and thefA (s) are smooth, 
we may use the following recipe for the trajectory bounds: 

GA (u) = us + fA (s), 

d-
u = - ds fA (s), 

where 
k 

fA (s) = I gli)(fI1l(s)). 
;= 1 

Hence (v, GA (v)) is a Legendre transformation II of (s, 
-fA (s)). 

(4.8) 

In the special case oflinear combinations of powers and 
the log potential, for example, we find that, for the potential 

fir) = I a p sgn(p)rP + a In r, ap>O, a>O, - l<;p#O, 
p 

the trajectory bounds provided by Eq. (4.8) become 

GA (u) = I a p [(2 + p)lp]GI])t P +!a In(vAt 2/2) 
P 

u=IapGI])t P+ 2 +!at 2
, t>O, 

P 

(4.9) 

(4.10) 

where we have reparameterized in terms of t = s-IIZ, and 
simplified. For a lower bound, G 1]) = G I p) and VA = V 10; for 
upper bounds, G 1]) = G I,f) and VA = v.p with t/J = g or e, cor­
responding to Gaussian or exponential trial functions; the 
coefficients are listed in Table II. 

V. THE N-BOSON PROBLEM 

Consider N identical bosons each of mass m interacting 
via a central pair potential of the form 

(5.1) 

where Vo is a positive coupling constant, a is a positive range 
parameter, andfis a potential shape of the type we have been 
studying in this paper. The Hamiltonian H for the relative 
motion of this system may be written4 

(5.2) 

In terms of a set! Pz, P3' ... , PN J of Jacobi orthogonal rela­
tivecoordinates4 with pz = (rl - rz)lV2 we have for expecta­
tions with respect to boson functions of these variables 

(H) = (J¥"), (5.3) 
where 

J¥"= (N -1)[ - ~Ll + NVo f(1 P21 V2)]. (5.4) 
2m 1'2 2 a 

We now define the dimensionless variables 

328 J. Math. Phys., Vol. 24, No.2, February 1983 

v = NVoazm/2fz2 = l/u, 

E=mEN a2/(N-I)fz2, 

A 

G = - uLl r + fir), r = Irl 
r = pzV2/a, 

(5.5) 

where EN is the lowest energy of the N-boson problem. It 
then follows (see Paper I and the references therein) that 

E (J- 1 

G(u)<;uE=-.!:!... <;Gg(u), 
Vo 2 

(5.6) 

where G (u) is!,!1e lowest eigenvalue of G and Gg(u) is the 
minimum of (G ) with respect to Gaussian trial functions 
g = t/Jinr; it is known that G (u) = Gg(u)ifff(r) = k,z(seeRef. 
12). 

Equation (5.6) makes the principal results of this paper 
much more interesting and explains why we have worked to 
obtain bounds on G (u) and G g (u) having the same mathemat­
icalform: we are interested in general recipes for estimating 
the binding energy per pair interaction of the N-boson prob­
lem. 

The special case where 

fir) = y(h (r)), y concave, 

yields an upper bound toh(s) via the inequality 

fg (s)<;Y(hg (s)), 

(5.7) 

(5.8) 

where the sU./fix g indicates the Gaussian trial function ifJ = g 
in Eq. (3.8); Eq. (5.8) follows from Theorem 4(b). Thus we 
have the useful special case [see (3.8) and (3.11)] 

fir) =y(,z)~f(s)<;fg(s)<;y(9/4s) =f(3/2sl/2). (5.9) 

That is to say, the approximation tofis given directly in 
terms of/itself. 

VI. HIGHER EIGENVALUES 

We now return to the one (or two)-body problem. Ifwe 
restrict the problem to an angular momentum or symmetry 
subspace, then the theory of Sec. IV immediately applies to 
the bottom of the spectrum of H in this subspace. However, 
we do not yet have a satisfactory theory for the higher eigen­
values within such a subspace when the potential is repre­
sented as a sum of basis potentials. Therefore, in this section 
we restrict the discussion to central potentials of the form 

fir) = g(h (r)), (6.1) 

where h (r) is a basis potential, g is increasing and either con­
vex or concave on the range of h, andf(r) satisfies the restric­
tions (1.3). We suppose in addition that for a sufficiently 
large coupling constant v the operator H = - Ll + v fir) has 
more than one discrete eigenvalue below the essential spec­
trum: general conditions sufficient to guarantee this may be 
found in Reed and Simon2

; for example, if we add to (1.3) the 
conditionf(r) r 00 with r, then the entire spectrum is discrete. 
In place of the domain g; we use the subset g;, C g; defined 
by the projector onto angular momentum states (eigenfunc­
tions of L 2) corresponding to the spherical harmonic 
Y7(8, ifJ ), 1= 0,1,2, .. ·. We are interested in the eigenvalues 
E'n of H in g;" where n is the radial quantum number and 
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the eigenvalues are ordered according to Eln, >Eln , n' > n, 
n = 1,2,3,.··, Each of the eigenvalues so labelled will have a 
degeneracy of exactly (21 + 1). In Paper II we mentioned 
briefly the problem of higher eigenvalues and indicated the 
proof of an approximation method based on the "potential 
envelope" concept. We now state and prove this result using 
the integral inequality approach characteristic of the present 
article, 

Each eigenvalue of H in ~ I will have an energy trajec­
tory Fin and a corresponding kinetic potential];n (s). The 
variational definition of];n (s) is a little cumbersome but 
reads, for fixed I and n, as follows: 

];n(s) = inf sup (t/J,ft/J), (6.2) 
!!lJ\n) .pe!!lJ7 

Ii 11-11 = I 
11I-.-<lII-)=s 

where 9~n) is afinite n-dimensional subspace of L 2(R 3) and 
~)n) C ~ I' With this definition we prove 

Theorem 6: Suppose that g is monotone increasing. 
Then 

(a) g convex:::}];n (s»g(hln (s)), 

(b) g concave:::}];n (s)<g(hln (s)). 
(6.3) 

Proof Suppose that g is convex. Then by Jensen's in­
equality, we have 

(t/J, g(h )t/J»g((t/J, ht/J)). (6.4) 

Let C (nls) denote all three conditions I t/Je~)n), Iit/JII = 1, (t/J, 
- .Jt/J) = s} for a given 9)n); then by (6.4), 

sup (t/J, g(h )t/J» sup g((t/J, ht/J)). 
Clnls) Clnls) 

(6.5) 

Since g is monotone increasing, we have 

sup g((t/J, ht/J)) = g (sup (t/J, ht/J))>g(hnl(s)). 
Clnls) Clnls) 

Consequently, (6.5) becomes 

sup (t/J, g(h )t/J»g(hnl(s)). 
Clnls) 

(6.6) 

If we now use the fact that the right-hand side of (6.6) is 
independent of the particular subspace ~In) of fixed dimen­
sion n, it follows that 

inf sup (t/J, g(h )t/J»g(hnl(s)), 
!!lJ\n) Clnls) 

which result establishes Theorem 6(a). We now suppose that 
g is concave and obtain, again by Jensen's inequality and the 
monotonicity of g, 

sup (t/J, g(h )t/J)<g (sup (t/J, ht/J)). 
Clnls) Clnls) 

(6.7) 

Now 

inf g( sup (t/J, ht/J)) = g( inf sup (t/J, ht/J)) 
!!lJ\n) Clnls) !!lJ\n) Clnls) 

because g is monotone increasing. Consequently, by apply­
ing inf over 91n

) to both sides of(6.7), we establish Theorem 
6(b). 

In order to make use of Theorem 6, we need to have 
some exact higher kinetic potentials hnl(S). Just as for the 
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ground state, we derive h nl (s) from the known G nl (u) by using 
Eqs. (3.2). Rather than giving an extended table of higher 
kinetic potentials, we shall illustrate the theory by givingjust 
two families, those corresponding to the Hydrogenic atom 
and the harmonic oscillator; other such families may be 
found by using standard handbooks like Fliigge. 13 We have 
the following kinetic potentials in which the angular-mo­
mentum quantum number I = 0,1,2,. .. and the radial quan­
tum number n = 1,2,3,.··: 

h (r) = - l/r, 
(6.8) 

and 

(6.9) 

hnl(S) = (2n + 1- !)2Is. 

As a consistency check we can immediately analyze the har­
monic oscillator in terms of the Coulomb potential and ob­
tain 

h (r) = - l/r, hnl(S) = - s1/2/(n + I), 
and 

J(r) = r = g(h (r)) = (h (r))-2. 

Now gin Eq. (6.10) is a convex increasing function of 
h (r) = - l/r < 0 so that, by Theorem 6, we have 

(6.10) 

fntls»g(hnl(s)) = (n + 1)21s, (6.11) 

whereasfnl(s) = (2n + 1- !)2 Is by Eq. (6.9). This rather un­
likely approximation is surprisingly good for large I. In 
terms of the exact eigenvalues Fill (v) of H = -..1 + vr, we 
have by using (6.11) in the general trajectory equations (4.8): 

2(2n + 1- !)v I/2 = Fnl(V) > 2(n + I )v I/2. (6.12) 

We shall give more interesting examples of Theorem 6 
in Sec. VIII. Our main motivation for the result, however, is 
the N-fermion problem, which we discuss in the following 
section. 

VII. THE N-FERMION PROBLEM 

We consider a system of N identical fermions interact­
ing via central pair potentials of the form 

(7.1) 

where the potential shapeJsatisfies (1.3). The lowest energy 
EN of this system is related7-9 to the energy trajectories of a 
two-body problem with Hamiltonian 

JY'= {-~.J + N v,J(Y21 p21)} (7.2) 
2m..1 p, 2 0 a ' 

where I P2' P3' ... , PN J is a set of(N - 1) relative coordinates 
with "coefficient of orthogonality,,7-9 A> 1, P2 = (rl - r 2 )1 
Y2, and P3 = Pn P2' where P23 exchanges r2 and r3. We note 
that JY' differs from the corresponding two-body Hamilton­
ian used for N-boson systems in Sec. V by the presence of A 
and the omission of the overall factor of (N - 1). We now 
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define the dimensionless quantities: 

v = N V oOz).,mlUe = 1/u, 

E = ENaz).,mlfzz, 

G = - u,jr + I(r), 
and 

r = pzvLla, r = Irl. 

(7.3) 

If G,.(u) are the trajectories of G with Gv(u)<Gv' (u), v' > v, 
(we do not now restrict the problem to an angular momen­
tum subspace and the quantum number v enumerates all 
linearly independent states), then the theorem of Ref. 7 gives 
the following lower bound to EN: 

2EN N-l 
- = Eu> L Gv(u). 
VoN v~l 

(7.4) 

If, for a given u, only k < (N - I) discrete eigenvalues exist, 
then the sum in (7.4) runs only up to k. We have optimized 
this resule with respect to the allowed class of relative co­
ordinates and this yields)., = j. The result has been extended 
to higher N-body states8

•
9 (using different relative coordi­

nates and a different)., ), but here one must be very careful 
about the Efimov effece4 and other possible complexities 
and surprises in the N-body energy spectrumz: In the present 
article we restrict our considerations only to the bottom of 
the N-body spectrum. 

Since we have approximations for the kinetic potentials 
ly(s), we now try to express the bound (7.4) in these terms. We 
suppose that/(r) is given by 

I(r) = g(h (r)), g convex increasing. (7.5) 

We then use Theorem 6(a) to generate lower bounds G ~ to 
G y via the relations 

G ~(u) = su + g(hv(s)), 
(7.6) 

u = - ~g(hy(s)). 
ds 

Since g' > 0, g" > 0, and h ~(s) > 0 [Theorem 2(c)], it follows 
that the expression for u in (7.6) is a monotone decreasing 
function of s which in principle can be inverted. That is to 
say, for each g and hy we can find Qy such that 

d -
u = - -g(hy(s))¢::?s = Qy(u). 

ds 
(7.7) 

Hence the lower trajectory bound for the N-fermion system 
becomes 

2EN N-l _ 
-=Eu> L [uQv(u) +g(hy(Qy(u)))]. (7.8) 
VoN y= I 

A class of examples for which the details can easily be 
carried out is power-law potentials. Suppose we consider the 
basis potential 

h (r) = sgn(p)rP, p> - I, p=/=O 

and consider 

I(r) = g(h (r)) = sgn(q)lh (r)lq/P = sgn(q)rq, p<q=/=O. 
(7.9) 

For these problems g is convex and increasing and, by scal-

330 J. Math. Phys., Vol. 24, No.2, February 1983 

ing arguments, we have 

hy(s) =Avs-P/z, (7.10) 

where the coefficients lAy J, which depend on p, are known 
in certain cases (completely for p = - 1 and p = 2). Now 
from Eq. (7.7) we have 

d 
u = - sgn(q) ds IAys-P/zlq/p¢::?s = Qv(u) 

= IIAy Iq/Pql2u J 2/(q + ZI. 

Hence Eq. (7.8) becomes in this case 

EN>~NV()uq/(q + 21(qI2)z/(q + 21(1 + 2/q) 

N--l 
X L IAv 12q/ p(q + 21, 

l'= 1 

(7.11) 

(7.12) 

where u = (2fzZINVoOz).,m). We can summarize this collec­
tion of power-law comparison examples as follows: the pair 
potential is 

VIr) = y sgn(q)rq (7.13) 

and the lower bound to EN is given by 

EN>i(1 + 2/q)(NyqI3)2/(q + 21(fzz Im)q/(q + ZI 

N-l 
X L IAv IZq/ piq + 21, (7.14) 

v=l 

where we have set y = V 00 - q and)., = j, the I Av J are given 
by (7.10), andp<q =/=0, O=/=p> - 1. As a partial check on the 
algebra we immediately look at the exactly soluble "pseudo­
fermion" case p = q = 2 in one spatial dimension (i.e., the 
lowest spatially antisymmetric state). In this case hy(s) 
= (v - !)2 Is, v = 1,2,3, ... , and the lower bound E;;' given by 

(7.14)becomesE;;' = (6yN)I/Z(N - I)Z(fz2lm)l/z/4, whereas 
the exact energy 15. 16 of this problem is given by EN 
= (2Ny)1/2(NZ - l)(fzZlm)I12/2. Hence we obtain E;;'IEN 
= v1(N - 1 )/2(N + I), or 86% of the exact energy for large 

N, as we found in Ref. 7. We shall look at more interesting 
examples in Sec. VIII. 

VIII. SOME EXAMPLES 

We consider potentials given by the formula 
k 

I(r) = L glil(f(il(r)). 
i=l 

If there is only one term, Theorem 4(c) is equivalent to the 
"method of potential envelopes" of Paper I. In this special 
case one seeks a dual representation for the potential in the 
form 

I(r) = glll(f(II(r)) = g(2)(f(2)(r)), 

where glIl is convex, leading to a lower bound, and glZI is 
concave, leading to an upper bound without the use of a trial 
function. If exact trajectories are also known for the excited 
states oft -,j + viol) and ( -,j + v IIZI), the nmutatis mu­
tandis the general trajectory formulas (4.8) yield bounds on 
each excited state as we saw in Sec. VI. If there is more than 
one term in the sum (6.1) then the theory applies only to the 
bottom of the spectrum of H in each angular momentum or 
symmetry subspace: the general theory does apply to these 
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special excited states. Ifthe {gljlJ are all identity maps, then 
the results of the present paper are equivalent to those of 
Paper III. One of the results of Paper III is the general for­
mula [Eq. (4.10) here] for linear combinations of powers and 
the log potential, which, for example, determines the lowest 
eigenvalue of -.1 + vir + Ar4) to within 1 % for all A ;;'0: It 
is possible to establish such error claims independently be­
cause the trajectory formula yields both upper and lower 
bounds. In Paper II we explored the situation in which one 
knows exact partial trajectories, that is to say, E (a) for 
-.1 + a 1(1) + t<21; one can then treat potentials of the form 

ag(f(l)) + 1(2), where g is convex or concave. Some of these 
various special cases of the present theory have been illus­
trated by the problems considered in the earlier papers: be­
low we present some fresh examples. 

If we consider a one-particle problem with central po­
tential 

Vir) = Vo/(rla), Vo>o, a>O, 

particle mass m, and energy E " then the Schrodinger eigen­
value problem is equivalent to that generated by Eq. (1.1), 
i.e., 

H = -.1 + v I(r), v > ° 
if we let 

E = 2mE'a2/1i2 

and 

v = 2mVoa2/f!2. 

Thus various choices of range a are already allowed for in the 
trajectories E = F(v). In considering linear combinations of 
potentials we shall usually introduce more parameters than 
are logically required; this redundancy allows one to see at a 
glance how the eigenvalues depend on the components. 
When we consider the N-body problem, the variables E and v 
must be interpreted according either to Eqs. (5.5) or (7.3), 
depending on whether the identical particles are bosons or 
fermions. In the examples, we consider the problem to have 
been solved once the upper or lower kinetic potentials are 
determined: The trajectories are then given by substitution 
into the general formula (4.8); numerical values are easily 
obtained with the aid of a programmable calculator. 

A. Dual Coulombic-harmonic transformations 

Suppose 

I(r) = g(ll(h (I)(r)) = g(2)(h (21(r)), 

where 

h (l1(r) = - 1/r, h (21(r) = r, 

(8.1) 

(8.2) 

g(1I is convex, g(2) is concave, and both the functions are in­
creasing. Then by Theorem 6 and Eqs. (6.7) and (6.8) we have 

g(lI( - sl/2/(n + I)).;;; fnl(S).;;;g(2)((2n + 1- !)2Is). (8.3) 

Butg(I)(x) = I( - 1/x) andg'2)(x) = 1(.jX) so that we have the 
following general rule for this class of potentials: 

I((n + l)!sl/2).;;;fnl(s).q((2n + 1- WSI/2), (8.4) 

where I = 0,1,2,.·· and n = 1,2,3,···. This is fascinating be­
cause the bounds on the kinetic potentialsfnl are given di-
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rectly in terms of lit self: If/(r) = - 1/r, the lower bound is 
exact; if/(r) = r, the upper bound is exact. The case (n = 1, 
1= 0) was discussed in Paper I, Sec. VB. We now have a 
situation (dual power-law representations always lead to 
this) where the upper and lower kinetic potentials are scale 
transformations of each other. Suppose we consider 

fb(s)=h(slb), b>O. 

Then from (4.8) we have 

Gb(u) = su + h (sib) 

u = - h '(sib )Ib, 

that is to say, using t = sib, 

Gb(u) = t(ub) + h (t), 

Ub = - h 'It). 

Hence 

Gb(u) = G,(ub), 

(8.5) 

(8.6) 

(8.7) 

(8.8) 
and, since, by Theorem 2(a), G is monotone increasing, we 
have 

Gb,(u»Gb(u), b'>b. 

Using this framework, we have from (8.4) 

I((n + l)!sl/2)).;;;fn/(s).q((n + 1)/(bs)1I2), 

where 

b = [(2n + 1- ~)/(n + IJF> 1, 

(8.9) 

(8.10) 

(8.11) 

We can therefore summarize our solution to this class of 
problems as follows: 

G ~1(U) = SU + I((n + I)ISI/2) 

u = - ~ I((n + I)IS1l2) (8,12) 
ds 

G!;j(u) = G~du(2n + 1- !)2/(n + 1)2), 

wherelis the potential and the superscripts U and L stand 
for "upper" and "lower" (I = 0,1,2, ... , n = 1,2,3,.··). The 
class of potentials (8.1) includes, for example, the following 
combinations: 

k 

I(r) = I a j sgn(p;)rPi 
- /31/(1 + br) + /321n r 

i= 1 

(8.13) 

in which the coefficients I a j J and I /3j 1 are nonnegative and 
not all zero, b > 0, c > 0, 0,;;;A.;;;3, and - 1.;;; pj.;;;2 withp; #0, 
i = 1,2, ... ,k. By Eq. (5.9) we know that, for the ground state 
(/ = 0, n = 1), Eqs. (8.12) immediately apply to the N-boson 
problem. For the excited states of the one-particle problem 
this very general result yields vanishing percentage error as I 
increases. 

B. Power-law potentials 

For the special case of power-law interactions which 
have recently been of interest, 17 the potential is given by 

Vir) = sgn(q)Vo(rla)q==sgn(q)yrq, - l.;;;q.;;;2, q#O, 
(8.14) 

and from (8.12) we immediately obtain the bounds 

G~/(u) = (1 + q/2)(lqI/2f/lq+2Vq/lq+2Iuq/lq+21 (8.15) 
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with v = (n + I) for the lower bound and v = (2n + I - !) for 
the upper bound. 

For N identical bosons this implies [see Eq. (5.6) and set 
1= 0, n = 1] 

E1. = (1 + qI2)(rlqI/4)2I(q+2)(lflm)q/(q+ 2!v2q(q+2) 

X(N - 1)N2I(q+2), (8.16) 

in which v = 1 for the lower bound and v = 3/2 for the up­
per bound to the ground-state energy. Of course, the lower 
bound (for the N-boson system) is also valid for all q> - 1, 
q =/; 0; for an upper bound valid for all q> - 1, we simply use 
the Gaussian kinetic potential (see Table II), which yields 

Vu = m)/2[r((3 + q)/2)lr(3/2)11/q; (8.17) 

ifq=2,Eq. (8.17)impliesvu =~andfor -1<q<2the 
value v = v u yields a better upper bound than v = 3/2 via 
Eq. (8.16). A better lower bound can always be found for a 
given q by use of the corresponding kinetic potential h w(s) in 
Eq. (8.3). 

We now turn to the N-fermion problem. We consider N 
identical spin-! fermions, where 

k 

(N - 1) = L 2v = k (k + 1)(2k + 1)13. (8.18) 
v=) 

This choice of N allows us to fill exactly k "shells" of the 
basis Coulomb problem for which each eigenvalue labelled 
by v = (n + I) has degeneracy 2v. Hence in Eq. (7.14) we set 
p = - 1, q>p, q=/;O, and each distinct value of Av = - v-) 

is repeated 2v times as we sum over the first (N - 1) eigen­
values. With this understanding we can write the sum over v 
in Eq. (7.14) in the form 

k L (2v)vQ/(Q + 2) 

v=l 

so that the lower bound to the ground-state energy of the N­
fermion system becomes 

EN>E~ = ~(l + 2Iq)(NrlqI/3)2/(q+ 2)(1J2Im)Q/(Q+2) 
k 

X L v4(Q + I)I(Q + 2), q> - 1. (8.19) 
v=l 

Consequently, for large N we have for all q> - 1 

EN>E~-NQ, Q= 5/3 +2/(3q+ 6), (8.20) 

and, therefore, 5/3 < Q<7/3. 

C. The Coulomb plus log potential 

We have already treated the ground-state energy of the 
N-boson system in which the pair potential is a linear combi­
nation of powers sgn(p)rP,p = - 1,1,2,3,6,8, and the log 
potential in Paper III [see Eq. (4.10) here]. Now we should 
like to look at the excited states, and the N-fermion problem, 
with a pair potential of this type. Suppose, for example, that 

fIr) = - air + {3ln r, a> 0, {3> O. (8.21) 

The potentialf(r) satisfies the conditions of the dual repre­
sentation (8.1) so that we have by (7.7) and (8.12) 

332 

G~/(u) = su - as1l2/v + {3ln(vlsl/2), 

s = Qv(u) =/3 2
{ [(aI2v)2 + 2u/3] 1/2 - (aI2v)) -2, 

(8.22) 
lower v = (n + I ), upper v = (2n + I - ~). 
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FIG. 1. Trajectories for the Coulomb plus log potential. Bounds on the 
eigenvalues G (u) of H = - u.:1 - I/r + In r are shown for n = 1 and 1 = 0-
8. Upper and lower bounds given by Eq. (8.22) are in the full line; the "center 
lines" for l> 0 are obtained by using a mean value v = 3n!2 + 1- 1/4; the 
dashed line between the 1 = 0 bounds is essentially the exact result given by 
Eq. (8.23). 

This recipe for the trajectories is in explicit form since we 
have solved for s in terms of u. The trajectories with n = 1 
and I = 0-8 are shown in Fig. 1 for the case a = /3 = 1; for 
I> 1 the "center lines" are means of the bounds obtained by 
using v = 3nl2 + I -l; for 1=0, the "center line" is the 
exact result. The exact values for I = 0 were obtained by 
using Eq. (4.10) of Sec. IV, which yields the following explicit 
formula: 

G(u) = inf( - u..1 - air +{3ln r) 
= - al2t + {3ln(v*t 2/2)12, (8.23) 

where t = [(8u {3 + a 2)1/2 - a]/2/3, and v* = VIO = 8.07 for 
the lower bound and v* = Ve = 8.6057 for an upper bound 
via the exponential trial function (see Table II). Ifwe use the 
average value (VIO + ve )12, then the error in G (u) is strictly 
less than 1.6%of {3 for all a > 0, {3> 0, and u > 0; for {3 = 1, 
this error is less than the resolution of Fig. 1. 

The pure log potential is obtained by setting a = 0 and 
u = 1 so that the eigenvalues En/ ofthe operator 
-..1 + v In r (we now use v in place of {3) are bounded by 

- !v In(vlv;/ )<En/ = -!v In{vlvnl)< - !v In(vlv~/), 
(8.24) 

wherev;/ = 2e(n + Ifandv~1 = 2e(2n + 1- ~)2. We derived 
the general form of Enl in Ref. 18; we had probably misread 
the graphs in Quigg and Rosner's artic1el9 for we find now, 
by numerical integration, VIO = 8.07 (rather than 7.63). 
Quigg and Rosner19 find for S states the WKB approxima­
tion VnO 'Z1T(2n - ~f If we represent the potential In r as a 
concave transformation of the linear potential (rather than 
the harmonic oscillator), then we get4 

VnO < 8e(!an 1/3f, 
where (an 1 are the zeros of the Airy function (a l = - 2.338, 
a2 = - 4.088, etc.20

). We have indulged in this level of detail 
for a special case of the very general approximation (8.12) in 
order to put the result in some numerical perspective. 

Now we turn to the N-fermion problem. By exactly si­
milar reasoning to our treatment of the power-law potentials 
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in Sec. VIIIB we have by Eq. (7.8) 
k 

En >E ~ = N L [uvQv - avQ~!2 + pVln(v/Q ::2)], 
v=1 

Q" = P 2{ [(a/2vf + 2u P] 1/2 - (a/2v)J -2, (8.25) 

u = 3ft2/2Nm, 

N - 1 = k (k + 1)(2k + 1)13, k = 1,2,3,.··, 

where the complete potential is given by (8.21) for we have 
set Vo = a = 1. Once again, the pure log potential is recov­
ered as the special case a = O. 

D. The Yukawa plus linear potential 

Consider the potential 

j(r) = -arr/r+pr, a>O, p>O. (8.26) 

Now this function is concave and therefore also a concave 
function of r. Provided 2 p>a,Jis at the same time a convex 
function of h (r) = - lIr and, therefore, under these condi­
tions (the linear component sufficiently large), we can again 
immediately apply the recipe (8.12) to find bounds on all the 
energy eigenvalues. However, we wish in this final example 
to illustrate some other approaches. 

Suppose hb(r) is the Hulthen potential, 

hb(r) = -(ebr -1)-I, b>O, (8.27) 

and a transformation g is chosen so that the Yukawa compo­
nent ofj(r) is given by 

where 

b(l-lIX)-'/b 

In(1 - lIX) 

(8.28) 

X<O. (8.29) 

We then find (after a tedious calculation) thatgb is convex for 

b>~ and concave for b<, 1; for values of b between these two 

bounds (1 < b < ~), the convexity ofgb is not definite. Now, 
by Table I and the scaling Theorem (2d) we have 

hb(S) = - H(1 + 4s/b 2)1/2 - 1], b>O. (8.30) 

Hence, by Theorem 4 we have, for a lower bound to the 
ground-state energy with b = J6 
K(s) = -ab/W'/bln W+2pG 1s- I / 2, 

where (8.31) 

W(s) = [(1 + 4s/b 2)112 + 1]1[(1 + 4s/b 2)1/2 - 1], 

b=~, 

and G I = 0.688 041 (from Table II). For an upper bound we 
use an exponential trial function and by Theorem (4b) we 
have 

where G ~ = 0.75 (from Table II). The resulting trajectories 
F(v) = vG (lIv) [bounds on the lowest eigenvalue of 
H = -.::1 + vj(r)] are shown in Figs. 2 and 3 for the cases (a, 
13) = (1,0) and (1,1), respectively. 

ForthepureYukawapotentialy(r) = - (reT I thefol­
lowing simple result may sometimes be useful. We find by 
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o v 10 

FIG. 2. Trajectories for the Yukawa potential. Upper and lower bounds on 
the lowest eigenvalue F(vl of H = -.<! - ve -, /r provided by the kinetic­
potential bounds (8.31l and (8.321 with (a, PI = (1,01. 

elementary methods that 

O<,(reTI - [sinh(r)er]-I <0.056, r>O. (8.33) 

Hence 

_ 2(22r _1)-1 _ 0.056< _ (rer)-I<, _ 2(e2r _ 1)-1 

(8.34) 

Now the S-state eigenvalues of the Hulthen potential are 
known exactly13 and for the potential hb(r) = - (ebr - 1)-1 
we have the exact trajectories 

F~d(v) = - (v - n2b 2)2/4n2b 2. (8.35) 

Consequently, the S state eigenvalues Fno(v) of the operator 
H = -.::1 - v(re1- 1 are bounded by 

- (v - 2n2)2/4n2 - (0.056)v<'Fno(v)<, - (v - 2n2)2/4n2. 
(8.36) 

It turns out that if we apply the convexity estimates of the 
first part of this section to the excited S states of the pure 

Yukawa potential by using Eq. (8.35) with b = ~ and 1, the 
results are not sufficiently better than (8.36) to justify the 
extra complication. Accurate results for the pure Yukawa 

~ ,----------------------------------, 

o ~--------------~~--------------~ 

o v 10 

FIG. 3. Trajectories for the Yukawa plus linear potential. Upper and lower 
bounds on the lowest eigenvalue F(v) of H = -.<! + v( - e -, /r + r) pro­
vided by the kinetic-potential bounds (S.31l and (8.32) with (a, PI = (I,ll. 
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potential may be found in Ref. 21; recent resultszz for the 
Hulthen potential with I> 0 may also allow us to estimate 
the higher angular-momentum energy of eigenvalues corre­
sponding to the Yukawa potential by the above methods. 

IX. CONCLUSION 

We have presented a variety of results concerning 
bounds on Schrodinger eigenvalues for central potentials. 
The bounds are analytical recipes which exhibit the depen­
dence of the eigenvalues on the potential parameters. The 
separations of the bounds are typically a few percent for 
ground states, rather larger for higher radial quantum 
numbers, and vanishingly small (as a percentage) for large 
angular momenta. Such results are useful in the exploratory 
stages of modelling and as checks on other techniques such 
as perturbation methods. Our principal motivation, how­
ever, has been the N-identical-particle problem whose ener­
gy is intimately related to the two-body energy trajectories 
via the necessary permutation symmetry of the N-body 
wavefunction. 

The introduction of the kinetic potentiall(s) corre­
sponding to a potentialJ(r) has allowed us to unify our earlier 
methods for convex transformations of potentials and for 
sums of potentials. The optimization of "weights" feature of 
the potential-sum method of Paper III is also now automati­
cally incorporated in the new general formulation: the prob­
lem of finding the optimal w, 0 < w < 1, in the representation 

-..1 + V(fl + Jz) = w{ -..1 + (v/w)Jtl 
+ (1 - w){ -..1 + (v/(l - w))Jz) 

is now solved by the minimization with respect to the param­
eter s > O. Moreover, s is now identified as the mean kinetic 
energy for both upper and lower bounds. There is also a 
certain harmony between the functional analysis 1-3 which 
regards the potential as a perturbation of -..1 and our ana­
lytical methods in which ( -..1 ) is set equal to s and then the 
energy trajectory (v, F(v)), v> 0, is given in terms of a Le­
gendre transformation of the kinetic potential (s,/(s)), s> O. 
TheA transform which yieldsF = A (f) has been factoredjn 

0 

" ~ " 
4-

0 

o -I 
o r 5 

FIG. 4. Dual envelope representations for thepotentialf(r) = - lIr + ,J12. 
The potential is represented as the envelope of a family of Coulomb poten­
tials (hyperbolas h 1(1) below. and of a family of harmonic-oscillator poten­
tials (parabolas pi' I) above. 
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o 

o 
o -I L-~~~~-L __ ~ __ ~ __ ~ __ U-~~~ __ ~ 

o v 200 

FIG. 5. Trajectory bounds by the potential envelope method. The ,1.1 trans­
form for (n,/) = (1.5) is applied to the families {h Itll and { pltll ofhyperbo­
las and parabolas of Fig. 4. The envelopes of the new lower and upper 
families do not now coincide but split into the lower F;I and upper F~I 
bounds to the unknown exact energy trajectory A.IU) = F.I. F~,(v) is a 
magnification of the curveF~,(v) with magnification factor 

Jl- = (2n + 1- !)2/(n + If = (13/12r 

the form A = A (Z)oA (I), wherel = A (I)(f) and F = A (Z)(7). 
In general, A (I) is labelled by n and I. 

In the present paper we have used min-max arguments 
along with Jensen's inequality to establish our results. Jen­
sen's inequality is a perfectly natural tool, but the idea of the 
envelope representation from with the potential-envelope 
method of Paper I originally came may provide the richer 
conceptual framework. In Fig. 4 we show the potential 
J(r) = - 1/r + ~/Z along with its dual ( - 1,2) power-law 
envelope representations 

J= envelope {h (t)) = envelope {p(t)) (9.1) 
t t 

by hyperbolas {h It)) below, and parabolas { pit) J above, 
where t> 0 is the point of contact. In Fig. 5 we exhibit, for 
n = 1 and I = 5, the curves An/(h It)) andAnl(p(t)) along with 
their envelopes. We have, as a consequence of Theorem 6, 

envelope {Anl(h It))} <Fnl<envelope {Anl(pll))J. (9.2) 
t I 

The transformation A nl applied to the envelope components 
ofj has given rise to a splitting of the unknown exact trajec­
tory Fnl = Anl(f) into upper and lower bounds. 

Dual power-law representations lead to the concept of 
magnification: the curve (pv,pF(v)) is a magnification of the 
curve (v, F(v)), wherep > O. The entire collections of upper 
{F~I ) and lower {F';;I I curves given, for example, in the case 
oft - 1,2) dual representations, by Eq. (8.12) are magnifica­
tions of a single curve, namely, the curve (v, F*(v)) given in 
parametric form by 

V-I = - !J(S-IIZ), s>O, 

(9.3) 

F*(v) = s + VJ(S-IIZ). 

This result is trivial whenJitselfis a power law but is other­
wise more interesting. In Fig. 5, for example, the upper tra-
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jectory is a magnification of the lower trajectory, where 
J-t = [(2n + 1- WIn + I W = (13/12f For a given dual 
power-law representation all the relative magnifications are 
fixed; they do not depend on the details off provided only 
thatf does have the given representation. 

The restriction in this paper to increasing potentials 
/,(r) > 0 is not essential. This is merely a simple device which, 
along with nice behavior at r = 0 and r = 00, guarantees the 
existence of eigenvalues for sufficiently large coupling con­
stants v (or small u). Molecular potentials can be treated 
along the same lines provided the various Hamiltonians 
which are reached by transformations and sums can be de­
fined on essentially the same domain. For the N-body prob­
lem there is reason to expect that our lower bounds will be 
weaker in the case of saturating potentials. 23 

Similarly, our variational arguments remain valid for 
potentials which are not smooth. Useful results can be ob­
tained with families of square wells: a monotone increasing 
potential, for example, is bounded above by an enveloping 
family of infinite square wells and (if the potential is nonsin­
gular) at the same time below, by a family of finite square 
wells. 

The energies of the excited states of many-particle sys­
tems can be treated with the aid of the present results by the 
method of Ref. 9 provided there are independent reasons for 
believing that the objects approximated by min-max argu­
ments are in fact eigenvalues. The bounds which we have 
found in the present paper for the N-body problem simply 
concern the bottom of the energy spectrum, whether or not 
this object is an eigenvalue. If one is interested in a particular 
symmetry or angular-momentum state of the N-body sys­
tem, then a lower bound to the bottom of the spectrum of H 
restricted to the corresponding subspace may be found by 
the methods of this paper with the aid also of group theory. 24 

If we consider the N-boson problem with the linear pair 
potential 

fIr) = Vorla = yr, 

then we find by Eq. (5.6) that 

A
1
(N - 1)(Ny)2/3(fj2/4m)I/3 

<,EN<Az(N - I)(Ny)2/3W/4m)I/3, (9.4) 

where - A I ~ - 2.338 107 is the first zero of the Airy func­
tion, and A z = 3(3/21T)1/3. Thus (9.4) determines the lowest 
energy of this N-body problem to 0.15% for all y> 0 and all 
N>2. 

Results like this are not difficult to obtain by the meth­
ods of this paper: Our theory is complementary to conven­
tional many-body theory25 which has been developed pri­
marily to tackle "physical problems," where FNIN 
approaches a finite limit as N increases. In the conventional 
theory the interaction is regarded as a perturbation and, just 
as in QED, one is rarely able to discuss the value of the sum 
of the entire perturbation series. Because of this, definite 
bounds like (9.4) and the large variety of similar results 
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which are made possible by Schrodinger Lego may prove to 
be very useful. 
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Exact results for the diffusion in a class of asymmetric bistable potentials 
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We solve the Fokker-Planck equations with drifts deriving from a class of asymmetric 
nonharmonic potentials which include bistable cases. An analytical expression for the probability 
current over the potential barrier is obtained. Finally, we compare our exact results with those 
obtained by Kramers' approximation. 

PACS numbers: 05.40. + j, 05.30. - d 

In a recent communication, I we proposed exactly 
solved models for the diffusion in a class of non harmonic, 
symmetric potentials which includes bistable cases. Here, we 
give an extension to asymmetric situations. 

[3 #0 (the symmetric case [3 = 0 has been studied in Ref. 1). 
Moreover, foraE] - ~,O[ and[3<!3c' U(a,x) exhibits 
asymmetric bistable shapes (see Fig. 1). 

with 

and 

The diffusion problem we are considering reads 

= ~ {(..!!.... U(X))P(X,! Ixo'O) 
ax dx 

+~P(x,!lxo,O)}, XER 
ax 

P (x,! Ixo'O) = 8(x - xo), 

PIX,! Ixo,O»O, \f!ER+, \fxER, 

i PIx,! Ixo,O) dx = 1, \f!ER+, 

U (a,x) = 2 In IjJ (a,x) 

= 21n! YI(a,x) + [3Y2(a,x)) 

_ ~2 + In {IFI( ~ + ~ ,+, ~2) 
+ [3x IFI (~ + ! ' ~ , ~2)}, 

aE] - !,oo [ 

(la) 

(Ib) 

( Ic) 

(Id) 

( Ie) 

( If) 

(Ig) 

The condition (If) guarantees that the confluent hyper­
geometric function IFI(a, [3,z) in Eq. (Ie) is positively defined 
and the condition (Ig) combined with (If) implies that IjJ (a,x) 
is itself positively defined. The function IjJ (a,x) itself is a solu­
tion of the Weber equation2

: 

d
2 

(X2) -2 IjJ (a,x) = - + a IjJ (a,x). 
dx 4 

(2) 

The potential U(a,x) in Eq. (Ie) is asymmetric when 

81 On leave from the University of Geneva, Department of Theoretical Phys­
ics, Bvd. d'Yvoy, 1211 Geneva, 4, Switzerland. 

blSupported by the Swiss National Science Foundation. 
ciOn leave from the Institute of Theoretical Physics, Academia Sinica, Bei­

jing, China. 
dlSupported by the Robert A. Welch Foundation. 

To solve the diffusion problem (1) by van Kampen's 
method,3 let us write an associated Schrodinger equation in 
the form 

d 2 

-¢(x) + [E- V(x)l¢(x) =0, 
dx 2 

with 

V(x) = J..["!!"" U(X)]2 - J..~ U(x) 
4 dx 2 dx2 

= _ x
2 

_ a + 2 [..!!....pn IjJ (a,x))]2. 
4 dx 

By using the transformation discussed in Ref. 4, 

4.0 

3.0 

J 
I 

(3) 

(4) 

" fJ =0.0 
,I 

FIG. I. Shape of the potential U(x) fora = - 0.4 and various asymmetries 
(J = - 0.02; 0; + 0.03. 
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yt/!(x) = xIx) = [(,6 (a,x)]-I.!!...{ (,6 (a,x)t/!(x)}, 
dx 

(5) 

the SchrOdinger problem (3) with the potential (4) (see Fig. 2) 
can be solved exactly. 

Indeed, from Eqs. (2H5), we obtain 

(6) 

Taking into account that t/!(x) is square-integrable, the 
solution of the Schrodinger problem (6) reads 

Xn(x) = Dn(x) = exp{ - x2/4}Hn(xlv'1), (7) 

E" = n + a +!, n = 0,1,2,... (8) 
and the ground state has the form4 

tf!E=O(X) 
= [(,6 (a,x)]-I 

= (,6 (a,x) ,!!",{5ID -a-1I2(X) + 5~ -a-1I2( - X)},(9) 
dx (,6 (a,x) 

where 51 and 52 are real constants. 
From Eqs. (7H9), we can write the solution of the diffu­

sion problem (1) in the form 

P (x,t Ixo,O) = N -I {(,6 (a,x) }-2 + ~ (~)) 

X f e-Enttf!" (x)tf!" (xo), (10) 
,,=0 

where 

vex) 
0.5 

I t1=O.O :/ 
I 

(3 =0.04 

-4.0 4.0 

-0.5 

-1.0 

FIG. 2. Shape of the potential V(x) for a = - 0.2 and various asymmetries 
f3 = - 0.04; 0; + 0.08. 
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(lIb) 

The last equality in Eq. (lIb) has been established in Ref. 4. 
The normalization factors Nand C" occurring in Eqs. 

(10) and (11) are calculated in the Appendices A and B, 
where we find 

N=2/3c[P~ -P 2 ]-I, 
C ,,- 2 = (n + a + !)n!(21T)1/2 . 

(12) 

(13) 

From the solution (10), we can immediately calculate 
the probability current over the potential barrier located at 
x = x B (see Fig. 1). We obtain 

J(x = xB,xo,t) 

= - ~ P (x,t Ixo,O) \ ax x=xB 
= _ ['/"(a )]-1 ~ E" exp{ -E"t} 

'I',xB £.i (2 )1/2 I ,,=0 1T n 

(14a) 

00 

=L E"C~exp{-E"t} 
n=O 

X [(,6 (a,x).!!... Dn (x) - D" (x).!!... (,6 (a,x)] I 
dx dx X=XB 

XD,,(xB)[(,6(a,xBll- l , (14b) 

where Eqs. (I4a) and (14b), respectively, follow from the use 
ofEqs. (IIa) and (lIb). 

For small asymmetries (P<Pc), the location of xB can 
be approximately obtained by keeping only the first-order 
terms in the expansion of IFI(a, p, z). Namely, we have 

! u(a,x)IX=XB 

d {-X2/4[(I ( ) x
2 

) =dx e +a+!"2+'" 

+Px(I+(a+~)x2 + ... )]}\ =0, (15) 
6 X=XB 

and hence 

XB = -P/a+O(p2). (16) 

Hence by introducing the value (16) into Eq. (14a) and 
considering t> 1 such that only the first eigenvalue n = 0 
contributes, the current J (x = X B ,xo,t> 1) up to first order in 
preads 

J(x = XB,xO,t> 1) 

(a+!)exp{(a+!)t} IXO _x2/4,/,.( )d 
(21T)1/2 e 'I' a,x x 

(a + 1) [( a 5 3 X~) = - ~exp{ -(a+ 1)t} xolFI -+- - -
(21T) 1/2 2 2 4' 2 ' 2 

+PIFl(~ +! 'f'X; )/v'1(a+!)]e-X~/2. (17) 

From Ref. 5, the current given in Eq. (17) permits us to 
calculate the large time scale (T/) characterizing the decay 
process: 
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( 18) 

According to Kramers (Tl ) - 1 can be expressed in terms 
of the extreme of the potential located at x = x ± (minima) 
and x = x B (maximum)(see Fig. I), and in terms of the corre­
sponding curvatures lUa = d 2U(x)/dx2Ix ~ x . By Ref. 6, we 
have " 

(T,I)KRA = (21T)-I[(lU+ IlUB W12 exp{ U(x+) - U(xB) J 

+ (lU_llUB 1)1/2 exp{ U(x_) - U(xB)J] 

=1T-I{[(X; + a)jX; +ajrl2[:~::::;r 

+[(X; +a)jx; +ajrl2[:i:::~;Jl 

As we have (see Appendix C) 

x ~21n { !3c } 
=F (a + !)1T(!3c +!3) 

and 

Eq. (19) reduces to 

( -I) _ 2 ( I) 
T KRA - -m a + '2 ' 

1T 

which is the same as the result (18) up to the factor 2/ 
1T1I2 _ 1.1. 7 

(19) 

(20) 

(21) 

(22) 

We close this paper by mentioning that the diffusion 
problem (1) exhibits a situation where the two wells of the 
potential are not well separated. Indeed, the eigenvalues of 
the associated quantum mechanical problem are here equal­
ly spaced whereas for well separated wells, the spectrum pre­
sents a structure of close pairs. 8 Therefore, the approxima­
tion schemes based on the WKB method for the 
corresponding Schrodinger problem are likely to fail for the 
class of models presented here. 
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NOTATIONS AND FORMULAS 

We introduce here the notations and formulas which 
we shall use in the Appendices. 

_ 2a12 - 3/4 ( a 3 ) 
Ao- 1T1/2 r 2+4 ' 
A + =Ao(1 ±!3/!3c)· 

We use the notations of Ref. 2 and have 
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(Nl) 

(N2) 

¢J (a,x) = yt/a,x) + !3Y2(a,x) 

=A+D_ a_ I12 (x) +A_D_ a_ I12 ( -x) 

=A+U(a,x) +A_U(a, -x). 

The following integral is given in Ref. 9: 

In = L+-,,:" [Dn (xW dx = (21T)1/2nL 

We shall use the asymptotic developments2 

(N3) 

(N4) 

U( - v - !,Ixl) = Dv(lxl)~e - x2/4lxnl + 0 (x- 2)], (N5) 

U ( - v - ~, - Ix J) 

=Dy( -Ixl) 

~ex'/4Ixl-v-I (21T)1/2 [1+0(x-2)] 
r(-v) 

+e-x2/4Ixlv cosv1T[l +O(x-2)], 

and therefore 

~ DY(lx\)~ - I~I Dv(lxl), 

d: Dv( - Ixl) = I~I Dv( - Ixl)· 

From Ref. 2 we have 

Yl(a,x) = [cos aU (a,x) + r (~ - a) sin a V(a,x)]k l , 

yz!a,x) = [sin aU(a,x) + r(! - a) cos aV(a,x)]k2' 

with 

(N6) 

(N?) 

(N8) 

(N9) 

(NlO) 

(NIl) 

kl = 1T1/22a/2+ 1I4[r(! _ ~)] -I, (NI2) 

k2 = 1T1/22a/2 -114[ r(! - ~) r I. (N13) 

Finally, for a <0, x2 + 4a>lal, and x > 0, the Darwin 
expansion reads2 

with 

U(a,x)~k3x-1/2exp{ -x2/4J, (N14) 

k3 = [r(! - a)]1/2(21T)-1/4, 

k4 = {[rt! - a)]1/2(21T)1/4J-I. 

(N15) 

(N16) 

(Nl?) 

APPENDIX A 

We calculate the normalization factor N in Eq. (10).10 
We have 

N -I = foo dx = foo dx 2 • 

- 00 [<p (a,x)] 2 - 00 [YI (a,x) + !3Y2(a,x)] 
(AI) 

Using Eqs. (9) and (N3), Eq. (AI) takes the form 

N- 1 = 5I U (a,x)+szU(a,-x) 1+ 00

• (A2) 
A+U(a,x)+A_U(a,-x) -00 

Then using Eqs. (N5) and (N6), Eq. (A2) gives 

N-I=k _ iL = 50+ -5IA- . (A3) 
A_ A+ A+A_ 
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To calculate the numeratorin Eq. (A3) we use Eq. (9) for 
which we can write 

[A+ U(a,x) + A_ Uta, - x)]-llx = 00 

= ~ [5IU(a,x) + 52 U (a, - x)] Ix= 00 

dx 

5IU(a,x) + 52U(a, - x) 
A+U(a,x) +A_U(a, -x) 

x[! [A+U(a,x)+A_U(a,-xll1x=00]. (A4) 

We finally use the asymptotic developments (NS), (N6), 
(N7), and (NS) to obtain 

(50+ - 5IA_)xU(a,x) = [Uta, - X)]-I, (AS) 

and hence from (A3) we have 

N- ' = 2f3c [P~ _P 2 ] -I, (A6) 

where 

Pc = Y2r(a/2 + mr(a/2 + m-'· (A7) 

The normalization constant Nbeing positively defined, 
Eq. (A6) is meaningful only whenp <Pc. This last condition 
guarantees that tP (a,x) > 0, "xER (in terms of quantum me­
chanics, the ground state does not present nodes). Let us 
illustrate this last point by the following example. 

Example: a = !, 
tP (!,x) = YI(!'X) + PY2(},X) 

= exp[x2/4}[1 + (P1T1I2/Y2) erf(x/Y2)). (AS) 

It is clear from Eq. (AS) that the function tP (~,x) remains 
strictly positive provided P < 21T- 1 

/2 which precisely is the 
value of Pc given in Eq. (A 7) for a = !. 

APPENDIXB 

Here, we calculate the coefficients Cn in Eq. (11 ).10 Us­
ing the representations (lla) and (lIb), we have 

C n-
2= i tfn(x)dx = -En i (! [Dn(X)/tP(a,x)I)(f tP(a,x)Dn(X)dX)dX 

= - En {[ Dn (x) (X tP (a,x)Dn (x) dX] I + 00 - ( [Dn (xW dX}. 
tP (a,x) Jo - 00 JR (BI) 

Then using Eqs. (lla) and (lIb) and (N4), Eq. (BI) can be written in the form 

C n-
2

= -En {[Dn(X) t~a~\ ! (Dn(X)/tP(a,x))] I :: -n!(21T)I12} 

= [Dn (x)tP (a,x)~(Dn (x)/tP (a,x))] I + 00 + En n!(21T)I12. 
dx - 00 

Finally, using Eqs. (N2), (NS), and (N6), we obtain 

C n- 2 = En n!(21T) I 12 = (n + a + ~)n!(21T)I12. (B3) 

APPENDIXC 

We calculate the location of the minima x =F of tP (a,x) 
when a - - !. When a - - !, x =F are expected to be large 
and therefore we use the Darwin expansion Eqs. (NI4), 
(NIS), (NI6), and (NI7) to obtain 

tP (a,x) = YI(a,x) +PY2(a,x) 
~(kl cos a +Pk2 sin a)k3x-1/2e-xlI4 

+ (kl sin a =t=Pk2 cosa)k4r(~ - a)x-1/2e-x'14 

(x-+ 00). (el) 

From Eq. (el), the condition (d /dx)tP (a,x)lx=x
fC 

= 0 
reads 

{
Pc + tan

2
a } x ~21n , 

=F 2( Pc + P )tan a 
(e2) 

where a is defined in Eq. (N 11) and Pc in Eq. (A 7). 
Finally, using (C2) and the Darwin expansion, we have 
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+ 2( . - P ) x
2 

14 sm a + Pc tan a cos a e fC 

[
Pc +ptanh2a(Pc +P)]1I2 

~2cosa . 
Pex =F 

For a - - !, we end with 

(
p +P)1I2 

YI(a,x =F ) + PY2(a,x =F )~2 --;;- . 

(B2) 

(e3) 

(C4) 
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Quantization of spinor fields. III. Fermions on coherent (Bose) domains 
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A formulation of the c-number classics-quanta correspondence rule for spinor systems requires 
all elements of the quantum field algebra to be expanded into power series with respect to the 
generators of the canonical commutation relation (CCR) algebra, On the other hand, the 
asymptotic completeness demand would result in the (Haag) expansions with respect to the 
canonical anticommutation relation (CAR) generators. We establish the conditions under which 
the above correspondence rule can be reconciled with the existence of Haag expansions in terms 
of asymptotic free Fermi fields. Then, the CAR become represented on the state space of the 
Bose (CCR) system. 

PACS numbers: 11.10. - z 

1. MOTIVATION 

Our basic purpose is to deal with quantum field theory 
models (irrespective of the space-time dimensionality) whose 
elements of the field algebra admit a reconstruction in terms 
of one or more quantum free fields. By free we understand 
the field solutions of standard sourceless field equations like, 
e.g., the Klein-Gordon, Dirac, Maxwell, etc., ones. In addi­
tion, we require the equal-time canonical (anti)cqmmutation 
relations to be satisfied on appropriate domains. The latter 
are, however, not required to belong to the Fock space. 

For quantum fields with well defined asymptotics, the 
above reconstruction is realized in the form of the Haag se­
ries. In what follows, by Haag series we understand any pow· 
er series in terms of the normal ordered products of the CCR 
or CAR algebra generators, denoted: F(a*, a):, :F(b *, b):, 
respectively. 

As is well known, the asymptotic condition is not an 
obvious notion even for the simplest Fermi system; compare, 
e.g., Ref. 1 and references therein. In this connection we 
admit the Haag series reconstruction of quantum fields in 
terms of free fields which are not the asymptotic series in the 
usual sense of the word. 2 

In 1 + 1 dimensions, for all models solvable via the 
Bethe ansatz technique, the construction of the eigenstates of 
the Hamiltonian explicitly involves the fundamental free 
fields; compare, e.g., Refs. 3-5. We know, for example,6 that 
in case of the sine-Gordon system the underlying field is the 
massive neutral scalar. In case of the massive Thirring model 
the free massive Dirac field is used to construct the energy 
eigenstates. However, to relate this quantum model to its 
completely integrable c-number (semiclassical) relative, one 
is forced to adopt a "bosonization" in terms of the massive 
neutral vector boson. I 

A quite analogous situation appears in the infrared 
QED, where a bosonization of the quantum Dirac field 
weakly coupled to the photon field is realized in terms of the 
Coulomb gauge free Maxwell field potential. I 

A common property of both the Fermi and Bose models 

alperrnanent address: Institute of Theoretical Physics, University ofWro­
claw, 50-205 Wroclaw, Poland. 

mentioned above is that to relate quantum and classical (c­
number) levels of a given field theory model, one starts from 
the Haag-like expansionsP = F(a*, a) in terms of the funda­
mental CCR algebra generators. Then one makes a boson 
transformation a~ + X, a~ + A, where A is a ccnumber 
function, and finally calculates the Fock vacuum expecta­
tion value in the tree approximation 

(OIPA 10)--+(01:PA :10) = (OI:F(a* + X, a + A ):10) = F(X, A). 

(Ll) 

The functional power series F (X, A ) stand for classical, c-
A 

number relatives of the quantum objects F = F(a*, a), to 
which :F (a*, a): corresponds in the tree approximation. One 
knows that the tree approximation prescription can be used 
to recover the classical Euler analogs of the quantum equa­
tions of motion. 

I t is of special importance to know these boson transfor­
mation parameters A, which in the tree approximation give 
rise to the classical solitons. This problem was partially 
solved (for solitons) for the Korteweg-de Vries 7 and A<P 4 

models,8.9 and more generally for the sine-Gordon sys­
tem.6.IO.11 The latter case, using the Orfanidis' formulas, 12 

allows an identification of at least some soliton solutions of 
the massive Thirring model. For a few other models in con­
nection with a coherent state description ofhadrons, see Ref. 
13. The tree approximation procedure can be described as 
follows: 
A _ A 

F= F(a*, a)--+F(a* +A, a + A) = FA, 

(OIF(a* + X, a + A )10): = (AIF(a*, a)IA) = (A IPIA), (1.2) 

(AI:F(a*, a):IA) = F(X, A), 

where 1..1. ) stands for a generalized coherent state for the field 
(CCR) algebra. In general 1..1. ) is not an element of the Fock 
space and hence gives rise to its own IA )th Hilbert space 
irreducibility sector for the CCR algebra, incomplete direct 
product space IDPS (IA )) CH in the general Hilbert space 
H. For the particular case of Fermi models one can start 
from the Haag expansions in terms of the CAR generators: 
F(b *, b): but then the bosonization enters via b = b (a*, a), 
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b * = b *(a*, a),14-16 so that 

F(b *, b) = F[b *, b ](a*, a) = G(a*, a), 

(OIG (a* + i, a + ,1)10) = (A IF[b *, b ](a*, a)IA), (1.3) 

(A I:G (a*, a):IA ) = G (i, A). 

In particular (A Ib (a*,a) 1,1 ) = b (X,A.), (A Ib *(a*,a)IA) 
= b (X,A) = b (A,X ) correspond tob, b *, respectively. Here 

the CAR generators are by construction acting on the Bose 
domain, hence we are confronted with a serious problem of 
representations of the CAR algebra living in the non-Fock 
representations of the CCR algebra the latter being based on 
generalized coherent states. 

Let us recall that the case of Fock representation has 
been investigated and solved in Ref. 14, while the non-Fock 
case was not considered in full generality. We know only17 
that the CAR do allow a local representation in the Hilbert 
space of the Bose system, i.e., that the CAR hold true (while 
on a lattice) for a finite number of degrees of freedom, but 
may not hold true for almost all would-be Fermi degrees of 
freedom, upon bosonization. 

As we show below, only a very special class of (Bose) 
coherent states allows the existence offermions (representa­
tion of the CAR) on subspaces ofIOPS( 1,1 )) and that in gen­
eral the CAR are prohibited. In the latter case, the interact­
ing spinor field does not possess an asymptotic spin or 
partner ("confinement" property), and this role is played by 
the fundamental boson(s) affiliated with the underlying re­
presentation of the CCR algebra. More precisely, it means 
that in the von Neumann-Hilbert space H of the Bose sys­
tem we can find irreducibility domains for the CCR algebra 
such that the CAR can be irreducibly represented on a sub­
space. On these subspac~s an asymptotic expansion of the 
interacting spinor field IJI = 1JI(t/lin) in terms of the free fer­
mion ;Pin makes sense. Whenever the CCR algebra irreduci­
bility sector in H does not carry an irreducible CAR algebra 
representation, the underlying expansion makes no sense, 
and ~ should be expanded with respect to the free boson: 
The free fermion is then "confined" and ~ does not possess 
an asymptotic spinor partner. 

2. MAIN THEOREM 

For clarity, we shall abandon the explicitly continuous 
case and restrict considerations to the product representa­
tions of the CCR and CAR algebras. 17-20 We refer to Ref. 20 
in connection with the role of coherent states in this case. 

LetH = n,:'hk' hk = h'ifk = 1,2, ... be the von Neu­
mann infinite direct product Hilbert space. It is an infinitely 
reducible carrier space for the representation of the CCR 
algebra generated by a countable sequence of Schrodinger 
representations I a*, a V 

[aj,aj]_lt/I)=O= [ar,aj]_ltb), 

[aj, aj*]_lt/I) = It/I)Dij' (2.1) 

'if ij, I t/I)El!. 

Let It/I) = n,:' fk JkEhk be a product vector with the proper­
ty II fk II = 1 'if k. With each I t/I) we have associated a separable 
Hilbert space IDPS(lt/I)) on which a representation of the 
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CCR algebra acts irreducibly. Among all possible product 
vectors in H, we shall distinguish the coherent states, which 
can formally be obtained from the Fock vacuum 10)El!, ai 10) 
= O'ifi, 10) = II,:' f~, by applying a product mapping U: : 

U: 10) = II,:'(U" fO)k: = II,:' IA)k = 1,1), 

(2.2) 
Here 1,1 ) is determined by fixing a denumerable sequence (A ) 
of complex parameters. We have a i 1,1) = Ai 1,1), (A 1,1) = 1. 
The incomplete direct product space based on 1,1 ) we denote 
lOPS (1,1 )). Two coherent product states are equivalent: 
1,1 ) -I r) if and only if the series 

(2.3) 

converges. 20 When l:k 11 - I(Ak Irk)11 < 00, we talk about a 
weak equivalence 1,1 )~Ir). One knows2o that the weakest 
condition for the CCR algebra representations acting in 
lOPS (iA)), lOPS (Ir)), respectively, to be unitarily equiv­
alent is that 1,1 )IDlr). In particular Ir)-IA )~lr)IDIA). Notice 
that if l:j IAj 12<t::00 then 10)~lr). If l:j IAj - rj 12 l: 00 then 
IA)~lr)· 

Let us denote 

P = :exp( - a*a): + a* :exp( - a*a):a (2.4) 

a projection on a two-dimensional subspace h F of h spanned 
by vectorsfo and a* fa = fl. For a countable sequence 
I a*, a L we introduce a corresponding countable sequence 
I Pj 1, and observe that the operators 

0/ = aj:exp( - aj aj):=PjajPj , 
(2.5) 

OJ- = :exp( - ajaj ):aj =PjajPj 

satisfy the following commutation relations on the Hilbert 
space: 

IOPSF(IO)) = 1 FIDPS(lO)), IF = n,:'Pk : 

[0/, OJ-]_ = 0 = [0/,0/]_ = [OJ-, OJ- ]_, i#J(2.6) 

[o-i-'O/]+ =Pj :, Pjlt/l) = It/I)'ifi, 'iflt/l)EIOPSF(IO)). 

By applying the Jordan-Wigner transformation to the set 
10+,0- L one can easily reproduce a sequence I b +, b L of 
the related CAR algebra generators. We wish to emphasize 
that the condition 

(2.7) 

is a crucial requirement, to have the CAR algebra represented 
on a domain to which a vector It/I) belongs. Notice that the 
relations (2.7) are immediate if I t/I) appears in the form of the 
product vector: 

It/I) = n,:'(afo + f3fl)kJ 

I a k 12 + 1/3 k 12 = 1 'if k , 

afo = 0, a* fa =fl. 

(2.8) 

Vectors of this form are the conventional product ones used 
to investigate representations of the CAR algebra. 18.19 No­
tice that (2.7) does not hold true if applied to a coherent 
product state 1,1 ). We relate the above mentioned representa­
tion of the CAR algebra to that of the spin ~ algebra (2.6) via 
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the Jordan-Wigner trick: 

( 

k-I ) • . + - + b k = exp 11T .L O'j O'j O'k' 
J= I 

k = 1,2, ... (2.9) 

bk = exp(i1T kf I 0'/ O'j -)0' k- . 
J=I 

It is easy to verify that (2.7) reads 

[bk, bt]+I,p) = [O'k-' O'k+ ]+I,p)Vk, 

and that (2.6) implies 

[bk,bj]+I,p) =0, k=l=J 
[b k , b /]+ l,p) = 0, 

[b k+ , b / ] + l,p) = O. 

(2.10) 

(2.11) 

Moreover, if u/, b r, ar, u;-, bi> a; are applied to the Fock 
state 10) we find 

u/ 10) = briO) = arIO)Vi, b; 10) = 0 = a; 10) = 0';-10), 
(2.12) 

i.e., the basic property of the Fock representation construct­
ed in Ref. 14. 

Theorem: Suppose we have given IOPS( IA )), where IA ) 
is a coherent product state determined by a complex se­
quence (A) = {AI, A2,· .. }, whereAk = IAk lexp(il5k), IAk I, 15k 
ER I. In addition to the sequences (IA I) and (15 ) let us introduce 
the three additional real ones (¢J), (,p), (a). Assume that 

(I) L IAk 12 = 00, (2) L IAk 14 < 00, 
k k 

(3) lim A =A =1=0, 00, 

k- oo IAk I 
. ,pk - O'k 

(4) hm 2 = B =1=0, 00, 
k_ oo IAk I 

1
. ak 

(5) 1m -= 1. 
k-oo IAk I 

Then a product vector l,p) = ":(ujO + Ufl)k' with 

Uk =cosakexp(i¢Jk)' Uk =sinakexp(i,pk) (2.13) 

is an element ofIOPS(IA)). 
Proof It suffices to prove that vectors IA ) and l,p) are 

equivalent. The equivalence cirterion is l:k IZk I < 00, where 

Zk = I - [cos akexp(i¢Jd + IAk I 
X exp i(,pk -15k )sin ak ]exp( - IAk 12/2). (2.14) 

Let us consider k>ko> I, when all the parameters are close to 
O. Then, upon expanding Zk into a Taylor series about 0, we 
have 

i.e., by virtue of(IH5), 
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ReZk~IAkI4, Imzk~(A +B)IAkI4. 

Consequently, 

lim ~= [I +(A +Bf] 1/2=1=0, 00. 

k-oo IAk 14 

(2.16) 

(2.17) 

Because of (2) the equivalence criterion holds true, and 
l,p)-IA). Consequently, 

1,p)eIOPS(IA )). 

It is worth emphasizing that we must have here limk_ oo IZk I 
= O. It leads to Re Zk _ 0, i.e., 

k_oo 

which holds true if and only if IAk I _ O. 
k~oo 

Remark 1: Notice that in the above, at a fixed choice of 
parameters IAk leR +, we still have a freedom in the choice of 
phases (8) in the complex sequence (A ), which is furthermore 
reflected in the appropriate freedom of choice of the phases 
(,p) in the product vector I ,p). The latter is obviously regulated 
by 

(2.18) 

A consequence of this is that if we have two sequences (A ), 
(A '), 

Ak = IAk lexp(il5d, A" = IAk lexp(i8 ,,)Vk, 

then the condition 

L IAk 12 [cos(8k - 8,,) - 1] < 00 (2.19) 
k 

is a sufficient and necessary condition for the product vec­
tors 1,p)eIOPS( IA )), I ,p')eIOPS( IA ')) to be weakly equivalent. 
To see this, it is enough to notice that product vectors IA ), IA ') 
are weakly equivalent if and only if the real part of (2.3) 
converges. In fact 

(A IA') = exp{ - l. L IAk -A" 12 + i L Im(ikA Ie) 
2 k k 

(2.20) 

and l: k IA k - A " 12 < 00 is just the same as (2.19). Obviously, 
ifl:klAk _A,,12= oo,then IA)~IA'). 

Remark 2: The above theorem can also be deduced as a 
special case ofa more general theory of Ref. 19. Namely, ifh 
is a Hilbert space with an orthonormal basis (e k)O' • and p a 
projection on a linear span of eo, ... , eN so that P N = P I'''P N is 
a projection in IOPS(IA )). then 

(I) there exists a limiting projection P = lim P N in 
IOPS(IA )); N-oo 

(2) by expanding IA); = l:k 11 ek = l:k A ~/(k !)1/2 ek, 
we arrive at the following conclusion: 

P =1=0 if and only if ~ [1 - cto 11112y12] < 00; 

(3) the vector l,p), P 1,p)=I=O can be constructed as follows: 

IA) = ";SI,p;), l,p;) = cto IrW) -1I2
k
to ~ek' (2.21) 
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In the special case of N = 1, we have 11 = exp( - l..ii 12/2) 
and..i: = ..iiexp( - l..i 12/2), and:lk' = 1 l..i It < oo,:lk' = 1 l..ik 12 
= 00, is a necessary and sufficient condition for a projection 

P to exist in IDPS(I..i )). 
Remark 3: Notice that states lti') = I1;" lti'i) in (2.21), 

(2.13) have exactly the structure required by the spin 1/2 
approximation procedure of Ref. 4 for quantum Bose sys­
tems. The above (Remark 2) statement is more general, how­
ever, and allows a construction of quantum spin chain states 
(with a fixed finite spin) in the Hilbert space of an interacting 
(non-Fock) Bose system; see in this connection also Ref. 15. 
The Holstein-Primakoff SU(2) generators 

S / = (2s) 1/2ar(1 - ara;l(2sW /2
, 

(2.22) 

provide us with an irreducible (at each ith site) representa­
tion of the SU(2) group Lie algebra corresponding to spin 
s = N /2, given by 

Sp = PSP, (2.23) 

where P is a limiting projection of Remark 1. 

3. DISCUSSION 

Let us notice that the existence of lti') in IDPS(I..i )) guar­
antees that all vectors equivalent to I ti'), of the form 
I1,:(afO + f3fl)k' lak 12 + lf3k 12 = 1 'v' K' are elements of 
IDPS( l..i )). A Hilbert space closure of the set of all linear 
combinations of such equivalent product vectors, 
IDPSF(Iti')) is a subspace ofIDPS(I..i )). The CAR are irredu­
cibly represented on IDPSF(Iti')) provided {b *, bLare con­
structed from {a*, a lj according to Ref. 14. Let us also ob­
serve l9 that once we have any product vector Ir)eIDPS(I..i )) 
with the basic property [uj - , u/ ] + Ir) = Ir)'v'j then the fol­
lowing two properties cannot be simultaneously satisfied: (1) 
ui-Ir) = 0 'v'i' (2) Ir):;60 under an additional restriction (3) 
l..i )!-IO), where 10) is a Fock state in H, and l..i ) is a coherent 
product state. Consequently, there exists a unitary inequiva­
lence of the CCR algebra representations associated with 
IDPS( l..i )), IDPS( l..i ')), where l..i )!-I..i ') implies a unitary ine­
qui valence of the related CAR algebra representations in 
IDPSF(Iti')), IDPSF(iti")), respectively. Let us here empha­
size that a particular form of the boson transformation pa­
rameter for a concrete field theory model follows from its 
equations of motion. This severe restriction may violate, and 
in general it does, the condition (2) of the Theorem of Section 
2. In this case the bosonic semiclassic (i.e., the CCR repre­
sentation based on the coherent product state) prevents us 
from having represented the CAR on the appropriate do­
main. The "semiclassical Hilbert space" allows at most a lo­
cal representation of the CAR on a subspace, 17 i.e., with a 
property [bi, b r] + Ir) = Ir) for ajinite, though arbitrarily 
large, number of modes, Ir) belonging to this subspace. No­
tice that by defining an arbitrary polynomial Will(b *, b) in 
terms of "bosonized" Fermi generators {b *, b l';"(/l' (j) being 
a finite set of indices, we arrive at the following definition of 
locally Fermi, but globally coherent (Bose) quantum states: 

l..i )BF = l..i ){Jl = Will (b *, b) l..i ). (3.1) 
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One can easily verify that on Ir)BF the CAR hold true for all 
jE(j), but not for ji(j) , albeit [b i> b n + = 0 for all i:;6 j; com­
pare, e.g., Ref. 17. Suppose now that the coherent product 
state l..i ) obeys the restrictions of the theorem of Sec. 2. Then, 
the semiclassical Hilbert space IDPS (I..i ))does carry a Fermi 
system on a subspace: the CCR algebra possesses the mani­
festly Fermi states in IDPS( l..i )); compare, e.g., also Ref. 21. 
In this case, we can say that bothfundamentalfree bosons 
and fermions can exist in the same state space on an equal 
footing. However, if the restrictions of the theorem are not 
satisfied by l..i ), then the only fundamental free field that 
remains is the Bose one. No fundamental free fermions are 
allowed. In the case of interacting Fermi systems such a phe­
nomenon would correspond to a "confinement" of their fun­
damental free excitations (absence of asymptotic free 
fermions). 

Example I: Sine-Gordon versus massive Thirring model. 
(1) Both the Mandelstam22 construction and the Orfani­

dis l2 observations allow a bosonization of the massive Thir­
ring field in terms of the interacting sine-Gordon field under 
appropriate constraints. Namely, we can symbolically write 
an operator identity: 

A A A" 2 1'\ 

1/1 = 1/1 ((/», (/> = (/> (ifJin)' (0 - m )ifJin = 0, (3.2) 

so that according to the tree approximation scheme, we 
should have calculated a coherent state expectation value: 

(..i I: I/I((/>)[Jin]: l..i) = 1/I((/>)[ifJ 1 = l/I(ifJ), (3.3) 

where ifJ is a free classical field (the scalar neutral one) of Ref. 
6, Jin in the above is the plane-wave solution of the Klein­
Gordon equation in 1 + 1 dimensions, and the normal or­
dering refers to its (plane-wave solution) creation-annihila­
tion generators. Classically, 12 one knows that if (/> = (/> (ifJ ) is 
the sine-Gordon I-soliton, then l/I(ifJ) introduced according 
to 

(3.4) 

(/>a = (/>(ifJa), 

satisfies the massive (mass 1) Thirring model equations of 
motions, which are the classical (e-number) ones: 

- iax 1/11 = ~1/I2 - 21/12+ 1/121/11' 
(3.5) 

iar 1/12 = ~I/II - 21/1 t 1/111/12· 

The underlying coherent I-soliton states were con­
structed in Ref. 6, and their boson transformation param­
eters satisfy 

_1_ ( dk I X(k)A(k) = fdX[ifJ(xW = 00, 

21T JR' (k 2 + m2)1 2 

(3.6) 

where ifJ (x) = ifJa(x) = exp mrax, ra = (a2 + l)/2a; hence 
Condition (2) of the theorem of Sec. 2 is manifestly violated. 
As a consequence no free fermion is allowed in the I-soliton 
Hilbert space IDPS (I..i ))for the sine-Gordon system. 

(2) On the other hand, the spectral solution of the mas-

Piotr Garbaczewski 344 



                                                                                                                                    

sive Thirring model given in Ref. 23 proves that the funda­
mental free field, to be used in the Haag expansions of the 
model, is the massive Dirac one in 1 + 1 dimensions. Its 
creation and annihilation operators are required to satisfy 
the CAR: 

[bj(p), b j(q)]+ = 8Jj(P - q), 
(3.7) 

[bj(P), bj(q)l+ = 0 = [b r(P), b j(q)]+, ij = 1,2 

and rp = '/I (¢in ) = '/I(b *,b). Notice that in 1 + 1 dimensions 
one can introduce both Bose and Fermi fields on the com­
mon Hilbert space domain, without bothering about any 
spin-statistics problems (this is not the case in 1 + 3 dimen­
sions). A bosonization of [ b *, b L = 1,2 involves the corre­
sponding Bose degrees of freedom [a*, a J j = 1.2 (see Refs. 1 
and 14) so that 

b * = b *(a*, a), b = b (a*, a), 
(3.8) 

where DJ.t is the massive vector field in 1 + 1 dimensions 
with no Proca condition imposed. 1 If the construction of 
semiclassical domains IDPS( IA )), i.e., of coherent states IA ), 
respects the coexist~nce offxrmions and bosons on a com­
mon domain, both ifJin and UJ.t are equally fundamental and 
give rise to equivalent Haag series expansions of the quan­
tum fields on the subspace ofIDPS(IA )). 

(3) The above picture breaks down if the coherent state 
IA ) does not respect restrictions of the theorem. Then the 
CAR are no longer satisfied by ¢in, aneJ... an appropriate (and 
then unique) fundamental free field is UJ.t' i.e., the Bose one. 
In particular, if we impose a Proca condition we arrive at 
Case (1), where the fundamental free field is a massive neu­
tral scalar ¢in' i.e., a boson again. 

To summarize: The massive Thirring model always ad-
A 

mits a bosonization in terms of U",. Nevertheless, the notion 
of a free fundamental fermion can still be saved if coherent 

A A 

states IA ) obey the theorem. Otherwise, either UJ.t or tPin plays 
the role of fundamental field in the model. Consequently, 
this special Fermi model admits in principle the three differ-

A A A 

ent types of Haag expansions-in terms of ifJin' tPin, or U"" 
depending on the choice of the state space in H. Let us once 
more emphasize that an expansion in terms of ¢in can always 
be rewritten as an equivalent expansion in terms of DJ.t' This 
is obviously a peculiarity of the 1 + 1 dimensional space­
time, where the spin-statistics theorem does not apply. The 
inverse statement in gener~ is not,.!rue, because once having 
specified a domain for '/I (UJ.t) = '/I in H, we may have pro­
hibited the existence of the CAR on it. Then, even having 
started from an expansion rp = '/I (¢in ) one must realize that 
¢in is no longer a free Fermi field in the conventional sense of 
the word. It is worth mentioning at this point that quite a 
variety of spin or models in 1 + 1 dimensions do not meet the 
requirement of asymptotic completeness; the asymptotic 
spinor field related to a given interacting spinor field does 
not exist on the state space of the latter, see, e.g., Ref. 24, but 
also Refs. 1 and 25-27, where the spinor field asymptotic in 
1 + 3 dimensions is considered. 

Example 2: QED in the infrared domain, or the gauge 
field transcription of the Dirac-photon system. 
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The statement of Ref. 1, that the correspondence princi­
ple allowing us to relate the classical (c-number) and quan­
tum levels of spinor systems in 1 + 1 and 1 + 3 dimensions, 
involves free Bose systems with unbounded-from-below 
Hamiltonians. With any element of the spinor field algebra 
in hand, upon bosonization we can calculate its coherent 
state expectation value in the tree approximation, thus arriv­
ing at the corresponding semiclassical entity. 

In 1 + 1 dimensions, the free (asymptotic) fermion can 
in prinicple coexist with the subsidiary (background) boson 
on the same state space in H. Then an interactingfermion can 
have its free asymptotic Fermi partner. However, in 1 + 3 
dimensions, the spin-statistics theorem must be taken into 
account. By using a chain of heuristic arguments, we demon­
strated in Ref. 1 that a Dirac field, if weakly coupled to the 
photon field (a nonlinear system of coupled Maxwell and 
Dirac equations), allows a bosonization in terms of the pure 
gauge field itself. We use here the Maxwell potential in the 
Coulomb gauge 

(3.9) 

where IA ) is an appropriate coherent photon state,AJ.t being a 
solution of the sourceless Maxwell equations. A really strik­
ing peculiarity of (3.9) is that an interacting spin ~ field ap­
pears as a nonlinear and nonlocal excitation in the spin 1 free 
field algebra. This observation can hardly be reconciled with 
the traditional wisdom about the (perturbative) QED, and its 
asymptotic problem solution,2s-27 Namely, in the latter case 
the interacting fields, both Bose and Fermi, have expansions 
in terms of free Bose and Fermi fields via the Haag series. 
The Haag series is written in terms of free Fermi and Bose 
fields commuting among themselves, which is distinct from 
the bosonization recipe, as discussed in (2.4)-(2.17). The as­
ymptotic infraparticle states of QED found in Ref. 27 re­
quire both free bosons and fermions to commute among each 
other. 

In the bosonized case, while using (2.5) and (2.9), we find 
that, for example, 

k-l 

[bk,at]± =exphTL O'/O'j-[O'k-,at]±, (3.10) 
j= 1 

hence neither commutation nor anticommutation occurs. 
On the other hand, the observation (3.9) is fully consis­

tent with the attempts of Righi and Venturi28
-

30 to construct 
charged fermion fields from extended particlelike solutions 
in their nonlinear approach to quantum electrodynamics. 
An example of the fully bosonized interacting spinor field 
which satisfies the CAR, and does not at all commute with 
the electromagnetic field, is given in Ref. 29. An analogy 
with the previously considered sine-GordonlThirring case 
appears to be striking. A 

Obviously the fieldAJ.t is not free, but its Haag series do 
apparently fit in our framework. Hence a construction of the 
appropriate coherent photon states is quite in order. In the 
case of the relativistic field theory, we expect that the pres­
ence offree fermions should be forbidden in the fully boson­
ized Fermi system. Hence one should look for coherent 
states which do not conflict with this theorem. We still can­
not propose a final solution to this problem; let us, however, 
indicate that the coherent photon states invented by 

Piotr Garbaczewski 345 



                                                                                                                                    

Chung25 in the conventional approach to the QED do not 
allow the existence of free fermions on any subspace of the 
semiclassical (photon) Hilbert space. The coherent states of 
interest read (a single electron case) 

IA )p = u 1'10): 

=exp{~f I ki(k,p)a~(k) 
(21T) i~ 1.2 

*i ] d
3
k } - P (k, p)ai(k) --1-/2 10), 

(2ko) 
(3.11) 

where 

pi(k,p) =p.~ ¢(k,p) 
p.k 

(3.12) 

and p, k, €' are the four-vectors, p.k being the corresponding 
scalar product formula. Here p stands for the four-momen­
tum of the electron to which the state IA )p is assigned. The 
function ¢ (k,p) equals I in the vicinity of k = O. By also 
taking into account a factor l/(2ko)I/2, ko = Ikl, one easily 
verifies that the coherent photon state IA )p violates Condi­
tion (2) of the main theorem due to the singularity of 
lFi(k,p)1 atk = O. Let us mention that in analogy to IA )p, the 
soliton states of the massive Thirring-sine-Gordon example 
did exhibit a manifest parametrization IA ) = IA )a in terms of 
the I-soliton parameter a; compare, e.g., (3.6). Because the 1-
soliton total momentum reads k = 8m(lal 2 

- 1)/2Ial, IA)a 
provides us with a momentum parametrization as well. 
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We verify the global Markov property in some class of strongly coupled exponential interactions 
in two-dimensional space-time. To obtain this result we apply the Albeverio and H16egh-Krohn 
strategy. The basic ingredients we use in order to employ this strategy are the Fortuin-Kastelyn­
Ginibre correlation inequalities. 

PACS numbers: 11.10. - z, 02.50.Ga 

I. INTRODUCTION 

Let dJto be the free Euclidean field measure on S '(R 2), 
i.e., the Gaussian with mean zero and covariance 
( -.J + m~) - 1 , where.J is the two-dimensional Laplacian 
and mo > 0 is a free field mass. Let! UA J be a local space­
time cutoff interaction, i.e, the map R 2:>A_UA is an addi­
tive functional of the free, Euclidean field such that UA 

E L 2(dJto) and e - u"E L P(dJto) for any l""p < 00. By .I A we 
denote the iT-algebras generated by the fields with support 
within A. The measures considered in the Euclidean field 
theory are of the form 

dJtA (ep) = [Eo(e - uA
)] -I. e - uA

• dJto(ep), (1.1) 

Eo(')== J dJto(ep )(·)=(H)o· (1.2) 

Of special interest are the infinite-volume limits of the quan­
tities like (1.1). 

A measure dJt on S '(lR2
), being a Gibbs measure corre-

sponding to the multiplicative functional! e - U
A J, is any 

measure which is locally absolutely continuous with respect 
to dp,o and such that the associated conditional expectation 
values offunctions measurable within A with respect to the iT 

algebra.I A coincides with those computed with dp, A instead 
ofdp,: 

E!A[f]=EJt(fIJA )=Ep,A (fIJA). (1.3) 

A Gibbs measure dp, is pure iff there is no other Gibbs mea­
sure corresponding to the same multiplicative functional 
which is absolutely continuous with respect to dp,. 

We recall now what the global Markov property (GMP) 
is. Let C be any piecewise-C 1 curve such that lR2 

\ C consists 
of two components n + and n -. Letf+ andf_ be any 
bounded functions of the field ep,. associated with the Gibbs 
measure dp, which are measurable in n + and n - , respec­
tively. A Gibbs measure dJt has a global Markov property iff 
for any C,f+,/_ as above 

(1.4) 

In many cases considered in the Euclidean field theory it is 
known that the property (1.4) holds for every bounded, 
piecewise C I curve. It is called the local Markov property 
(LMP). 

alOn leave of absence from the Institute of Theoretical Physics, University 
ofWroclaw, Poland. Supported by the Forschungsinstitut fUr Mathematik, 
E. T. H. Ziirich. 

Only in the case of the weakly coupled trigonometric 
interactions has the global Markov property been verified 
recently by Albeverio and H16egh-Krohn (AHK). I The in­
genious paper by Albeverio and H16egh-Krohn includes, 
among other interesting things, a general strategy for the 
proof of GMP in a more general context than the sine-Gor­
don2 model. Let us define 

(1.5) 

where P aA is the Poisson kernel associated with the follow­
ing Dirichlet problem: 

( -.J + m~)¢'~A(x) = 0 for xElR2\BA, 
(1.6) 

~:(X) = 1](x) for xEBA 

for any JA which is piecewise C I in lR2
• 

Now let dp,;, be a Gibbs measure p, conditioned by 
S = 1] on a given piecewise-C 1 curve C in R2. Then we have 
the following strategy for proof of GMP(AHK strategy): 

If d/-l;' is a pure Gibbs measure for the interaction 
UA (ep + ¢';,) for almost every 1] with respect to d/-l and d/-lA 
has the global Markov property then the Gibbs measure d/-l 
also has the global Markov property (see Ref. 1). 

In this paper we employ this strategy for the class of 
exponential interactions 

UA (ep) = A 1 dx J dv(a):ea9>:(x) , (1.7) 

whereAElR+, dv(a) is some bounded measure with support 
on (O,a*), a* < 21T1/2

, and a* is sufficiently small. In this 
paper we will not give the precise bound on a*. 

The Gibbs measures d/-l associated with (1.7) are the so­
called exponential interaction. They were discussed pre­
viously in Refs. 2-4. Our main result is the following 
theorem: 

Theorem 1.1: For a* sufficiently small the exponential 
interactions defined by (1.7) have the global Markov proper­
ty. 

Consequences of the GMP have been discussed in sev­
eral papers; see, e.g., Refs. 5-10. It can be easily shown that 
these discussions are applicable to the models (1.7). We sum­
marize some standard consequences of Theorem 1.1. 

Theorem 1.2: For a* sufficiently small the quantum 
fields corresponding to the exponential interactions defined 
by (1.7) have the following properties: 

(i) They are canonical fields in the sense of Ref. 8. 
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(ii) Time-zero fields generate the corresponding Hilbert 
spaces. 

(iii) Physical Hamiltonians corresponding to (1. 7) are 
the second order elliptic variational operators in the sense of 
Ref. 7. 

It is worth noticing that the AHK strategy of the proof 
of G MP has been applied in Ref. 11 to a large class of discrete 
spin systems on a lattice in the region of coupling where the 
Dobrushin uniqueness theorem can be applied. A similar 
proof to that in Ref. 11 was given by Follmer for the pure 
phases of the Ising model. 12 A very attractive alternative 
strategy to the AHK strategy for the proof of G MP has been 
proposed and applied to some lattice spin systems and the 
continuum Widom-Rowlinson model by Goldstein. 13 Some 
uniqueness results for the Dobrushin-Lanford-Ruelle equa­
tions for the continuous spin systems have been established 
in Refs. 14 and 15. 

We close this Introduction with some comment on the 
organization of this paper. Section 2 contains some prepara­
tions for the proofofGMP, which is given in Sec. 3. The rest 
of this paper is of a technical character. In Sec. 4 we prove 
Fortuin-Kastelyn-Ginibre (FKG) correlation inequalities 
for the conditioned measures. Appendixes A and B contain 
some technicalities necessary to complete the proof of the 
crucial Theorem 2.4 in which we prove that the Gibbs mea­
sures corresponding to the conditioned exponential interac­
tions (1.7) are the pure Gibbs measures almost surely with 
respect to dJ-l. Throughout this paper we always assume for 
simplicity 

dv(a) = 8(a - a*). 

2. Preparations for the proof of GMP 

Our proof is modeled on an original paper by Albeverio 
and H0egh-Krohn,1 where they proved the global Markov 
property (GMP) for the case of the weakly coupled trigono­
metric interactions. One of the basic ingredients of their 
proof is that the following local boundness properties of the 
solution of the Dirichlet problem (1.6) with the boundary 
conditions 1] are chosen randomly from the space 
{S '(H2)~,dJ-l J, where dJ-l is the infinite volume measure cor­
responding to the exponential interactions (1.7) and ~ is a a 
algebra generated by the field <P associated with dJ-l. 

Proposition 2.1 (Local Boundness Properties = LBP) I: 
1. Let <P (x) be a field associated with the exponential 

interactions (1.7). Let C and Co be two piecewise C 1 curves in 
H2 and let 

t/!;'Co(x) = t/!;UC,,(x) - t/!;o(x) for x~C uCo, 

wheret/!~(x)isthesolutionof( -..::1 + m~)t/!~(x) = OinH2\.C 
and t/!~(x) = g(x) on C. Then there exists a constant a such 
that for almost every <p with respect to dJ-l and xEH2

\. C uCo 
with d (x,C» 1 we have, with respect to dJ-l 

f 1t/!;,Co(xWdJ-l(<p )<ae - mQd(x.C), m~ < mo' (2.1) 

Moreover if A is a compact subset ofR2\.CouC such that 
d(A,C»l, then we have 

(2.2) 
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2. Now let Co be any fixed C 1 curve and let Cn be any 
sequence ofpiecewise-C 1 curves in H2 which tends to infinity 
in the sense that d (O,Cn )---+00. Let An be any sequence of 
bounded sets in H2 such that An CR2\.COuCn ) and 
dist(An ,Cn )---+00 as n---+oo. Then for any a < mo there is a 
subsequence n' such that 

(a/2)d(An;Cn,) I"'coucn,() .I,C()I 0 e sup '1"'1' x - '1"/ x ---+ 
xEA". n' 

for almost every <P with respect to dJ-l. 
Let CO be an unbounded connected piecewise-C 1 curve 

such that H2 \.CO consists oftwo components f1+ and f1_. 
LetA" be any sequence of bounded sets in H2 which tends to 
H2 in the sense to be specified below. Let us define jAn 
= JAn \. CO. We also assume that for any nEJV, JA"nCo con­

sists of at most a finite number of points. If/is ~ A measure-
ble then we have n 

where 

d cO.aA n( ) 
J-lA.,.,A <P 

===(Z C"uaAn)_1 
A.,."A n 

xexp [ - A. f dv(a).L:exp [ a(<p + t/!~"uailn)] : (x)dx ] 

. dJ-l;uuailn(<p ), (2.4) 

where dJ-l;ouaAn(<p ) is the free field Gaussian measure with 
Dirichlet boundary condition on COwAn and 

Z ;,o~~n = f dJ-l;ouaAn(<p) exp [ - A. f dv(a) 

X in :exp [a(<p + t/!~ouaAn)] :(X)dX]. (2.5) 

Because <p and t/!~ouailn are independent Gaussian processes 
we can write 

[ COuaA ] C uail :exp a(<p '+ t/! ~ n) :(x) = :ea'l':(x)::exp(at/!,.," n):(x), 

where 
CuaA 

:exp(at/!,.,o n):(x) 

(2.6) 

= exp [ - (a 2/2)K ~(:::An] exp(at/!~"uailn)(x), (2.7) 

K~:::An===( -..::1 + m~)-I(x,x) - (- ..::1cuuailn + m~)-I(x,x), 
(2.8) 

where..::1 c is a Laplacian with Dirichlet boundary condition 
on C. We summarize the crucial properties of the measure 

dJ-lfo~~}(<p) in the following proposition. 
Proposition 2.2: 
1. For almost every 1] with respect to dJ-l, An CR2 

bounded, the measures dJ-l ;,o~~1: are well defined probabilistic 
measures on S '(H2). 

2. For almost every 1] with respect to dJ-l the measures 

dJ-lf;~1:(<p) fulfill Fortuin-Kastelyn-Ginibre correlation 
inequalities. 
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We prove this proposition in Sec. 3. Now we note the 
following important consequence of Proposition 2.2. 

CoroJJary 2.3: 1. For almost every "I with respect to dp. 
the unique thermodynamic limit 

w-lim d,lc" .. JifA=d,lco (m) 
AIR' r,t • ..,.A r,t • .., T 

(2.9) 

as a weak limit of measures exists. 
2. For almost every "I with respect to dp., measures 

dp.f.o.., have the exponential cluster property uniformly in A, 
"I, and Co. 

Proof of CoroJJary 2.3: 
ad1. By applying the FKG correlation inequalities we 

have that forf>O 

0< f e<p(/)dp.f.°~~l< f e<p(f)dp.grJ..JiJli(lp) 

(by conditioning) (2.10) 

< f e<p(/)dp.o(lp), 

and moreover fe<p(f)dp.f.°~~l is monotonically decreasing in 
A. 

ad2. Let us consider theA dependence of the truncated 
two-point function of the measure dp.f.;~l, 

~ (f lp (x)q; (y)dp.f.;~l 

- f lp (x)dp.f~~l . f lp ( y)dp.f.;~l ) 

= - f dz:exp(a)qt~.,ali :(z)(lp (x)q; (y);:ea<p:(z)f.°~~l 

+ f dz:exp(aqt~.,ali) :(z)(lp (x);:ea<P:(z)f.c;:,l 

X (m(y)co.ali 
T ,t • ..,.A 

+ f dz:exp(aqt;-ali) :(z)'(lp(y);:ea<p:(z)~~l 
X (lp(x)f.;~l. (2.11) 

By means of the Ginibre and FKG correlation inequalities 
we have 

(lp (x)q; (y);:ea<p:(z)f.;~l >0, 

(lp (x);:ea<P:(z) f.;~1 >0. 

(2.12) 

(2.13) 

Applying the integration by parts formula on function space 
we have 

(lp (x)f.;~l 

= - A i dz:exp(aqt~.,ali):(z)S~'tz1Ii(:ea<P:(z)f.;~l <0. 

(2.14) 

So finally we have 

d -- (lp (x);lp (y) C.,aA <0 dA ,t • ..,.A , 

from which follows 
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(2.15) 

O«lp(x);lp(y)f.;~l< f lp(x)q;(y)dp.ocoWA(lp) 

(by conditioning) 

< f lp (x)q; (y)dp.o(lp ). 

(2.16) 

We conclude that for almost every "I with respect to dJl. the 
two-point moment of the measures dp.~~.~o clusters exponen­
tially fast with decay rate bounded from below by the free 
field mass mo. This cluster property holds uniformly in 
A,Co,A.,'TJ, for almost every "I with respect to dp.. Another 
application of Proposition 2.2 and the Lebowitz-Simonl6 

theorem concludes the proof of statement 2. Q.E.D. 
The crucial step in the verification ofthe GMP is the 

following theorem. 

Theorem 2.4: Almost surely with respect to dp. 

(2.17) 

Proof Let us take without loss of generality S (R2) € f 
>0 with compact support. Let us consider the following 
interpolation between dp.f.°~aA(lp) and dp.f.o.., (rp). Let An be 
some sequence of regular sets in R2 such that An f R2 by in­
clusion. Then we define 

d C.,ali .. ,,( ) _ [Zco.ali •. "]_1 
1-l,t • ..,.A. lp - ,t • ..,.A. 

for ue[O, 1] and 

xexp[-A f :ea<p:(x): 
A. 

Xexp[aqt~o(x) + Uqt~ ]:(X)] 

X dp.~owli.(rp ) 

Z f.;~~:'''= f dp.o cowli.(rp) exp [ - A i.:ea<p:(x) 

:exp[ a(qt~o + uqt~)] :(X)). 

Here we are using the following notation: 

(2.18) 

(2.19) 

:exp(aqt~o + auqt~):(x) = :exp(aqt~o:(x):ea"II'~:(x), 
(2.20) 

where 

a"l1'· (a
2u2 c .ali ) [ :e ~: = exp - -2-K(x:X) • exp auqt~(x)], 

qt~(x)=oqt;·ali·(x) _ qt~o(x), 

K~~~Ii. = f dp.o(lp )(qt~)2(X) 

Kcowli• 2 i did pc~1i = (x.x) - _ Zl Z2 (x.z,) • 
CoWAn Co 

xp~~Z,)S~(ZI,z2) + K~~xp 

(2.21) 

(2.22) 

(2.23) 

KC(x,x) = (-~ + m~)-I(x,x) - (-~c + m~)-I(x,x). 
(2.24) 

With this notation we have the fundamental theorem of 
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calculus 

f e'P Ifld co,aAn,(T ~ I - f e'P Ifld c",aAn,(T ~ ° 
flJ..,."An('P1 flJ..,."An('P1 

= - A r dx ( du( _ ua2K ~:~An + a4JI~(x)):ea(T'i'~:(x) 
)A

n 
)0 

X F CooaAn,(T(J, ) 
A,7].A n ,x, (2.25) 

where we have defined 

F c",aAn,(T(J, ) _ ( 'Plfl .. w p .( )c",aAn,(T (2.26) J..,."A n ,x - e ,.e. X J..,."A n . 

Now let Yn be another sequence of sets in R2 such that Yn 

iR2 asn-+oo, YnCAn' limn_ood(Yn,JAn) = oo,Further­
more, we will impose some other geometrical conditions on 
Yn which will become clear by consideration of Appendix A. 
Let us now define 

J~,.,=a2 r dxi
l 

duuK~:~An:eau'i'~:(x):exp(a4JI~O):(x) 
)Yn ° 

XFc",aAn,(T 
J.., ."A nl J;xl ' (2,27) 

2 _ 2 Co,aA n C aaq;~ 1 Sa

l -

J n,., =a dx du uK (x,xl :exp(au4JI., o):(x):e :(x) 
An,,-Yn 0 

X Fc",aAn,(T 
J..,."An(J;xl' 

J~,.,=a f dx f duu:exp(a4JI~o:(x)4JI~(x):ea(T'i'~:(x) 
Yn ° 

X Fc",aAn,(T 
J.., ."A nl J;xl ' 

(2.28) 

(2.29) 

J~,.,-a 1 dx (duu:exp(a4JI~"):(X)4JI~(X):ea(7'i'~:(X) 
An" Yn )0 

XFc",aAn,u 
J..,."An(J;xl· (2,30) 

In the four lemmas contained in Appendix A we prove that 
almost surely with respect to dfl there exists a subsequence 
! n I J C ! n J such that 

~im J~"" = 0 for i = 1,2,3,4, 
n~oo 

(2,31) 

To controllimn,~",J~"., = 0 for i = 1,3 we use LBP sum­
marized in Proposition 2,1 and to ensure limn'~oo J~"., for 
i = 2,4 we use the uniform exponential cluster property giv­
en by Corollary 2,3. So we have proved that 

r d co,aAn,,(7 ~ I l' d co,aAn',(T ~ ° 
w- 1m fl;",."A n, = w- l~ fl;",."A n, . 
A ~/'R2 An/R 

By the 2E argument it remains only to prove 

1, d co,aAn l' d C w- 1m fl;".,A, = w- 1m fl;,,°nA " 
AI1,/R2 •• n An./Rz ",. n 

(2.32) 

i,e., the independence of the half-Dirichlet boundary condi­
tion in the thermodynamic limit of the conditioned measure 
dfl;,o~~A:O. Appendix B contains a detailed proof of this miss­
ing statement, Q.E.D. 
Let us note finally the following consequence of the proof of 
Theorem 2.4. 

Corollary 2,5: Exponential interactions corresponding 
to the interactions (1.7) are pure Gibbs measures. 

Remark: Using the kind of arguments (essentially due 
to Frohlich and Simon 17 given in Appendix B we are able to 
prove the independence of certain classical boundary condi­
tions for a class of exponential interactions described by 
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(2.33) 

where now dv(a) is an even, bounded measure supported on 
(- 2I.,fii,2I.,fii). However, we are unable to extend Corol­
lary 2,5 to this case, because conditioning destroys the cru­
cial Griffiths-Kelly-Sherman correlation inequalities. 

3. PROOF OF GMP 

This section is included only for the reader's conve­
nience, Having proven Theorem 2.4 we follow exactly the 
original arguments given by Albeverio and H0egh-Krohn. 

Proof of Theorem 1,1: From the definition of dfl f.o.,.A we 
see that it depends on "I only through the field ",~o(x), which 
be definition is ~co measurable, Hence the functions 

"1-+ f e'P Ifldfl f.0~~~ (q; ) (3.1) 

are all ~c .. measurable. On the other hand we have 

f e'Plfld Co,aAn.(T~ I( ) fl;" . .,.A q; 

= exp[ - 4JI~o(f)]exp[ - 4JI~(f)]E~ouaAn[e'PIfI](TJ) 
(by the local Markov property) (3.2) 

= exp [ - 4JI ~o(f) ] exp [ - 4JI ~ (f)] 

XE CouR'''An [e'PIfI](TJ), 

assuming n is so large that supp IC An. But the conditional 
expectation E C"UR'''An[.] is by definition a martingale in n so 
by the martingale convergence theorem we have that 
limn_ oo E ~"UR'''An[.] ("I) exists for almost every "I ~ith respect 
to dfl. Hence it follows that limn_ oo fe'Plfldflf.~'!:nno(7~ I(q;) 

converges for almost all "I. In particular we obtain by the 
martingale convergence theorem that it is enough to investi­
gate the limit limn~oo fe'Plfldfl;',~~n.(T ~ I(q;) by choosing sub­
sequence as we did in Theorem 2,4. This limit is equal to 

E: 2, X [ exp [(q; - 4JI ~")(/)] ] ("I), 

Taking into account that 

E:C,'[exp!(q; - 4JI~o)(/)J ]("1) 

= exp[ 4JI~''(f)]E:c''[e'PIfI](TJ), (3.3) 

I~ 

we conclude that E J.' c"[e'Plfl] is ~co measurable as a func-
tion of "I. This enables us to prove that for any FE L 00 

I~ 

[S'(R2),~,dfl], E C"[F] is ~c" measurable. By Theorem 
2.4 we have that the u algebra "at infinity" corresponding to 
the Gibbs measure associated with the interaction 
UA (q; + "';'0) is trivial for almost every "I with respect to dfl. 

LetR2"Co = f1+u f1_, wheref1 ± are connected com­
ponents of the set R2" Co, and let F + and F _ be bounded 
functions which are ~n+ n ~An and ~n_ n ~An' respectively, 
measurable. By Theorem 2.4 and the discussion above we 
have then that for almost every "I with respect to dfl 
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E;o[F+.F_](7]) 

I· E CouR"A n, [F F ] ( ) = 1m p. +' - 7] (by Theorem 2.4) 
n'_oo 

I· ECoui1An'[F F ]( ) = 1m J.l +' - 7] 
n'-oo 

(byLMP) 

= lim E ~oui1An' [F + ](7])E ~oui1An' [F _ ](7]) 
n'-oo 

= lim E CouR',A n, [F + ](7])E CouR',A n, [F _] (7]) 
n'-oo 

(by Theorem 2.4) 

= E ;o[F + ](7])E ;o[F _ ](7]), 

which is exactly the GMP. 

4. FKG CORRELATION INEQUALITIES 

Q.E.D. 

In this section we prove Proposition 2.2. Our idea is the 
following. First we introduce some auxiliary regularization 
for the Dirichlet problem (1.6) in such a way that the lattice 
approximation for the regularized conditioned measure is 
convergent. For this approximation we check immediately 
the FKG condition by applying the Avron-Herbst-Simon 
criterium. Then we prove that for almost every 7] with re­
spect to dp, this auxiliary regularization can be removed. 

Let X .Eb(R2), X. > 0, be an arbitrary sequence weakly 
regularizing the original problem (1.6); i.e., instead of (1.6) 
we consider the following two-sided Dirichlet problem. Let 
Cbe any piecewise C 1 curve in R2. We define t/{ as a solution 
of 

{
( -.d + m~)I[I~,(x) = 0, 

1[I~,(x)=7].(x)=(7]*X.(x), 

xE£C, 

XEC, 
(4.1) 

where w - lim."oX. = 8. This is a well-posed Dirichlet 
problem because by the fundamental principle 7]. (x) 
EC 00 (R2). Let us consider the following measure: 

d C ()-[ZC ]-1 P,A..""A q; - A.,,,,,A 

xexp [ - A i dx:ea'P:(x):exP(al[l~J(x)]. dP,5(q;), 

(4.2) 
where now 

:expal[l~,:(x) = exp[ - (a 2/2)K;(x,x)] exp[ al[l~)x)] ,(4.3) 

K;(x,x) = ((X. ®X.)*KC)(x,x). (4.4) 

Let us note the following simple fact. 

ed 

Lemma 4.1: (a) For every 7]E S '(R2), A C R2 bounded, 

:expat/{:E L I(A ). 
(b) For almost every 7] with respect to dp" A C R2 bound-

:ea"'~:(X)E L I(A ). 

Proof 
(a) This is trivial. 
(b) We have 

J dp,(7]) II :eaop~:(X)IIL '(A) 

351 J, Math, Phys .• Vol. 24. No.2. February 1983 

[by positivity of P C and FKG inequalities for dp,(7])], 

i f a"'C 
<; A dx dp,o(7]):e ":(x) 

(4.5) 

= i dx e(a'12)K
c

(x.x) < 00 

for small a because local singularities of K C are of logarith­
mic type. Q.E.D. 

Remark: From part (b) of this lemma we get immediate­
ly the proof of statement 1 of Proposition 2.2. To see this we 
apply the Jensen inequality 

(4.6) 

For the proof of convergence of the lattice approximation for 
the measure dp,;'",.A we refer to Refs. 3 and 4. Using the 
A vron-Herbst-Simon criterion we immediately conclude 
that the FKG correlation inequalities for dp,;, ", ,A hold. Now 
we prove 

Theorem 4.2: For almost every 7] with respect to dp, 

w-lim dp,;'".A = dp,;'".A· .,,0 
Proof Let us consider the Laplace transform of the 

measure dp,;'""A 

(e'PIf)C =fe'Plf)dIlC (m). (4.7) 
A.",.A r'A,,,,,A T 

We take! >0 without loss of generality. By FKG correlation 
inequalities 

(e'PIf);,,,, ,A <; f dp,5(q; )e'PIf). (4.8) 

Hence by the Lebesgue dominated convergence theorem 

<; f dp,(7])lim(e'PIf);'",.A .,,0 

<; f dp,5(Q; )e'PIf). (4.9) 

Therefore almost surely with respect to dp, the limit lim.1O 
(e'PIf);'",.A exists. Now we show that this limit is equal to 

< e'P If) f.",A for almost every 7] with respect to dp,. For this is 
enough to prove (almost surely with respect to dp,) 

(i) lim f e'P If)exp [ - UA (Q; + 1[I~.l] dp,5(Q; ) .,,0 
(4.10) 

and 

(ii) Z ;'",.A > 0 uniformly in E. (4.11) 

Step (ii) follows immediately from Lemma 4.1 and the Jensen 
inequality. We proceed to prove step (i). 
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By application of the Duhamel formula it follows that it 
is enough to show that 

lim f dJ-l(7J) 
£,,0 

X f [UA (q? + If/~.J - UA (q? + If/~)] 2dJ-lg(q? ) = O. 
(4.12) 

With help of the FKG correlation inequalities we have 

f dJ-l(7J) f dJ-lg(q?) [ UA (q? + If/ ~;)] 2 

= A 2 L L dx dy f dJ-l(7J)dJ-lg(q? ):ea9':(x):ea9' 

:( y):exp(alf/ ~.):(x):exp(a If/ ~.):(y) 

.;;;..1, 2 L L dx dy f dJ-lg(q? ):ea9':(x):ea9':( y) 

X f dJ-lo(7J):exp(alf/~J(x):exp(alf/~J(Y). 

(4.13) 

By simple Gaussian computation and application of the 
dominated convergence theorem we have 

lim f dJ-l(7J) f dJ-lg(q? )U~ (q? + If/ ~ )(x) 
E~O € 

= f dJ-l(7J) f dJ-lg(q? )U~ (q? + If/~)(x) 
(4.14) 

provided a is sufficiently small. Q.E.D. 
Extension to the case of UA (q? + t/{ + U¢~.J is 

straightforward. So we have proved that dJ-lf:;~ is a weak 
limit of a measure for which the FKG correlation inequal­
ities hold. Therefore the limiting measure also obeys these 
inequalities. This ends the proof of Theorem 4.2 and Propo­
sition 2.2. Q.E.D. 
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APPENDIX A 

Without loss of generality we always assume!>O. Let 
Yn and A n be a set in R 2 as explained in the course of the 
proof of Theorem 2. [n' J below always denotes the subse­
quence mentioned in Proposition 2.1. 

Lemma A. I: For almost every 7J with respect to dJ-l 

lim J !',T/ = 0, 
n'_oo 

Proof By FKG correlation inequalities we have 
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IFCo,altn"U(!; )1 ..t,T/,An, ;X 

...- ( 9' (f). a9'.( ) c",altn"u ..., e .e.x ..t,T/,U 

+ (e9'(f)c",aAn"U(:ea9':(x)Co,aAn"U ..t,T/,An, ..t,T/,An, 
.;;; (e9'(f):ea9':(x)o + (elf )9' )o(:ea9':(x)o 

= (e9'(f)o[eaf"s~x)+ 1], 

f IJ !"T/ IdJ-l(7J) 

.;;;a2 r dxl1 dO'O'(eCP(f)o[eaf"sl(x) + 1] 
)Y

n
, 0 

XK ~:~An' f dJ-l(7J):exp(aO'If/~'j:(x):exp(alf/~u):(x). 

ByFKG, 

.;;;a2 r dx 11 dO' O'(e9' (f)o [eaf*sl(x) + 1] 
)Yn. 0 

XK~:~ltn' J dJ-lo(7J):exp(aO'If/~'j:(x):exp(alf/~o):(x). 
By LBP for sufficiently large n' 

.;;;a2(1 + En') r dx 11 dO' O'(e9'(f)o[eaf*s~x) + 1] 
jy", 0 

XK~:~ltn' f dJ-lo(7J):exp(alf/~o):(x) 

.;;;a2(1 + En') r dx 11 dO' O'(e9'(f)o [eaf*sl(x) + 1] 
jYn. 0 

XK~,:~An'exp[ - (a 2/2K co(x,x)). 

It remains to use the exponential decay of K ~:~An as An' too 
in order to finish the proof that limn'~oo fdJ-l(7J}J !"T/ = O. 
Q.E.D. 

Lemma A.2: For almost every 7J with respect to dJ-l 

~im J~',T/ = O. 
n~oo 

Proof Here we use the uniform exponential cluster 
property proved in Corollary 2.3, 

f dJ-l(7J)IJ~"T/ 1 

.;;;a2 11 dO' 0' r dxK c .. altn'(x,x)e - m,,d(suppJ,An,, Yn,) 
o JAn" Yn, 

X f dJ-l(7J):exp(alf/~o):(x):exp(aO'If/~'j:(x), 

ByFKG 

X f dO'O'f dxK~,:~A"exp[( _a2/2)KCo(x,x)) 

X e - (a'u"/2)K "(X,X)exp [ + (a 2if /2)K Co(x,x)) . 

If An' '\ Yn,-oo sufficiently fast then 

~im fdJ-l(7J}J~"." =0. Q,E.D. 
n~oo 
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Lemma A.3: For almost every rJ with respect to df-L(rJ) 

limJ~,,'1 = o. 
n'-co 

Proof Now we use LBP. For sufficiently large n' we 
have 

IJ~"'1I<a r dx (do-oil +€n') 
jy,1' Jo 

X e - laI2)dist( Yn, ,JA n' ) IF ;:o~~;::,<7(f,x) I. 

ByFKG 

<at I + En') r dx ( do- o-e - (aI2)dist( Yn"aAn,) 
)Yn. Jo 

X (ell' If»0 [ears~(X) + 1]. 

Because [ears~x) + 1] is locally L P integrable (p> I) we 
conclude 

~imJ~,,'1 = 0 
n~"" 

for almost every rJ with respect to df-L' 
Lemma A.4: For almost every rJ with respect to df-L 

~imJ~,,'1 = o. 
n~"" 

Proof (by uniform exponential cluster property) 

f df-L(rJ)IJ~"'11 
<a t do- 0- r dx e - m,,dist(supp/.An,'Jn,) 

Jo JA",,,-y,,. 

X f df-L(rJ):exp(atJI~"):(x)1 tJI~'(x)l:exp(xutJI~'):(x). 
Now we use Cauchy-Schwartz's inequality 

f df-L(rJ):exp(atJI ~o):(x)1 tJI~'(x)1 :exp(autJI~'):(x) 

< [ f df-L(rJ)(:exp(atJI~O):(x):exp(ao-tJl~'):(x))2] 112 

X [ f df-L(rJ)(tJI~'(x))2] 112 

(byFKG) 

< (f df-Lo(rJ)(tJI~l(x)] 112 

X [f df-Lo(rJ)(:exp(atJI~O):(xW(:ea<7<J'~:(XW] 112. 

Both 

[ f df-Lo(rJ)(:exp(atJI~o):(x))2 f/2 

and 

[f df-Lo(rJ)(tJI~'(x)f] 112 

are locally L P integrable (p> I) as can be shown by simple 
Gaussian computations. This enables us to conclude that 
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}~ f df-L(rJ)IJ~"'11 = o. 

if dist(suppJ, An' \ Yn, )--00 sufficiently fast. Q.E.D. 

APPENDIXB 

Theorem B.t: For almost every rJ with respect to df-L 

w-li~ df-L ~:,~:"'(cp ) = df-L~o(cp ), 
An,rR 

where df-L~o is the measure df-L conditioned by rJ on the given 
piecewise C 1 curve Co C H2 and An' is a subsequence as in 
Appendix A. 

Proof Let us consider the following identity: 

f ell' IfJdf-L f.0~~:: (cp ) 

11 d 
= du - ell' I f)df-L Co,aA,<7 

o du ..t,'1,A , (BI) 

where 
d,ICo,a,1,<7= [Z Co,aA,<7] -1 r-..t,'1,,1 - ..t,'1,A 

Xexp( - A i dx:ea'P:(x):exp(atJI~o):(x)) df-Lg,,uaA,O'(cp )(B2) 

and df-LgouiJA is a Gaussian measure with mean zero and co­
variance( -.d couiJA + m~)-l(x,y). Usingwell-knownformu­
las we have 

~ J ell' If)dll co.aA,<7(m ) du r-..t.'1,A T 

= ~ f f dx dy -(j- K Co(x,x) -(j-
2 Dcp (x) Dcp (y) 

X f e'Plf)df-Lf.°~~::'<7(cp). 
(B3) 

Taking the functional derivatives in the last formula we get 

~ f e'Plf)dI1co,aA,<7(m) du r'A.,'1,A T 

= - Aa2 J dx K ~~~A:exp(atJI~o):(x) 
X (:ea'P:(x);e'P If» f.0~~::,O' 

+A 2a2 f f K;~.tA:exp(atJI~o):(x):exp(atJI~o:(y) 
X (:ea'P:(x):ea'P:(y);e'PIf»f.°~~::'<7dx dy 

+ (e'PIf»Co,aA,<7 f ff(X1r(Y)KCd-.J(MdX dy A.,'1,A v (x,y) 

-A'a f J K(~~A 
X (:ea<p:(x)e'PIf»f.0~~::'O' 

X f( y):exp(atJI ~o):(x)dx dy 

- A'X f f dx dy K ;a;(,1 

:exp(atJI ~o):( y) 

X < :ea'P:( y)e'P If» f.";,~::,O'. fix). (B4) 

We are going to show that for almost every rJ with respect to 
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dlL all the terms which appear in the right-hand side of (B4) 
give vanishing contribution to the limit A = ]R2. We start 
from the first term: 

Lemma B.l: For almost every ?] with respect to dlL, 
uniformly in 0-

lim J [K (~~'1,A - K c"(x,x)] :exp(a tf/ ~o):(x) 
A/ft' 

x (:euq>:(x);eq>(f)f.°~~1·(7 = O. (BS) 

Proof Let us choose Ee R2 such that suppleE and 
EeA. Then we have 

J dlL(?]) 1 [K ~~A - K Co(x,x)] 

:exp(a tf/ ~o):(x)( :eUq>:(x);eq> (f) f.°~~1·(7 dx 

= J dlL(?]) 1 [K~'1,A -KCo(x,x)] 

:exp(a tf/ ~o):(x) (:eUq>:(x);eq>{f) f.°~~1,(7 dx 

+ J dlL(?]) 1 ,E [K~~A - KCo(x,x)] 

:exp(atf/ ~o):(x)( :eUq>:(x);eq> (f) f.";,~1·(7dx. (B6) 

By FKG correlation inequalities we have for every 
boundedE 

J dlL(?]) 1 :exp(atf/~0):(x)(:eaq>:(x);eq>{f)f.°~~1,(7dx< 00, (B7) 

from which it follows, using the exponential decay of K Cou(M 
(x,x) - K Co(x,x), that 

1~n;!, J dlL(?]) 1 [K CouaA (x,x) - K Co(x,x)] 

:exp(atf/~0):(x)(:eaq>:(x);eq>(I)f.";,~1·(7dx = O. (BS) 

On the other hand, by using the exponential decay of 
(:eaq>:(x);e9'(I)f.°~~1,(7 we have 

J dlL(?]) 1 ,)K Couc1A (x,x) - K Co(x,xj] :exp(atf/~o):(x) 

(:eaq>:(x);e9' (I) f.°~~1,(7 dx 

,e - modistlE,A ,E) 5 dlL(?]) 

X L'E [KC.uaA(x,x) -KCo(x,x)]:exp(atf/;o):(x) 

,e - modistlE,A ,E) i ,E [K CouaA (X,x) - K Co(X,x) ]dx. 

(B9) 

In the last step we have again used FKG correlation inequal­
ities. Q.E.D. 

Lemma B.2: For almost every ?] with respect to dlL, 
uniformly in 0-

lim f f dxdy[KcouaA(x,y)_KCo(x,y)] 
A/ft' A A 

:exp(a tf/ ~o):(x);exp(a tf/ ~o):( y) 

X (:eaq>:(x):eaq;>:(y);eq>(I)~~~~1,(7 = O. (BIO) 

Proof: Let E e R2 be as in Lemma RI. Then we have 
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11 "'=(_(_"'+ (-( -'" 
A A J.:: J.:: J.= JA ,= 

+1 ("'+1 1 .... A'EJE A,E A,E 
(BII) 

By FKG correlation inequalities and exponential decay of 
[K CouaA - K Co] (x,y) we have 

l~n;!,11 dx dylK CouaA (x,y) - K Co(x,y) I 

·5 dlL(?]):exp(atf/;O):(X) 

X :exp(atf/;O):( y)1 (:eaq>:(x):eaq>:( y);eq>If)f.'~~1,(71 

'1~n;!, 11 dx dy IK CoU<1A (x,y) - K C"(x,y) I 

. 5 dlL(?]):exp(atf/;O):(X) 

X :exp(atf/;O):(y)( (:eaq>:(x):eaq>:( y) ~:~~1,(7·(eq>{f) f~~1,(7 

+ ( :eaq>:(x):eaq>:( y)eq> (f) ~~~~1'i 

'1~~,11 dxdyIKc"uaA(X,y)-KC"(x,y)1 (BI2) 

. J dlL(?]):exp(atf/;"):(x) 

X :exp(atf/ ;0):( y)( (:eaq>:(x):eaq>:( y)eq;>If)o 

+ (:eaq>:(x):eaq;>:(y)o(ealf)o) 

'1~n;!, 11 dx dy IK CouaA (x,y) - K CO(x,y) I 

X J dlLo(?]):exp(atf/;O):(X) 

:exp(a tf/ ;0):( y) ( (:eaq;>:(x):eaq;>:( y)eq>{f) 0 

+ (:eaq>:(x):eaq;>:(y)o(e<P(f)o) 

= 1~~,11 dxdy 

X IK CoU<1A (x,y) - K Co(x,y)lexp [(a 2 /2)K Co(x,y)] 

X «:eaq;>:(x):eaq>:(y)eq>(f)o 

+ (:eaq>:(x):ePq>:( y)o(eq> If) 0)' 

Logarithmic singularities of the functions which appear in 
the last expression and exponential decay of K CouaA 
(x,y) - K Co(x,y) enables us to conclude that the limit A t]R2 

gives contribution zero for a sufficiently small. 
The integral SA 'ES A 'E'" is then controlled in a similar 

fashion using exponential decay of correlations. It remains 
to analyze the integrals SA 'ESE'" and SEJA 'E· ... Let 
EluA ,,(EluE) = A "E. Then we can write 

i _ (_ dx dy .. · = 1_ 1_ dx dy .. · + I _ _ 1_ dx dy .. ·. 
A ,= J.= J.::, J.= JA ,(.::,u.:) J.:: 

Now we proceed in the same way as before, using the expo­
nential decay on S E, S Edx dy ... of [K CouaA - K Co] and uni­
form exponential clustering in order to control the integral 
SA 'IE,uE) S Edx dy .. •. Q.E.D. 
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Lemma B.3: For almost every TJ with respect to d/-L, 
uniformly in (T 

lim J J [K CouJA (x,y) - K co(x,y)] f(x):exp(aV! Co):( y) 
A/H' 'I 

(B13) 
Proof As before we use positiveness of :exp(a"'~o):(x) in 

order to show that the L l(d/-L) norm of the expression under 
the limA1H, goes to zero by divisions of integrations, expo­
nential decay of K CouJA(X,y) - K Co(x,y), and the local inte­
grability property off(x):exp(a",~o):(y)(:eatp:(x)etpU)o. 
Q.E.D. 

Remark: Similar arguments for the proof of indepen­
dence of the pure states for some classical boundary condi­
tions in the pure phases of P (~ h theories have been used 
before by Frohlich and Simon. 17 
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We investigate a theory of gauge fields over multiple bundles, i.e., principal bundles constructed 
over base spaces which are principal bundles themselves. The Higgs-Kibble field is introduced 
geometrically, together with the quartic potential. Results of Forgacs and Manton are interpreted 
in this scheme. We also discuss a spherically symmetric ansatz which yields the quartic potential 
introduced by 't Hooft. 

PACS numbers: 11.10.Np, 11.30.Ly 

1. INTRODUCTION AND NOTATIONS 

Let Vbe a (pseudo)-Riemannian manifold of dimension 
n, with the metric form g v; let G be a compact and semisim­
pIe Lie group of dimension N. We denote by g G the Killing­
Cartan invariant metric form on G. Let P (V,G ) be a principal 
fiber bundle over the base space V with the structure group 
G. We denote by A a left-invariant I-form over P(V,G), with 
values in the Lie algebra d G of G; the I-form A defines a 
connection in P (V,G ). Let TpP (V,G ) denote a tangent space 
to P(V,G) at a pointpeP(V,G); by TP(V,G) 
= [upep TpP (V,G )] we denote the tanget bundle over 

P (V,G). LetXETP (V,G); thevectorfieldXiscalledhorizontal 
if A (X) = O. Any XETP (V,G) can be uniquely decomposed 
into the horizontal and vertical parts: 

X = hor X + ver X 

such that 

A (ver X) =A (X), A (hor X) = O. 

( 1) 

(2) 

Let 0 be ap-form over P (V,G ); let dbe its exterior differ­
ential. The covariant differential of 0 is defined as 

DO (X1,x2'''',xP + 1) = dO (hor X1, ... ,hor Xp + 1)' (3) 

The covariant differential of the connection I-form A is 
called curvature and denoted by F 

F=DA. (4) 

The Maurer-Cartan identity enables us to write 

F(X,Y) = DA (X,Y) = dA (X,Y) +![A (X),A (Y)]. (5) 

The bracket means the skew-symmetric product in the Lie 
algebra d G' 

The existence of the canonical projection 11': P ( V, G )--V 
and of the connection form A: TP (V,G )-+-d G enables us to 
construct a unique metric form on P (V,G): 
for any X, Y, and TP (G, V), 

gp(X,Y) =gv(d11'(X),d11'(Y)) +gG(A (X),A (Y)). (6) 

The principal fiber bundleP (V,G ) with the connection A now 
becomes a Riemannian (or pseudo-Riemannian) manifold; 
we denote it by P(V,G,A,gp). [There is another possible 
choice for defining a canonical metric on P (V,G), namely 
g;' = g v - gG' For physical reasons we do not consider this 
case, because the resulting signature can no longer imply an 
interpretation in terms of one "temporal" direction and all 
the remaining directions as "spatial" ones.] 

Let us now give some explicit expressions in local co­
ordinates. We recall that dim V = n, dim G = N; let 
i,j = 1,2, ... ,n; a,b, ... = 1,2, ... ,N; and a,/3, ... = 1,2, ... ,N + n. 
Symbolically we denote a = (j,a). Consider an open set 
U C P (V,G ) isomorphic with the direct product of an open set 
11'( U) C V and the group G: 

U-11'(U)XG. 

We can always choose a coordinate system in U such that for 
PEU, p = {pa I = I Xi,S a I, where the coordinates Xi corre­
spond to the points 1T'(p) = X E1T'( U), whereas the coordinates 
S a denote an element of G. We choose a basis La in the Lie 
algebra d G such that 

C:c being the structure constants of G. In the same local 
coordinates the Killing-Cartan metric tensor is equal to 

whereas the metric tensor gv has the componentsgij' 

(7) 

(8) 

Now we can decompose the connection I-form and the 
curvature 2-form 

A =A aLa =A 'PLadPP = (Ajdxi +A :dSb)La, (9) 

F=FaLa =F"ap(dpa/\dPP)La' (10) 

By definition F does vanish when applied to vertical vectors; 
therefore, the components F~b and F~b = - F~i vanish 
identically 

(11) 

ajAt -abA1+c:hAJA: =0, (12) 

and the only non vanishing components of the curvature 
form Fare 

(13) 

The scalar product can be defined for any two forms of the 
same degree. We denote by (Fa ,Fb)gv the scalar product de­
fined by 

(Fa,Fb)gv = fjg'<IF~kFt. (14) 

Finally, for any two elements of d G we denote by TrG(P,Q) 
the expression 

TrG(P,Q) = gabpaQb, (15) 

wherep=paLa, Q= QbLb. Therefore 

TrG(F,F)gv = gabfjg'<IF~kFt· (16) 
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We close this paragraph by expressing the Laplace-Beltrami 
operator on the bundle P(V,G,A;gp) induced by the metric 
gp: If in local coordinatesgp has the components gaP' then 
for a scalar function on P we have 

(17) 

where Va is the covariant derivative with respect to the 
Christoffel connection ofgp; for a I-form; =;a dpa we 
have 

[(dl5 + c5d)¢J ]y 

= gaP [Va Vp;y - Va Vy;p + VyVa;P] 

= gaP [Va V p;y + R ~rfJ;6]' (18) 

R ~rfJ being the Riemannian curvature tensor of the Chris­
toffel connection induced by gpo 

2. DEVELOPMENTS 

With the notations established as above we can formu­
late some useful results. 

Theorem 1: Let P(V,G,A;gp) be a principal fiber bundle 
over a Riemannian manifold V with the semisimple and 
compact structure group G, endowed with a connection A 
and the canonical metric gp defined by (6). The scalar curva­
ture R p is a sum of the following three terms: 

Rp = Rv - !TrG(F,F)gy + !fa, (19) 

where 8i = gabg"b = N is the square of the Killing-Cartan 
metric of the structure group G. R v is the scalar curvature of 
the base manifold V; the second term is identified with the 
Lagrangian of the gauge field. 

Proof By calculus. The first formulation of this result 
can be found in Ref. I, though with some errors in calcula­
tions. For correct proofs, see later papers.2

•
3 

Corollary 1.1: Consider a structure group G which is a 
direct product of several compact and semisimple Lie 
groups, G = GI XG2 X "'XGk, and construct a principal fi­
berbundlePas before:P(V,GI X G2 X ... Gk,A;gp). The scalar 
curvature of the canonical metric g p is then the sum of the 
following terms: 

(I) (I) (2) (2) 

Rp = Rv - !TrG (F,F) - 41TrG (F,F) 
I gv Z gy 

(k)(k) 
- ... - !TrG.(F,F) +!% + l~ + ... + 1~. (20) 

gv I 45(2 45(1 

(,; 
The notations are obvious; F means the projection of the 

curvature form F onto the Lie algebra .s;f G,' 

Proof Obvious, because 

.Jif G = .Jif G, E9.Jif G, E9 ••• E9 .Jif G.' (21) 

Example 1: Let V = M 4 , the Minkowskian space-time; 
consider the bundle P (M2' SU(2) X U( I)). Then 

Rp = - j$abfjf'IF?kFt _lflf'IF;kFjI + const. 

where a,b = 1,2,3; gab = l5ab , fj = diag ( - , + , + , + ). 
(22) 

Fij =a;Bj-ajB?+C'tx,B~Bj (23) 

is the field tensor of the SU(2) Yang-Mills field, whereas 

(24) 
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is the field tensor of the electromagnetic (abelian) field. 
Theorem 2: Consider the principal fiber bundle 

P(V,G,A;gp) with a connection A and the canonical metric 
gpo Denote by .d p = (dl5 + I5d )p the Laplace-Beltrami oper­
ator on P induced by the metric gpo Then 

(a) Let/be a scalar function on P (V,G,A;gp). Then 

.dp/ = fj~ ;f!~l / + gabLaLb f, (25) 

where 

(26) 

La being the basis of the generators of .Jif G and g"b La Lb is the 
Casimir operator of .Jif G' 

(b) Let; bea I-form over P(V,G,A;gp); by means of the 
connection A and metric gp it can be decomposed into hori­
zontal and vertical parts, which in local coordinates will be 
denoted by (JJj ,; a). If the form; satisfies the covariance 
conditions 

(27) 

La JJj = 0, (28) 

then the equation .d p; = 0 is equivalent to the following 
system: 

fj~;~j;C -~jf'IgbeFrdajWI-aIJJj)=O, (29) 

fjaAwk +fj~j(F~k;b) = 0, (30) 

where 

~j;c =aj;c -AJC'!x;d· 

(c) The equation 

.dpA = gabg"bA = NA 

(N=dimG) 

is equivalent to the Yang-Mills field equations 

fj~;Fjk fj(a;Fjk + C'tx,A rFjk) = O. 

(31) 

(32) 

(33) 

Proof By calculus, which is quite cumbersome. The 
best way to simplify it is to use the an-holonomic system of 
coordinates on P (V, G; A; gp) in which gp is diagonal, and 
the only non vanishing components of the Christoffel con­
nection are 

r a Ica r; r; l&im 0 Fb be = 2 be. aj = ja =:!/5 gab jm' 

rij = -!Fij. (34) 

The details may be found in other papers.3-S The case when 
the principal bundle is itself a Lie group and V = P /G is a 
homogeneous space is discussed in Ref. 6. 

Corollary 2.1: If the structure group is a product of sev­
eral compact semisimple Lie groups, G = GI X G2 X ... X Gk, 
then for a function/on P(V,G I X "'XGk,A; gp) 

(35) 

where C; is the Casimir operator of the group G;. 
Proof Obvious, as .Jif G = .Jif G, E9.Jif G, E9 ••• E9 .Jif G.' 
We see that with this formalism we can obtain the non­

linear equations by applying formally linear operations as 
.dp • Now let us proceed to further generalization. 
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3. MULTIPLE FIBER BUNDLES 

The above construction can be repeated ad infinitum if 
we replace the original Riemannian manifold Vby a princi­
pal fiber bundle endowed with a connection and the corre­
sponding canonical metricgp • In fact, when we consider vec­
tor fields or forms over P (V,G ), we are already working in the 
associate fiber bundle of frames, or a tangent bundle, over 
P (V,G). What we shall investigate now is the case when the 
bundle over P (V,G ) is also a principal fiber bundle. 

Symbolically, we write 

P2(P!( V,GI),G2), (36) 

i.e., a principal fiber bundle P2 with the structure group G2 

over a principal fiber bundle PI with the structure group GI 

over a Riemannian space V. We call this manifold a double 
/principal) fiber bundle over V with first structure group G I 
and second structure group G2• [An interesting question 
arises immediately: under which conditions the bundle 
P2(Pd V,G I ),G2) has the structure of a principal fiber bundle 
over Vwith some structural group H? (dim H = dim G I 

+ dim G2 ). We know the answer only for the trivial case 
(V X Gd X G2 = V X (GI X G2 ); the same is probably true for 
any P(V,Gd with V simply connected.] 

Theorem 1 can be applied to the double fiber bundle 
(36), giving the following. 

Corollary 1.2: Consider a double principal fiber bundle 
P2(Pd V,GI;A I,gp, ), G2;A2;GP,l with the two connections A I 
and A 2, and two canonical metrics gp, on PI and gp, on P2• 

The scalar curvature of the metric gp, decomposes as fol­
lows: 

(2) (2) 

= Rp -lTrG (F ,P) + ~ 
I ~ Sr, J 

(I) (I) (2) (2) 

=Rv-lTrG,(F,F)gy -lTrG,(F,P)g,.. +~, +~" 
(37) 

This formula is easily generalized for a multiple fiber bundle 
Pm(Pm- 1 (· •• (PI(V,Gt))···),Gm)· 

(I) 

F is the curvature 2-form of the connection A 1 in the 
(2) 

fiber bundle PI(V,GI), whereas F is the curvature 2-form of 

the connection A2 in the fiber bundle P2(Pt(V,Gt\,G2 ). The 
horizontal components of the connection A2 will be identi­
fied with new physical fields interacting with the gauge field 
A I' As an example, we shall see how the Higgs-Kibble scalar 
multiplet may be introduced and interpreted geometrically. 

Example 2: Consider the simplest case when G1 = U( 1), 
and G2 is any compact and semisimple Lie group of dimen­
sion N. Then dim(pI(M4,U(1)) = 5, 
dimP2(PI(M4,U(1)),G21 = N + 5. 

The Lie algebra ofU(l) is isomorphic with R I; there is 
no canonical metric on U(l), but we can replace it by any 
constant. Let us introduce the local coordinates in an open 
set of P!(M4 ,U(1)) such that for pePI(M4,U(1)) 

p = {paJ = {xi ,x.5J, i = 0,1,2,3, a = 1,2,3,4,5. 

In these coordinates the connection form in P 1(M4,U(1)) has 
the components A ~,A ~;itsverticalpartA ~ isjustaconstant 
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(identified with the elementary charge e). The nonvanishing 
components of the curvature tensor are 

F~=aiAJ-ajA~ 

and 

(38) 

o'k "I 5 5 (39) R p, = - 11 g F ijF kl + const. 

This is the well-known Kaluza-Klein theory.7.s Let us de­
note the connection form in P2(P1(M4,U(1)),G2 ) by B; in a 
local coordinate system it has the following components: 

B'/J = {B~,Bj,B; J, (3 = {b,},5J. (40) 

The components B'/J are functions of Xi, x5, and sa. 
The vanishing of the vertical components of F"ap means 

that 

aaB~ -abB~ +C;hB!BZ =0, 

aaB; - ajB~ + C;hB!B; = 0, 

aaB~ -a.5B~ +C;hB:B~ =0. (41) 

Local triviality of the bundle enables us to choose a coordi­
nate system in which 

ajB~ = 0, asB~ = O. (42) 

We assume that these relations are satisfied in what follows. 
The nonvanishing (horizontal) components of the cur­

vature are 

(43) 

and 

F~s = - F~j = aiB~ - asB~ + C'fxB~Bs· 
We assume that nothing depends explicitly on the cyclic 
variable xS, i.e., as B ~ = O. Therefore, denoting B; by tP a we 
can rewrite 

F~5 = aitP a + C'fxB rr = !» itP a, (44) 

the "gauge covariant derivative" of the Higgs-Kibble scalar 
mUltiplet. 

Suppose now that the first bundle P1(M4,U(1)) is flat, 
i.e., that the connection form A t in PI (M4 , U( 1)) was identi­
cally null. Then 

(2) (2) 

R - _1& M.1J<IF~ F~ _1& ~j!»,.J.a~,.J.b 
p, - 46ab6 S lk JI 26ab05 I'f' J'f' 

+ const (45) 

(we putgSs = 1). This is the Lagrangian of the nonabelian 
gauge field interacting invariantly with the massless Higgs­
Kibble scalar multiplet. 

If the connection A I is not flat, our fields will interact 
with the abelian (electromagnetic) gauge field. The compo­
nents of AI being denoted by A j • we have 

therefore (45) is modified into 
II) (I) (2) (2) 

t1>iN.)clF F 1~ 1>ij okl Fa Fb R P, = - 46 S ik jl - 46ab5 g ik jl 

- !kabg'j ~ itP a!» jtP b - !kabg'j 
XAiAjgkl~ ktP a~ltPb + const. 
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The nonlinear interaction modifies the characteristics; e.g., 
the abelian field does not propagate along the light cones 
when t/J a#o: 

04j = liabf<l!iJ kt/J a!iJ It/J b)Aj. (48) 

Let us consider a case of double fiber bundle with flat con­
nection in the first bundle: 

(49) 

Let Ita) be the local coordinates in G1, a,b = 1,2, ... ,N1, the 
generators of sf G, being La, 

[La,Lb] = C~bLc' 
The horizontal components ofthe connection in P2 will be 
denoted by B 1,B:; the vertical components being B ~. 

The non vanishing components of the curvature tensor 
are now 

F'J = a;Bl- ajB1 + C~cB~BjC, 
F1 = - Ft; = a;Bt - abB1 + C~cB~Bf, 
F~ = abB~ - adBt + C~cB:B~, (50) 

and the Lagrangian becomes 

R pz = - !KABfjf'IF1kF; - !tABfjf"'F1F~ 

- !KABgtxgadFtaF:d + const. (51) 

We assume that abB 1 = 0 (the local triviality of the bundle 
plus the invariance properties of B with respect to the action 
of G2 on P2). On the other hand, different properties of B may 
be assumed with respect to the action ofG1 onP1(M4,Gtl. We 
shall suppose the simplest choice: 
either 

abB~ = 0, 

or 

ab B1 = C{dA ~BJ, 

with A ~ satisfying 

a aA 1 - a bA ~ + C J"A ~A : = 0 

(52) 

(53) 

so that the operators Si,aa = Lb span sf G,; Si,A ~ = 8~. 

4. A MODEL WITH SPHERICAL SYMMETRY 

Consider the case when G1 = G2 = 0(3), Le., 

P2(PI(M4,0(3)),0(3);A2,gpz)' (54) 

We shall suppose thatP1(M4,0(3)) = M4XO(3) and is flat 
(Le., A 1=0). A similar case has been considered by Forgacs 
and Manton,9 with a particular interpretation: the group G2 

was the gauge group generating the Yang-Mills field, and 
the group G1 was the symmetry group of the subset ofsolu­
tions under consideration. 

Let i,j = 0,1,2,3; a,b = 1,2,3; A,B = 1,2,3. The struc­
ture constants of both Lie groups are the same, but the scale 
factor (coupling constant) may be different; therefore, let us 
put 

(55) 

where €ABD denotes the Levi-Civitit antisymmetric tensor. 
We call the components B 1 the Yang-Mills potential, 

and the components B t = t/J: the Higgs-Kibble tensor po-
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tential. We want to see what the static and spherically sym­
metric solutions are like; in order to do so, let us consider the 
following ansatz (see, e.g., Refs. 10 and 11): 

k 

A BA €Ajk X (I K()) k 123 B 0 =0, j = ---;;z- - r, j, = , , 

~xa 8: 
B: = -H(r) + - G (r). 

er er 
(56) 

We suppose that 

aaBt = A€cdbA :B1 (57) 

and A d are left-invariant forms on G1; we may as well write a 

Ftc = 2AEbcdB1 + e€ABDB:B~. (58) 

The two cases of (52) correspond to putting A equal toO or 1. 
The Lagrangian density (up to a constant) 

.2[ A ij A ib FA F bd ] -.!f=r !FijFA +!£;bFA +! bd A (59) 

is equal to the following expression: 

[(
dK)2 (1_K2)2 (rdH /dr-H)2 

-.!f= dr + 2r + 2r 

3(rdG/dr- G)2 (rdH /dr-H)(rdG/dr- G) 
+ 2r + r 

H2(1 +K2) 2G 2(1-K)2 2GH(I-Kf 
+ r + r + r 

3G 4 G 2H2 2G 3H 6A (G 2H + G 3
) 

+ 2r +-r-+-r-+ r 

+ A 2[H2 + 2GH + 6G 2]]. (60) 

This expression is obviously positive definite (A > 0). The La­
grangian is considerably simplified if G = - H; then (60) 
reduces to 

_.!f=[(dK)2 (1_K)2 (rdH/dr-Hf 
dr + 2r + r 

+ H2(1 + K2) + H4 + SA 2H 2]. (61) 
r 2r 

The condition oflinear dependence between G and H may be 
interpreted as the fact that only the trace of B : interacts with 
the gauge field B 1, the traceless part of B: being irrelevant. 

There is a striking similarity between (61) and the La­
grangian proposed by 't Hooft l2

: 

A ij ar ,J, A ar i,J, V ,J, ) L = -!F ijF A - ~.::z; iV' .::z; V' A - (V" (62) 

whereBlwas the same as in (56), andt/J A = (~/er)H(r); the 
potential V(tfJ) was introduced ad hoc and had the form 

V(t/J)=~2 t/JAtfJA - !2 (t/JAt/JAf. (63) 

In that case 

_.!f=[(dK)2 (I_K2)2 (rdH/dr-H)2 
dr + 2r + 2r 

+ H2K2 + ...!!.-.H4 _J.L
2 

H 2). (64) r 4r 2 
Our geometric construction of a gauge field over a multiple 
fiber bundle enabled us to introduce in a natural way the 
fourth-powertermsinH(r).InordertointerpretourLagran­
gian in the same spirit as 't Hooft's, we have to make A pure 
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imaginary, ...t 2 < 0, and identify 2p,2/{3 with lOA. 2. Introduc­
ing an imaginary ...t corresponds to the change in the signa­
ture in the Killing-Cartan metric of G I' Another difference 
is the presence of the term H 2/rl in our Lagrangian. If we 
want the action integral (energy) to be finite, H (r) has to be­
haveasymptoticallyasH(r)::::Cr + h (r),h (r)-owhenr-oo, 
with C 2 = 2p,2/{3 = lOA. 2. Then the term H2/rl at infinity 
behaves like a constant C. In order to remove the linear di­
vergence IC 2 dr we are obliged to introduce a constant sur­
face contribution, the physical interpretation of such a 
counter-term not being clear. The problem does not arise, of 
course, if the base manifold is compact. 

It seems worthwhile to investigate more deeply the 
properties of the gauge fields over the multiple fiber bundles, 
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including the topological properties of the solutions. 
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We generalize the usual gauge theories, as well as the supergauge theories, in the following way. 
We construct a graded group associated with a compact semisimple Lie group G. This graded 
group contains G and the linear space of anticommuting G-spinors on which G acts through a 
highly reducible representation. The graded group generalizes the notion of the super-Poincare 
group. Next we construct a fiber bundle the basis of which is the superspace, the structural group 
being the graded group. Then we introduce the connection, curvature, and calculate the 
corresponding Yang-Mills Lagrangian. The nontrivial content of such a theory is put forward if 
we impose the Grassmann parity condition on our connection and curvature; we supposed here 
that both Grassmann parities (i.e., the one in the superspace and that in the graded group) add up 
to define the Grassmann parity of the corresponding field components. Together with the 
Hermiticity condition this supergauge leaves almost no room for arbitrariness in the expansion of 
the superconnection; it contains only the usual gauge field, the adjoint Higgs multiplet, and the 
spinor multiplet belonging to the spinorial representation of G. The conformal symmetry of the 
Lagrangian is broken, and the mass terms appear for the Higgs scalar and the spinor multiplet. 
The Yukawa and current--current interactions are also obtained, together with the Fermi four­
point interaction term. The theory yields the ratio of the Higgs scalar mass versus the bare spinor 
mass equal to 27/40; the strengths of other couplings depend on the group via the decomposition 
of the spinor multiplet into the irreducible representations. 

PACS numbers: 11.1O.Np, 11.30.Pb, 02.20. + b 

1. INTRODUCTION 

Soon after the supersymmetric theories had been intro­
duced by Wess, Zumino, Akulov, and others, 1-6 many au­
thors proposed different extensions in order to include natu­
rally the gauge field theories. Fiber bundles and connections 
have been constructed over the superspace7

•
8

; the supergra­
vity can also be viewed as a gauge theory with the super­
Poincare group taken as the structural group of a bundle 
over a Riemannian manifold V4•

9
•
IO Usually a complete the­

ory contained so many kinds of fields, all interacting be­
tween each other, that it was almost impossible to get any 
useful information without drastically reducing their num­
ber, namely by imposing more or less natural supergauge 
conditions which eliminated at least some of the ghost fields 
and simplified the couplings between the remaining fields. 

Here we investigate a general graded gauge theory, in 
which the gauge field is considered as a connection in a prin­
cipal fiber bundle over a superspace with structure group 
being a well-defined Z2-graded extension of a compact, semi­
simple Lie group. The graded Lie groups (or supergroups) 
have been considered already by many authors (cf. Refs. 11 
and 12). However, with the exception of the supergravity, no 
serious attempt has been made yet in order to calculate an 
effective Lagrangian of a gauge-field theory over the super­
space, with structural group replaced by a Z2-graded Lie 
group. We have carried out such a calculus as far as we 
could, imposing some supergauge conditions in order to 
keep a well-defined Grassmann parity of the fields as well as 
their Hermiticity. This had led to the breaking of the confor­
mal symmetry and mass generation for the fermions and the 

Higgs bosons; another interesting feature appearing here is 
the purely geometrical deduction of highly nonlinear 
Yukawa and current--current couplings. 

2. SUPERGROUP ASSOCIATED WITH A COMPACT, 
SEMISIMPLE LIE GROUP 

Let G be a compact, semisimple Lie group of dimension 
N. Its structure constants being denoted by 
C~b,a,b = 1,2, ... ,N, there is a nondegenerate and positive 
definite metric on G, the Killing-Cartan form 
gab = C:c C ~b; this metric defines a length of any vector 
from the Lie algebra .# G of the group G. The metric space 
(.# G,gab) has its isometry group, which is SO(N), the real 
orthogonal group in N dimensions. The right action of G on 
itself induces the representation of G on the linear space .# G' 

called the adjoint representation; this action preserves the 
Killing-Cartan metric too. The covering group of SO(N) is 
called Spin(N). 13 The lowest-dimensional faithful unitary re­
presentation ofSpin(N) is often called the spin (or "double­
valued") representation ofSO(N). It also provides a (reduc­
ible) representation of G. Here is how this representation is 
constructed. 

Consider N generators of the Clifford algebra associat­
ed with the Killing-Cartan metric on G, satisfying 

Ya Yb + Yb Ya = 2gab ld, (1) 

where Id means the identity matrix in the representation 
space. It is well known that the lowest-dimensional real ma­
trix realization of Ya 's is in K X K matrices, with 
K = 2[(N + 1)/21 ([1] meaning the entire part ofl), whereas the 
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lowest-dimensional complex Hermitian realization is in J X J 
matrices, J = 2[N/2]. 

The N(N - 1)12 matrices (Tab = - (Tba' defined by 

(2) 

generate the J-dimensional Hermitian (or K-dimensional 
real) representation ofthe Lie algebra .Q{ SOIN) = .Q{ SpinIN)' 

These matrices satisfy the commutation relations of .Q{ SOIN) : 

We can raise and lower the indicesa,b by means of the metric 
tensor gab and its inverse ~b; we define Cabe = gad C ~e; for 
any compact and semisimple group G, Cabe are totally anti­
symmetric. It is easy to check that the matrices 

Ta = ~ Cabe ife (4) 

satisfy the commutation relations of .Q{ G: 

(5) 

They provide a reducible K-dimensional representation of 
.Q{ G; by exponentiating them one obtains the corresponding 
representation of G. Let the indices A,B, ... run from 1 to K; 
then, in matrix notation 

[Tal = TaAB' 

The element of the linear K-dimensional space will be called 
a G-spinor (group-spinor) and denoted by u = U A ~,~ be­
ing a local basis. From now on, by analogy with the super­
symmetry formalism, we suppose that ~'s are anticommut­
ing quantities: 

(6) 

In the cases which we shall investigate for physical rea­
sons, i.e., when G = SU(2) or G = SU(2) X U( 1), in the spinor 
space there exists a skew-symmetric tensor invariant under 
the action of isometries and defining a skew-symmetric inner 
product of two spinors. There always exists a choice of co­
ordinates in which this antisymmetric form has the compo­
nents 

E'12 = - E'21 = 1, E'34 = - E'43 = 1, etc., (7) 

all other components vanishing. (The dimension is always 
even.) E'AB being nonsingular, there exists an inverse matrix 
~Dsuch that 

E'AB ~D = t5~. (8) 

We can now raise and lower the spinorial indices by means of 
the tensors E'AB and ~B.14 

Now we can introduce, along withXA = E'AB XB, the 
tensor 

(9) 

By construction, 

T2(Ta Tb) = Kgab · (10) 

The matrices T a generalize in an obvious way the Pauli 
matrices in the case of G = SU(2). 

Because ofthe anticommutation relations (6) any func­
tion of ~ is a finite polynomial of order < K. In order to 
define the derivation of functions depending on ~ it is suffi-
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cient to put 

aA XB =8! 
together with the (anti)-Leibniz rule 

aA(xB XC) = 8! XC - t5~ XB. 

Then 

aA aB + aB aA = 0. 

(11) 

(12) 

(13) 

The group G acts on itself on the right: Any heG induces a 
mapping Rh :G--G given by Rh g = gh,g,heG. This action 
generates the left-invariant of .Q{ G' Let us denote these fields 
by Sa,a = 1,2, ... ,N; in a local basis 

Sa =S~ abo 

The Lie brackets of Sa ,Sb give 

[Sa,Sb 1 = C~b Sd 

or, more explicitly, 

[Sa,Sb 1 = £s. Sb = [S! ag sg - Sf agS~] ad 

(14) 

(15a) 

= C!b S: ad' (15b) 

Consider an infinitesimal transformation given by a linear 
superposition of the N generators: 

t5g = 8~ Sa = t5~ S~ abo (16) 

There is a one-to-one correspondence between this generator 
and the following transformation in the space of spinors: 

~-t5~Ta A B XB. (17) 

The finite transformations generated by any geG are ob­
tained by exponentiation: If g, belongs to a I-parameter sub­
group ofG such that go = e, dgldtl,=o = ~ La' then 
formally 

D(g,) = exp[t~ Ta]. (18) 

Let us denote the linear space of spinors by Ix J. With 
the action of group G defined on Ix J via the representation 
(18), the direct product G X Ix J acquires the structure of a 
semidirect product of G with the abelian group Ix J [let us 
remember that the linear space Ix J is isomorphic with the 
group of translations in Ix J]. We denote this semidirect 
product by GO Ix J. The composition rule in GO Ix J is given 
by the following formula: If ( g l'X.) and ( g2,X 2) belong to 
G 0 I x I, then their product is 

(g.,x.H g2,X2) = (g.g2'X. + D (g.)X2)· (19) 

GO Ix I defined as above will be called the supergroup associ­
ated with a compact and semisimple Lie group G. 

3. DIFFERENTIAL OPERATORS OVER .Q{ GO (xl AND 
SUPERALGEBRA 

Let M4 denote the Minkowskian space-time with the 
metric gij = diag( - + + +), ij = 0,1,2,3. From now on 
we use the notation introduced by Wess and Zumino. 2

•
3 The 

Pauli matrices are denoted by dap,a = 1,2;.8 = i,i; the spin 
representation of the Lorentz group acts in the linear space 
of spinors I e J, spanned by e a, e P, satisfying 

e a e {3 + e {3 e a = 0, e a e p + e Pea = 0, 

(20) 
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The direct product M4 X I () j is called the supers pace. 
The spinors I () j transform under the isometries of M 4 via the 
spinorial representation, which leaves invariant the skew­
symmetric product defined by the antisymmetric tensors 

E ap ,E iz.P : 

EI2 = - EZI = 1, Eii = - Eii = 1. (21) 

The indices aft are raised and lowered by means of Eap,EizP 
and their inverse matrices ~,~p. 
The derivations of the functions depending on I () j are de­
fined by 

aiz ifP =~, aiz ifp = EizP' (22) 

aa (()P()a)=~()r_o~ ()p, etc. 

Introducing the differential operators acting on functions on 
M4 X I () j (considered as I () j-Grassmann algebra valued 
functions on M 4 ) as follows: 

!iJ a = aa + clap ifPaj , 

PJ p = ap + cI ail ()a aj' 

which satisfy the anticommutation relations 

{!iJ a,!iJ p} + = 0, {PJ iz,PJ p} + = 0, 

{!iJ a'PJ p} + = 2c1ap aj' 

(23) 

(24) 

together with the Poincare algebra generators defined as 

a 
Pk = axk ' 

T kl = Xk ~ _ Xl ~ + o"la. oP a + 0"1 p ()a a· 
:J :J p a a P' 
cJXI cJXk 

(25) 

where 
0"1 = A(1"" 1-1 1""), (26) 

and the Dirac matrices 1"" have the components given by 

(1"")ap = 0, (1"")ap = - o"ap, 

(1"")izp = o"piz, (1"")izp = 0. 
(27) 

We obtain the full graded Poincare algebra (often called su­
peralgebra) 

[Pk,Pm ) =0, 

[TkIP ]=Ok pl-OI p k 
, m m m' 

[Tkl,Tmn] =gkm Tin + gin Tkm _glm Tkn _gkn Tim, 

[Tmn,!iJ a] = a"'napPJ p, 

[Tmn,PJ p] = a"'nap a' 

[Pk'a) = [Pk,PJ p ] =0, 

(28) 

{!iJ a,!iJ p} + = {PJ a'PJ p} += 0, {!iJ a'PJ p} + = 2c1apPj . 

By analogy, we shall construct the graded algebra of differ­
ential operators "tangent" to the supergroup GO Ix j. 

In local coordinates the generators of .Jtf G were repre­
sented by La = S: ab, with [La.Lb] = C~b Ld. Let us de­
note by A ~ the inverse matrix of S:; then, as a direct conse­
quence of(16), 

(29) 
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(the Maurer-Cartan identity). A general differential opera­
tor of first order defined over G 0 Ix j has the following form: 

!iJa = U: ab + U: aA, 

!iJ B = ut ab + U~ aA· 
(30) 

We want our operators to have the well-defined Grassmann 
parity, i.e., !iJ a has to be even (only even powers of~ or aA 
)'B has to be odd. Therefore, U~,U~ have to be commuting 
quantities, whereas ut and U: are anticommuting quanti­
ties. Therefore, we can always choose a coordinate system in 
which 

!iJ a = La + Ua A Bra A' 

!iJ A = a A + U b AD ~ L b' (31) 

where Ua AB,Ub
AD are commuting quantities (depending on 

geG). If we now put 

UaAB=TaAB' (32) 

then 
[!iJa,!iJ b ) = C~b!iJd (33) 

because Ta ABare representation of .Jtf G' too. Also 

!iJ A !iJ B +!iJ B !iJ A = (U~B + UtA )Lb = C~B Lb' (34) 

To close our algebra, we have to calculate 

!iJ a !iJ B - !iJ B !iJ a' (35) 

We postulate 

!iJa!iJB -!iJB!iJa = -TaDB !iJD. (36) 

In other words, we have to define a set of generalized struc­
ture constants which would provide us with the adjoint re­
presentation of the graded algebra: .Jtf Gotxi . 

The only non vanishing structure constants are 

C:c = - C~b' 

Ca
D

B = -C~a = -TaDB' 

(37) 

(38) 

C ~e = C ';;B = (U ~e + U ';;B ) = ~b E BD T b Dc· (39) 

If we introduce generalized indices t/J,t/! denoting both a,B, 
and if the Grassmann parity 1T(t/J) is defined as 1T(a) = 0, 
1T(B) = I, then the generalized Jacobi identity (the adjoint 
representation of .Jtf GO(xi) reads 

C '" C'" ( 1)1Tjx)1l'jI1) C'" C'" - C'" C'" x'" 11,j - - 11", x,j - xl1 ",,j • (40) 

Explicitly, this will give only one new identity 

C~b CtD - C~G Ca GD = Ca GB CG
d
D, (41) 

which defines implicitly the spinor metric EBD when com­
bined with the definition 

C~e = 2~b EBD Tb DC' (42) 

~f(EDE Tf E
G Ta GB + EBE Tf E G Ta G D) = C~b ghf EBE Tf E

D. 

(43) 

We leave aside the problem of the uniqueness of the 
spinor "metric" EBE ; we know how to construct it in the 
simplest case when G = SU(2) orSU(2)XU(I). We close this 
paragraph with a table which gives the correspondence be­
tween the notions of supergroup and its graded Lie algebra 
associated with a compact and semisimple Lie group G, and 
the usual notions of the Poincare superalgebra and the su-
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TABLE I. Correspondence between the superspace and the graded Poin­
care algebra and the graded group G. 

M •• Minkowskian space time G. a semisimple compact Lie group 

gij Minkowskian metric gab = C:,C~b' the Cartan-Killing 
metric 

ri Dirac matrices r a generators of the Clifford algebra 
induced by gab 

oa.jji3 Anticommuting Dirac 
spinors 

X". anticommuting G-spinors 

&,0 Poincare group acting on the G acting on itself 
Minkowskian space-time 

Pk • Jk", generators of the Poincare La = s:ab generators of the left-
algebra invariant vector fields on G 

Uk", =A(rkr", -r",rdgenerators Ta = !Cab,u"' generators of the 
of the spinorial representation spinorial representation of .9/ G 

of &,0 

P k. J k",. !iJ a' fZ; Ii generators of !iJ a' !iJ B' generators of the graded 
the graded Poincare algebra algebra .9/ G 0 I t I 

&'°e &" 

M 4 X I 0 I. the supers pace Graded group (or supergroup) 
GOlxl 

f aP • fail. invariant "metric" in the 
space of Dirac spinors. 

fAB. invariant "metric" in the space 
of G-spinors 

perspace M4 X I () J. 
The essential difference between the Minkowskian su­

perspace and the graded group is the fact that our Lie group 
G has the double role of the symmetry group of the space and 
the space on which it acts itself, whereas the Minkowskian 
space has no group structure, being only the space on which 
the isometry (Poincare) group actsY 

4. GRADED FIBER BUNDLES, GRADED 
SUPERCONNECTIONS 

The classical theory of nonabelian gauge fields is for­
mulated as the theory of connections in a principal fiber bun­
dle P (M4 ,G). Consider an open set UCP (M4 ,G) isomorphic 
with a direct product of 1T( U) C M4 and G; we can introduce 
local coordinates in U such that PEU has the components 
(x\S-a) with (Xk)E1T(U), (Sa)EG. 

A connection inP (M4,G ) is defined by a left-invariant 1-
form A of type ad with values in the Lie algebra .Ji/ G; in our 
coordinate system we can decompose A as follows: 

A =A a La = (Ajdxi +A ~ dS-b)La' (44) 

The covariant exterior differential of A is a 2-form of type ad 
called the curvature: 

F=DA =dA + !lA, A l."'G' (45) 

F is horizontal, which in our coordinates means that 

a a A ~ - a dA ~ + c:r A ~ A ~ = 0, 

aj A ~ - adA J + c:r A J A ~ = 0 (46) 
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(a,h = 1,2, ... ,N; ij,k = 0,1,2,3). (In a local trivialization we 
can always put aj A ~=O.) 

The only nonvanishing (horizontal) components of F 
are 

Fij = aj A j - aj A ~ + C"oc A ~ A j (47) 

and are identified with the Yang-Mills field tensor. 
The Lagrangian of the theory is given by 

5t' = - !gab gj gkl F~k Ft, (48) 

and the variational principle D f 5t' d 4 X = 0 yields the equa­
tion 

gj (aj Fjk + C~c A ~ FJd = O. (49) 

Introducing the superspace and the supergroup defined in 
Sec. 2 leads to the following three natural generalizations of 
this scheme: 

P(M4X I () J,GDlx J) -.P(M4,GDlx J) 

t t 
P(M4 XI()J,G) -. P(M4 ,G) 

t t 
M4 X I() J -. M 4 • 

We may call the cases represented here an ordinary 
principal bundle over space-time. P (M4,G ); ordinary princi­
pal bundle over the superspace, P (M4 X I () J,G ); a graded fi­
ber bundle over space-time, P (M4,G 0 Ix J); and a graded fi­
ber bundle over the superspace, P (M4 X I () J,G 0 Ix J). 

Our final goal is the theory of connections (gauge fields) 
inP(M4 X I() J,GDlx J);butfirstweshallhaveaglanceatthe 
connections in P (M4 X I () J,G ), because already here we en­
counter the main characteristics of such a generalization. 16 

In P (M4 X I () J,G ), we decompose all geometrical ob­
jects in the local frame in which the basis directions are 

ej=aj , eu=!iJu' ep =1iJp• ed=Ld. (50) 

The connection form A is naturally decomposed. as be­
fore, into the vertical and horizontal components: 

vertical part A ~, (51) 
horizontal part A ~ = IA 1,A ~,A ~ J, 

where we use the capital latin indices K,L,M to denote the 
indices (j,a,/3). The generalized curvature form has the fol­
lowing nonvanishing (horizontal) components: 

FaKL =!iJ KA ~ - ( - 1)1I1K)1I1L )!iJ LA ~ + C~A ~A f. 
(52) 

where !iJ K mean aj' !iJ a' 1iJ iJ a?d 1T(K) is the Grassmann 
parity of K, 1T(j) = 0, 1T(a) = 1T'(f3 ) = 1. 

The definition (52) has to be implemented by the condi­
tion on the Grassmann parity of A ~, i.e., 1T(A ~) = 1T(K ). in 
order to preserve the correlation between the spin and statis­
tics and eliminate the so-called ghost fields. In that case, 

Fjk = -F%j' 

F~j = - Fja, FjiJ = - F~j (53) 

F~p = Fpa, F~p = FPa. F~p = FPa. 

The Lagrangian of the theory now becomes 

5t' = -! gabgKLgMNF~MFtN' (54) 
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where gKL stays for the matrix: 

o 
c"P 

o 
(55) 

Finally,.2"hastobeintegratedoverP{M4 X {OJ,G);the 
integration with respect to the Haar measure dG will yield 
only a constant because of the invariance properties of an ad­
type form; we have to integrate then over M4 X { 0 J. The 
integration with respect to the anticommuting variables has 
been introduced by Berezin 17 and is defined by 

JdO
a = ° f dOP = ° fo dO P = d!. fiJ. diJP = tI!. , 'a a' a a~ 

(56) 

This definition enables us to calculate the integral of any 
polynomial in 0 'so By construction, our Lagrangian is an 
even polynomial; therefore, symbolically, 

.2" = .2"0+ .2" apO ao P + .2" aiJO aiJP + .2" apO aiJP 
a p-'-I; +.2" apyl;O 0 oyo . (57) 

After integration over the "volume element" of { 0 J, i.e., 
with respect to dO IdO 2diJ idiJi, only the last term will leave 
a nonvanishng contribution. 

The components A ~ are polynomials in the variables 
o a,o P with coefficients depending on Xk; the dependence on 
the group variables is completely determined by the equa­
tions generalizing (46). We can develop 

A j(x,O) = Bj(x) + Bja(x)oa + Bjp(x)8 P + B'frzpoaoP 

+ ... + Bja/JY60aOP8Y86, (58a) 

A : (x,O ) = ~(x) + tP d(x)Oa + V'JadpyOPiJY + .. ·,etc. 
(58b) 

In order to eliminate the wrong relations between spin and 
statistics we impose the condition on the Grassmann parity 
of components 18: 

1T(A ~ ) = 1T(K). (59) 

This automatically excludes a lot of terms, e.g., in A j(x,O ) 
we can have the first term B j(x) but not the next one, B ia 0 a, 

which is odd; similarly, inA ~(x,O) the term tP a(x)Oa has the 
required parity, whereas the spinor multiplet rfI:. (x) has not, 
etc. 

Moreover, some ofthe terms will not contribute to the 
Lagrangian because their order in 0 is already too high [e.g., 
the last term in (58a)]. 

Any particular choice of the development of A ~ which 
does not contain all possible powers of 0 's will break the 
supersymmetry invariance; however, such a "supergauge" 
fixing conserves both the classical gauge and the Lorentz 
invariance. Some choices break the conformal invariance 
and may introduce a mass of the gauge field, or at least of 
some of its components. Let us illustrate this by an example. 
The simplest connection A ~ that is Hermitian and obeys the 
Grassmann parity rule (59) is 

A J=O, A: = tP b(x)Oa' Ai = tP b(x)8p . (60) 

Then the only non vanishing components of the curvature 
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tensor are 

F a. _-i.n6a""an. Fq. _-i.nYa""an, (61) 
a/J - Va.5 U j'l' Up' a/J -lTyaU j'l' Up, 

and the Lagrangian is equal to 

.2" = - Y!abgikajtP aaktP bO 10 2iJiiJi 

+ lower power terms in 0 'So (62) 

If we choose A j = B j(x), then the gauge invariance will im­
pose the modification inA~, A h' namely, 

Aj=Bj(x), 

A ~ = tP aOa + dapiJPB j, (63) 

A; =tPaiJp +dapOaBj, 

and our Lagrangian is equal to 

.2" = [ - AGijGtlgabgikgil - !V;rVjtP bgabgij]O 10 2iJiiJi 

+ lower order terms in 0, (64) 

where 

(65) 

VjtP a = JjtP a + C'f",BNc. 

Of course, the ansatz (63) is not the most general one satisfy­
ing the conditions of Hermiticity and of Grassmann parity; 
we shall discuss later more general forms of connections. We 
proceed now to the definition of a connection form in 
P (M4 X { 0 j, GO [X J ), its curvature form, and the 
Lagrangian. 

Let us denote by greek letters tP, X, tit the "vertical" 
indices, i.e., (a,b,c,A,B ); the Grassmann parity is rr(tP ) = 0 if 
tP = a,b and 1T(tP ) = 1 if tP = A,B. By capital latin letters we 
denote the "horizontal" indices a, p, andj,k; 1T(L ) = ° if 
L = j,k and 17'(L ) = 1 if L = a or p. The connection 1-form 
has the components A ~ and At; more explicitly, 

A ~ = {A:,A~,A~,A n (66) 

and 

At = {A j,A~,A;,A:,A!,A 3}. (67) 

The generalized left-invariance property of this I-form leads 
to the vanishing of the vertical components of the curvature 
2-form, which is defined as 

F~n = Pfl ",A ~ - (- l)'II1""'II1n
)[1 +'II1q1ll fP nA ~ 

(68) 

The nonvanishing structure constants C ~'" are given by (43). 
The vertical components of Ft", are the ones in which 

one of the lower indices X,t/J is vertical, i.e., takes on one of 
the values a, A, or B. The fact that Fis horizontal gives the 
equations of the type 

F~b = fP aA t - fP bA ~ + Ct",A ~A t = 0, 

(69) 

F~b = fP AA: - ( - l)'II1q1lfP bA ~ + Ci",A ~A t, 
etc., which may be regarded as definition ofthe "vertical" 
components of A, i.e., (66). The nonvanishing components of 
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F are the following: 

with 

FtL = fi) KA t - (- l)niK)niL)[1 +ni"')) 

Xfi) LA t + Cf",A iA t. 

(70) 

(70a) 

The Lagrangian will have the same form as previously, ex­
cept for the normalization factor which we shall fix after: 

U? _ 1 ,.KL..PsF'" F'" ..z - - 2s g",,,,15 15 KP LS' (71) 

the "horizontal" indices a,/3,j being denoted by K, P, L, etc. 
Now we can proceed farther to compute .!f effectively. 

5. SUPERGAUGE CONDITIONS AND THE CONFORMAL 
SYMMETRY BREAKING 

Let us generalize the Grassmann-parity conditions for 
our superconnection. As a matter of fact, these conditions 
are contained implicitly in the definition of the supercurva­
ture (6S), namely, we suppose 

1T(A ~) = 1T(tfJ) + 11"(1/1), 
(72) 

1T(A t) = 1I"(tfJ ) + 1T(L ), 

where 1T(a) = 1T(j) = 0, 1T(A ) = 1T(B) = 1T(a) = 1T(f3) = 1. 
Therefore, the components A t are odd, A ~ are even, A ~ 
odd, A j even, etc. The left-in variance conditions generalized 
for the graded group G 0 {X 1 mean that there exists a coordi­
nate system in which the components of A t do not depend 
on X (which corresponds to their invariance with respect to 
the translations in X - space). Together with the conditions 
(72) this eliminates most of the terms in the generalized ex­
pansion (5S). Ifwe require the Hermiticity of the compo­
nents of our connection, i.e., (A ~ ) + = A ~, etc., then only 
the following terms will remain: 

A j = Bj(x) + TtfJ°Ujapoaep, 

A ~ = tfJ O(x)Oa + A jdape
p
, 

A~ =r(x)ep +AjdapOa=(Ap)+, (73) 

At=O, 

A. - -
A ~ = ~(x) + T (tll:0 y + ifl!,0 Y)Oa 

+ ~ ~O 102e ie i . 
/ 

Before proceeding farther let us note that we have intro­
duced a dimensional constant / (a length scale), as well as two 
dimensionless parameters A. and v. The length scale / occurs 
in a natural way, because we want A j to have a definite 
dimension (namely, 1/cm); our potentials B j and tfJ 0 have 
the dimension 1/cm too, whereas the variables oa have the 
dimension cm 1/2

; the u-matrices are dimensionless. The 
spinor field 1/1 has the dimension cm - 1/2. After computing 
the components of the curvature tensor F~L we shall use the 
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length factors when adding different components squared 
forming the Lagrangian density, e.g., 

dim [Fij] = cm- 2
, 

dim[FOFij] = cm-4 
IJ a , 

dim[F~/3] = cm- I
, 

dim[F~.BF~.B] = cm- 2
, 

(74) 

so we have to takeFijF~ + (1/[2)F~.BF~.B, etc. With thesim­
plest ansatz (63) the resulting Lagrangian density is homo­
geneous in 1//2, and the corresponding equations are confor­
mally invariant. This is not the case for our supergauge (73); 
the conformal invariance is broken . 

The Lagrangian density we postulate is then 

+ FA.Fij + ~ FA Fja + ~ FA Fa.B] (75) IJ A / Ja A /2 a.B A , 

where, for simplicity, we did not distinguish between the 
dotted and undotted indices. All the indices are raised or 
lowered by means of the corresponding "metrics," i.e., t j for 
the space-time vectors and tensors, ~ for the Lorentz spin­
ors, ~b for the group-algebra vectors, and ~B for the group 
spinors. In the final stages of the calculus, only the terms 
proportional to 0 10 20 io i in .!f will be of importance, be­
cause all the lower powers of 0 will vanish when integrated 
over the volume element dO IdO 2dO idO i. This relevant term 
in the Lagrangian density turns out to be the following: 

.:/(4)= - ~[SGoGij+64V.A.OVJA. + ~A.oA. 2s IJ 0 J'f' 'f' 0 /2 'f' 'f' 0 

4A. 2 + SA. - 4v V .• I.VJ.I. SA. V .1..1. + / ;'f' 'f' + e 'f''f' 

+ (SA. 2/~ 4v) (~jVjl/l _ (yjvJ,)1/I1 

SA. -. 4v -
- -/- VjifJ °CoBD tfIlytf> - J2 ifJ °CoBD tfIltf> 

+ Sv - SA. 2 Co C .7.B.1.D.7.E.1.F]0 102eiei 
/2 BD oEF If If If If . 

(76) 

The following abbreviated notations have been used here: 

Gij = ajBj - ajBf + C~cB~B'j, 
VjifJ 0 = ajifJ 0 + C~dB 1<P d, 

VJ'I~ = aJ'l~ + To A DB j~, 

ifil/l = € AB (E"/3 t/I:. t/1 + E"P;n ifi3). (77) 
In what follows, we shall use even more symbolical notation 
when there is no risk of misinterpretation. 

The remarkable thing about this Lagrangian is that the 
supergauge conditions, while keeping the Lorentz and the 
gauge invariances intact, have broken the conformal symme­
try, introducing masses of the Higgs mUltiplet and of the 
spinor multiplets. The price to pay is the presence of the 
d' Alembert-type term for spinors Vj ¢Vjl/l, as well as the 
four-point interactions, which may lead to the unrenormal­
izability of the theory. 
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Before identifying the masses of tP and rP fields we have 
to fix the scale factors for our fields. As we want to have the 
term G ij G Z enter with the usual factor -!, we must put 2S 

= 32; then we have to interpret the Higgs multiplet as given 
by the expression tj a = 2t/J a. We can also absorb one of the 
two dimensionless parameters A and v into the definition of 
the Dirac spinors, just by fixing (211. 2 + v)/8 = 1, which 
amounts to the rescaling of rP. Then the following expression 
is obtained: 

It seems reasonable to restrain our theory by eliminat­
ing the second-order derivatives of spinors from the equa­
tions of motion; in other words, we want to make 
8 - 3A 2 - 211. disappear. That gives us two solutions: 
A I = - 2, A2 = ~. 

The corresponding Lagrangians are 

!.t' = - [lGijGZ + !vjtjaVjtja + ~tjatja 
81 

1-· .- 1 - -. + p (r/Jr)VjrP - (tvjrP)rP) + 41 VjtP aCaBDif1r)~ 

(79) 

and 

!.t' = - [JGa.Gij + Iv.;:avj;: + _1 ;:a;: 
4 I) a 2)'1' 'l'a 8/ 2 'I' 'l'a 

40- 1-· j-+ 27/ 3 #+ p(r/Jr1VjrP-(r VjrP)rP) 

_ J... V ;: ac .7.B,).t.D _ _5_;: ac .7.B.t.D 
61 j'l' aBD'f' r'f' 18/ 2 '1' aBD'f' 'f' 

+ 3~2 C~DCaEF~~~tY] for A2 =~. (80) 

In the first case the Lagrangian describes an invariant 
interaction between (massless) gauge fields, the massive 
Higgs field ¢ a whose mass is I-' I = 112/, and a reducible mul­
tiplet of massless Dirac spinors, which interact with ¢ via the 
current-current coupling; there is a four-point interaction 
present, as was often postulated for the weak interaction 
neutrinos. 

In the second case spinors acquire the mass equal to 1-'", 
= 20/27/; the current-current coupling and the four-point 

interaction are still there, but with different coefficients than 
before; finally, the Yukawa coupling between tj and rP ap­
pears, too. 

367 J. Math. Phys., Vol. 24, No.2, February 1983 

6. CONCLUSIONS 

We have a geometrical method of deriving a gauge and 
Lorentz-invariant Lagrangian which describes the interac­
tion between the gauge bosons, an adjoint representation 
multiplet of Higgs scalars, and a reducible multiplet of Dirac 
spinors. By imposing a supergauge condition which seems 
reasonable enough, we eliminate all the ghost fields, break­
ing at the same time the conformal symmetry and introduc­
ing masses for Higgs scalars and spinors. Still, we are quite 
far away from any physical interpretation if we do not per­
form a group representation-theory analysis of our expres­
sions. Although that is not in the scope of this paper, we shall 
at least show what we mean by this. 

Probably the most interesting feature of the graded 
gauge presented here is the fact that the fermion multiplets 
belong to some well-defined representations which are im­
posed by the geometry itself, whereas usually the choice of 
the representations to which the fermions belonged was exte­
rior to the geometrical content of the theory. The gauge 
fields and the Higgs field always belong to the adjoint repre­
sentation of G by construction, whereas no constraint was 
imposed on the representations of spinor multiplets. 

Let us consider the simplest case G = SU(2). As dim 
SU(2) = 3, K = 2[3/2) = 2; therefore we have an irreducible 
doublet of Dirac spinors. In this case the Lagrangian (80) 
may be interpreted as the isospin-invariant Lagrangian of 
the nuclear forces, the couple of Dirac spinors representing 
proton and neutron, tP a representing three pions. 

The case of G = SU(3) is more interesting. Then dim 
SU(3) = 8, K = 2[812) = 16; so the spinor multiplet belongs 
to a 16-dimensional reducible representation. By the con­
struction .J<f G---.ad.J<f G-SO(N), this representation decom­
poses into two octets 8 E9 8. (The invariant metrics EA.B have 
to be compared with the invariant Cartan-Killing metrics in 
ad spaces). In general, our representation will contain 2[h12J 

times the representation DG , where h is the dimension of the 
Cartan subalgebra of G, DG being the highest-weight (! sum 
of the roots) irreducible representation of G found in Spin 
[SO(N)].19 As we see, the quark representations are not found 
here. Further generalization, including more irreducible re­
presentations of G, may probably be obtained by enlarging 
the notion of the supergroup so that it would contain not 
only G D Ix I, but also all the polynomials of Ix I, i.e., the 
whole Grassmann algebra of the anticommuting variables 
xA.:GDA {xl. 

We cannot take very seriously the "universal length" 
parameter I; however, the mass ratio 1-'", II-'", = a6 seems to be 
encouraging if we think of the simplest example of nuclear 
forces, i.e., if we identify rfJA with the couple proton-neutron 
and tP a with the three pions. The orders of magnitude of the 
Yukawa couplings and of the current-current coupling seem 
to be then quite realistic, too. In either case it must be under­
lined that the masses are just unrenormalized quantities, and 
have to be modified if we take into account the dynamical 
terms. Only then will we obtain some more realistic picture 
in which the masses will split. 
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We discuss the normalization condition for a three-body Bethe-Salpeter amplitude and apply the 
result to the relativistic wave function for protons. 

PACS numbers: 11.10.St, 11.10.Qr 

I. INTRODUCTION 

The normalization of a Bethe-Salpeter (BS) wavefunc­
tion I which describes a relativistic bound system is uniquely 
determined and has been a subject of many investigations for 
two-body bound states.2,3 While the generalization to many 
particle bound states is straightforward, the importance of 
the normalization condition for three- or more-body BS 
wavefunctions can hardly be over emphasized in light of rap­
id developments in the quark model of hadrons. In fact, it 
was an important ingredient in a computation of the proton 
decay rate in grand unified gauge theories.4 

In this article, we formulate the normalization condi­
tion for the BS wavefunction of three-quark bound states in 
Sec. II and apply it to the proton wavefunction in Sec. III. In 
Appendices A and B, the residue formula for the bound state 
is obtained, and the normalization for the three-body BS 
wave function for constituents with unequal masses is de­
rived in Appendix C. 

II. NORMALIZATION CONDITION FOR THREE-BODY BS 
WAVEFUNCTIONS 

In this section, we shall formulate the normalization 
condition for a three-body bound system, which serves to 
define our notation. In doing so, we shall closely follow the 
derivation of Ref. 3. 

The three-body propagator for fermion fields ~ (x), 
,pB(x), and ,F(x) (with masses rnA.' mB, and me, respective­
ly), 

Jr(xI~2~3~4~s~6)==lr(1,2,3;4,5,6) 

= - (0IT~(xI),pB(X2)¢,c(X3)~(X4)~(XS)~e(X6)10) 
(2.1) 

satisfies the integral equationS 

Jr (1,2,3;4,5,6) = S1"(1,4)Sf(2,5)Sf(3,6) 

J 
12 - JI d 4xk s1"(1,7)Srt2,8)Sf(3,9) 

X G (7,8,9;1O,11,12)K (10, 11,12;4,5,6), (2.2) 
where 

S:'(1,2) = (0IT~(xd~(X2)10) 

= (2~)4 J S1"(p)ei
P(x,-x,) d 4p, (2.3) 

and G (1,2,3;4,5,6) is the irreducible kernel for the three-body 
propagator. Inserting a complete set of states { I p,a) 1, we 
have 

Jr(I,2,3;4,5,6) = - I Xpa (1,2,3)Xpa (4,5,6) (2.4) 
p.a 

and 

Xpa(I,2,3) = (p,aIT~(xI)~(X2)¢e(X3)10) 
= - X;:' (1,2,3)(Y4)A. (Y4)B (Y4f (2.6) 

are the BS amplitUdes. For the bound state wavefunction 
Xpa(I,2,3) with momentump (p2 = - M2), we have the BS 
equation 

Xpa(I,2,3) = - J kit d 4xk S1"(1,7)Sf(2,8)Sf(3,9) 

X G (7,8,9;10, 11,12)Xpa(IO,11,12). (2.7) 

In order to separate the center of mass coordinate and 
the internal relative coordinates, we use the following varia­
bles (assuming that the three particles have the same mass for 
simplicity): 

X = j(xi + X2 +x3), S = XI -x2, 1] = ~(XI + x 2 - a 3), 

(2.8a) 

and their conjugate momenta 

P =PI +P2 +P3' Ps = ~(PI -P2)' 

P" = j( PI + P2 - 2P3)' (2.8b) 

These variables satisfy the condition 

PIXI + P~2 + P3X3 = pX + Pss + P1r1], (2.9) 

and the Jacobian of the transformations (2.8) is unity. The 
discussion for the unequal mass case will be given in Appen­
dix C. 

Using translational invariance, we define the Fourier 
transforms of Jr, G, and Xpa by 

Jr(1,2,3;1',2',3') = (211")-20 J Jr(ps'P";P's,P~;P) 
Xexp{i[p(X -X') + Pss + P,,1] - P'ss' - P~1]'] 

(2.10) 

G(I,2,3;1',2',3') = (211")-20 J G(ps'P";P's,P~;P) 
Xexp{i[p(X -X') + Pss + P,,1] - P's5' - P~1]'] 

X d')Jd')Jsd4p"d')J'sd4p~ J, (2.11) 

and 
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Xpa(1,2,3) = ~M /EpeiPXXpa(S,1]) 

= ~M /EpeiPX (21T)-8 

XJ Xpa(Ps,P1J )i
iP.s+p,'/i d 4p

S
d 4p1J, 

(2.12) 

where 

Ep =hz +Mz. 

XXpa(pi,P;) = 0 

or, in short, 

(l(p) + G(p)]K(p) = 1 

and 

[lIp) + G(p)]Xp = 0, 

where 

I(Ps,P1J;P's,P~;p) = (21T)8!5(ps - P's)!5(P1J - p~) 

X [Sf(jp + Ps + !P1J)Sf(jp - Ps + !P1J ) 

XS;'(jp-P1J )r l
• 

(2.13) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

We also have the equations conjugate to Eqs. (2.16) and 
(2.17), 

K(p)[l(p) + G(p)] = 1 (2.19) 

and 

(2.20) 

As is derived in Appendix A, Eq, (2.4) for the bound 
state can be written as 

lim (Po - Ep)K(Ps,P1J;P's,P~;p) 
Po-Ep 

= - i(M /Ep)Xpa(Ps'P1J)Xpa(P's,P~) (2.21) 

or, in short, 

Again following the method of Ref. 3, we define 

Q(p)= lim (Po-Ep)K(p)~[I(P)+G(p)] 
p,,~Ep apo 

(2.22) 

= 1- lim (~[(po-Ep)K(P)])[I(P)+G(P)]' 
p,,~Ep 8po 

(2.23) 

where Eq. (2.19) has been used. The use of Eqs. (2.20) and 
(2.22) enables us to obtain 
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Q(p)Xp =XP (2.24) 

= -i Z XpXp (a~o [1(P)+G(P)])XP' (2.25) 

Thus, we get 

-i~ (~[I(P)+G(P)])XP=po (Po=Ep) 
apo M 

(2.26) 
or, in the full expression, 

i Jd4 d4 d4 d 4 -- (211')16 Ps P1J P~ P~ Xpa(ps'P1J ) 

X(8~o [I(Ps'P1J;P's,P~;p) + G(PS'P1J;P's,P~;P)]) 

and 

XXpa(P's,p~) = ~ (Po = Ep). 

For the ladder approximation 

~G(p)=o, 
8po 

and hence 

a
a I(Ps'P1J;P's,P~;p) 
'Po 

(2.27) 

(2.28) 

(2.29) 

= ~ (21T)8!5(ps -P's)!5(P1J -p~)J(ps'P1J;p), (2.30) 

where 

Jabe,a'b 'e' (ps' P1J; p) 

= (Y4)aa,(iy(jp - Ps + ~P1J) + mB)bb'(iY(jp - P1J) + melee' 

+ (iy(jp +Ps + ~P1J) + mA)aa'(Y4)bb'(iY(jp -P1J) + melee' 

+ (iYHp + Ps + !P1J) + mA)aa,(iY(jp - Ps + !P1J) + mB)bb' 

X (Y4)ee' , (2.31) 

a, b, c and a', b', c' being spinorindices. The final form of the 
normalization condition is then given by 

1 f d 4
p d

4
p -3 (;11')8 1J Xpa(Ps'P1J)J(Ps'P1J;p)Xpa(PS'P1J) 

= Po (Po = Ep). 
M 

(2.32) 

The normalization for a three-body BS wavefunction, 
Eq, (2.27) or (2.32), may be compared with that for the two­
body case, which is given by 

- i f d;~:?' ~a(q) a~o [12(q,q';p) + G2(q,q';p)]Xpa(q') 

= 2po(Po = Ep) (2,33) 

or 

i J d 4
q_ - 2' (211')4 Xpa (q)J2(q;p)Xpa (q) = 2po (Po = Ep), (2.34) 

where 

12(q,q';p) = (21T)48(q - q')[S1'(~p + q)S:'(!p _ q)]-\ 
(2.35) 
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and 

J2(q,P)ab.a'b' = (Y4)aa·(iy(!p - q) + mB)bb' 

+ (iy(~p + q) + mA )aa' (Y4)bb'. 

matrix (e.g., B i = proton). By construction, the spin and 
SU(3) wavefunctions satisfy the relations 

III. APPLICATION TO THREE-QUARK 
WAVEFUNCTIONS FOR OCTET BARYONS 

(2.36) 

The BS wavefunction for an octet baryon is expressed 

(0/ T{tPaa (X2)t/Jbp(X2)!fcr(X3 ))/ p) 

= ~MIE ~jk 11 vis I Uisl +XI'71 UI'71 ).1. (1;-1])eiPX 
P 2Uabc aPr abc aPr 'f/p ~, , 

(3.1) 

where i,j, k are SUe (3) color indices (running from 1 to 3), a,b 
care spinor indices (running from 1 to 4), and a, fl, yare 
ordinary SU(3) indices (running from 1 to 3). The Levi-Civita 
symbol ~jk represents the color singlet nature ofhadrons and 
the spin wavefunctions 

Xdbc = (l/v3)(x~~ - X~~) 
and the SU(3) wavefunctions 

U!£Jr = Ea{J6B~, 

U~r = (l/v3)(U~~a - U~) 

(3.2) 

(3.3) 

X~~ = - X~~, x~'l1c = X~c' 

I pi + I pi + I pi - 0 _ I;-Xabc Xbca Xcab - , P - ~,1], 

and 

Uisl - - Uisl U I'71 - UI'71 aPr - Par' aPr - Par' 

UljfJr + U}t~ + UV'Jp = 0, p = S,1]· 

The BS wavefunction for the proton [notice that 
U~II = B i and U~11 = (l/v3)B n is given by 

(O/T(tPal (X I)t/Jb2(X2)t/J;1 (x 3 )/ p) 

=(0/ T{u~ (xdd b(X2)U;(X3 ))/ p) 

= ~M IEp XZ~bC(s,1])eiPX, 

where 

Xpa(S,1]) XZ~bc(S,1])' 
= ~jk Hx~~ - !(x~~ - X~~)] t/Jp(S,1]) 

=~jkll"lsl -Xlsl).'. /1;-1]) 3Uabe bca 'f/p~' . 
Defining the Fourier transform 

.1. /1;- ) - 1 fA. ( ) iPi!+iP~'7d4 d4 
'f/p~,1] - (21T)8 'f/p PS'P'7 e Ps P'7 

and noticing that 

XZ~bc(Ps'P'7) = - (xZ.:·b'c'(Ps ,P'7))"'(Y4)a·a(Y4)b'b(Y4L 

_ ijkl[(C- 1 - iyp +M) - ( ) - e 2- Y5 U P 
2M ab e 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

are constructed in order to make the baryon behave as an 
SU(3) octet and satisfy the Bargmann-Wigner equation. 7 In 
Eq. (3.2), C is the charge conjugation matrix and satisfies the 
conditions 

C+C= 1, C T = - C, C-lyI'C= - y;, (3.4) 

-(C-
I
Y5 -i~+M)bCUa(P)] ·t/J:(ps ,p'7)' 

(3.10) 

and B ~ in Eq. (3.3) is a symbolic notation for the 3 X 3 octet we can compute the integrand of Eq. (2.32) as follows: 

Xpa(Ps'P'7)J(ps'P'7'p)Xpa(Ps'P'7) 

371 

= * /t/Jp(Ps'P'7W[ (C- IY5 - i~+M)ab uc(p) - (c -Iys - i~+M)bc Ua(P)] 

X [(Y4)aa,(iy(!p - Ps + !P'7) + mB)bb'(iy(!p - P'7) + melcc' 

+ (iy(!p + Ps + !P'7) + mA laa'(Y4)bb'(iy(!p - P'7l + melec' 

+ (iy(!p + Ps + !P'7) + mAlaa,(iy(!p - Ps + !P'7) + mB)bb'(Y4)cc' ] 

X[( -iyp+M Y5C ) Uc.(P)-( -iyp+M Y5C ) ua.(P)] 
2M a'b' 2M b'c' 

__ 4 E /A. ( )/2[(P!!P - Ps + !P'7) )(Pi!P - P'7) ) 
- M 'f/p PS,p'7 M +mB M +me 

+ (
P(!P + Ps + !P'7) )(P(~P - P'7) ) 
--=-----'~--=--.:..- + m A + me 

M M 

+ eHP+z +!P'7) +mA )e!!p-Z +!P'7) +mB)] 

= 3 E /t/J (p ,p W [..!. (pPsl2 + (pP'7)2 _ 4(M _ m )2] 
M p s '7 3 M2 M2 3 q' 
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(3.11) 

(3.12) 
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where the factor 6 in Eq. (3.11) is due to the sum over the 
color index (EijkEijk = 6) and aU quark masses are set equal: 

mA. = mB = me = mq • (3.13) 

The normalization condition is then given by 

(2~)8 f d 4
pSd

4
pTJ \t,bp(ps,pTJW 

X [~ (ppd + (ppTJ)2 _ 4(M _ m )2] = 1. (3.14) 
3 M2 M2 3 q 

For the condition for the case of unequal masses, see Appen­
dix C. 

In order to see an explicit form of the normalization 
factor, we use the relativistic wavefunction tPp (ps' PTJ) for the 
ground state in a relativistic harmonic oscillator potential, as 
an example, namely, 

tPp (s,1]) = Nexp{ - ~ [2(~r + t2 + 2e: r + ~2]}, 
(3.15) 

(3.16) 

and N is the normalization factor. The empirical value for a 
is given by6 

a = 0.4-0.5 (GeVf (3.17) 

In the center-of-mass reference frame, the wavefunction in 
Eq. (3.15) becomes 

tPo(s,1]) = Nexp( - ~ (~2 + s~) - ~(1)2 + 1]~)) 
12 9 

(3.18) 

and its Fourier transform is given by 

tPo(ps'PTJ ) = N( ~r( 1~1rr 
xexp( _l. (p2 + p02) _ ~ (p2 + p02)). 

aSs 4a TJ TJ 

Substituting Eq. (3.19) in Eq. (3.14), we obtain 

N = ( ~r ~2a _ 4(~ _ 3mq )2 

If we assume that 

M-z3mq, 

we get 

t/J(O,O;p)==N = (l/J61T)(aI31T)3/2. 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

This normalization factor has been used in a computation of 
the proton decay rate in the SU(5) grand unified gauge mod­
e1.4 
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APPENDIX A: THE RESIDUE AT THE BOUND STATE 
POLE FOR THE THREE-BODY PROPAGATOR 

Equation (2.4) can be written as 

K(I,2,3;4,5,6) = - LXpa(I,2,3frpa(4,5,6) 

8(S(111213) - 1(141516)) + ... , (AI) 

where s and I stands for smallest and largest, respectively. 
Using the result of Appendix B, we have 

8(S(111213) -1(141516)) 

= 8 [WI + t2 + t3) - 12(\11 - t2\ + \t2 - 13\ + \t3 - 11\) 

- f1(/2t l - 12 - t3 + It2 - 1311 + 1212 - 13 - 11 + 113 - 1111 

+ 1213 - 11 - 12 + Itl - t2ID 

-!(t4 + 15 + (6) - 12(\14 - 151 + \t5 - 161 + 116 - t41) 

- 12(12/4 - ts - 16 - \ts - 161 1+ 1215 - t6 - t4 - 116 - 141 

+ 12/6 - 14 - t5 - 114 - 151 /}J. 

(A2) 

By explicitly singling out the bound state contribution, we 
obtain 

K(I,2,3;4,5,6) = - 2M
3
Jd 4kXka(S,1])XkalS',1]') 

(21T) 

Xeik (X-X"18(ko)t5(k 2 +M2)8(s(tlI2t3) -1(141516)) 

+ ... , 
where 

(01 TtPA (XdtPB (x2 )tPc (x3 )/k,a) =.,jM IE eikXha (S,1]), 

(A3) 

\ k,a) being a bound state of spin !, mass M, and energy 

momentum k,.. = (k, i.,j k 2 + M 2 =iE k)' The remainders in 
Eqs. (AI) and (A3) vanish in the limit shown in Eq. (2.21). 
Using the variables X, S, 1] defined in Eq. (2.8a) and the inte­
gral representation of 8 (1), 

8 (t) = - _1_. J dpo _1_. e - ipotu, 

2m Po + IE 
(A4) 

we obtain 

K (1,2,3;4,5,6) 

M f d 3
k I~)- 1£-' ') 'k(X-X'I-iE';'Xo-Xol 

= - (217l Ek Xka~,1]Xka~ ,1] e 

X8 (Xo - Xb - g(So,1]o) - g'(S b.1]b)) + ... 
- M J d 3

k IS)- (S' ') ik(X-X"I-iEk(Xo-Xol 
- - (21T)3 Ek Xka ,1] Xka .1] e 

x( -~) Jdpo - l-. e-iPo[Xo-Xo-Btso.TJol-8'(5o.TJo) + ... 
2m Po + IE 

= _ iM f d 4
k e,k(X-X'I-ikoIXo-Xo) 1 

(21T)4 Ek ko - Ek + iE 

XXka(S.1])X!:a(S',1]'). + "', 
(A5) 

where 
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ko =Po+Ek, 

g($0,710) = -b(ISol + 1710 - ~Sol + 1710 + ~ol 
+ 1710 + ~o + 1710 - ~oll + 1710 - ~o + 1710 + ~oll 
+ 1- 2710 + Isoil), (A6) 

g'(S b,71b) = g( - s b, - 71b), 

and 

(A7) 

Xka(S ',71') = ei1ko - Eklg'lsQ,T/OXka(S ',71'). 

Notice that in the limit ko-Ek,Xka(S,71),Xka(S,71) reduces to 

Xka(S,71)· 
Defining the Fourier transform 

, (I:-) 1 fd4 d4 ilp.s+p~T/I, ( ) 
Xka ~,71 = (21T)8 Ps pT/e Xka PS'PT/ ' 

X" (I:-' 71') =-1-fd4p'd 4p' /IP~'+P~T/'IX" (p' p') ka ~ , (21T)8 S T/ aka SO T/ 

(AS) 

and recalling the Fourier transform for K (123,45,6), Eq. (10), 
we get 

K( .' "k)- -i~ 1 PS'PT/,PS'PT/' - EkE . 
k 0 - k + IE 

XXka(PSPT/)Xka(p€,p~) 
+ finite terms in the limit ko-Ek' (A9) 

which gives (2.21). 

APPENDIX B: THE SMALLEST AND THE LARGEST OF 
THREE NUMBERS 

The smaller of two numbers y and z is expressed as 

s(y,z) = ~(y + z - Iy - zlJ, (B1) 
and the larger of the two is expressed 

l(y,z) = !(y + z + Iy - zlJ. (B2) 
Then the smallest of three numbers (x,y,z) is given by 

s(x,y,z) = Hx + s(y,z) - Ix - s(y,z) I] 
=Ux+!ly+zl-~ly-zl-lx-!(y 

+ z -Iy - zlll]' (B3) 
Symmetrizing Eq. (B3) by the permutation (x_y_z) and 
taking the average, we obtain the symmetric expression 

s(x,y,z)=Hx+y+z -!(Iy-zl + Iz-xl + Ix-yl) 
- !(l2x - y - z + Iy - zll 

+ 12y-z-x + Iz-xll 
+ 12z - x - y + Ix - Ylll]· 

Similari1y, the largest of (x,y,z) is given by 

l(x,y,z) = Ux + l(y,z) + Ix - 1(y,z)IJ 
= Ux + !(y + z + lY + zlJ 

373 

+ Ix -!(y + z + lY - zlH1 
= Hx + y + z + Mix - zl 
+ Iy-zl + Iz-xl) 
+ MI2x - y - z - lY - zl 
+ 12y-z-x-lz-xll 
+ 12z - x - y - Ix - Ylll· 
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(B4) 

APPENDIX C: NORMALIZATION OF THE BS 
WAVEFUNCTION (CASE OF UNEQUAL MASSES) 

The appropriate variables for the unequal mass case are 

x = mlxl + miX2 + m3x3 
m l +m2+m3 ' 

(e1) 

and 

P = PI + P2 + P3' 
ml-m2 

Ps = MpI - P2) - 2( + + ) P m l m2 m3 
1 

------ [(2m2 + m3)PI 
2(ml + m2 + m3) 

The lacobians of transformations (e1) and (e2) are unity, 
and these variables satisfy Eq. (2.9). The inverse oftransfor­
mation (e2) is given by 

+.l(p + m l + m2 - 2m3 p) 
2 T/ 3(m I + m 2 + m3 ) (e3) 

m __ -,2,,--_p - P + Y' 
m I + m 2 + m3 S T/' 

and 
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Then all formulas in the text will be valid if one replacespI3 + Ps + !P1J .pI3 - Ps + ~P'1' andpI3 - P1J by (mil 
(ml + m2 + m3)]p + Ps + !P'1' (m2/(ml + m2 + m3)]p - Ps + ""'1' and (m3/(ml + m2 + m3)]p -P1I throughout the text 
[namely. in Eqs. (2.18). (2.31). (3.11). and (3.12). wheremA = mi. mB = m2• and me = m3]' The factor in the parentheses in 
Eq. (3.12) becomes 

(C4) 

(C5) 

4 ( M)( PPs 1 PP1J )] + - 1 - (m, - m2) - + - (m, + m2 - 2m3) -- = 1. 
3 m) + m2 + m3 M 2 M (C6) 
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On the dimensional regularization procedure for massless Feynman integrals 
M. W. Kalinowski 
Institute of Philosophy and Sociology, Polish Academy of Sciences, Nowy Swiat 72, 00-330 Warsaw, Poland 

M. Sewerynskia) and L. Szymanowski b) 

Institute of Nuclear Research, Boza 69, 00-681 Warsaw, Poland 

(Received 30 July 1980; accepted for publication 30 October 1981) 

It is shown that the dimensional regularization procedure for massless Feynman integrals, 
proposed by Capper and Leibbrandt, is unsuitable for practical calculations. This is due to the fact 
that the procedure yields a logarithmic singularity for some specific massless Feynman integral. 

PACS numbers: 11.90. + t 

Trying to solve the problem of infrared divergencies 
arising from massless particles in QFT Capper and Leib­
brandt I have proposed the following redefinition of the gen­
eralized Gaussian integral in 2w-dimensional Euclidean 
space: 

J d2w 
G (w) = --q exp ( - xq2 + 2bq) 

(21T)2W 
= (41T)-Wexp[b 2/x -xf(w)), x>O, WEC, (1) 

where the vector bl' is also defined over 2w-space and x be­
haves like a c number. The functionf(w) is an entire function 
which satisfies the conditions 

(i)f1k)(w) = 0 for w = n/2, nEN;, kEN; - N k,.+ I' 

ko>2,ko < 00, 

(ii) Ref(w) > 0 for any w#n/2 and some 1m w = 0 (see 
Refs. 1 and 2, for details). 

It was claimed by some authors 1.3,4 that such an exten­
sion of a Gaussian integral allows one to develop a reason­
able dimensional regularization scheme for massless theor­
ies. In this comment we re-examine the claim and show that 
the regularization scheme proposed in Ref. 1 is unsuitable 
for practical calculations. First we calculate the integral 

J d2w 
__ q (q2 + 2pq + m2) - z, W, ZEC, 
(21T)2w 

with the help of (1). Substituting b = - xp into (1) one 
obtains 

J d2wq exp [ - X(q2 + 2pq + m2)) 
(21T)2w 

= (41T) - Wx - W exp [ _ x(f + m2 _ p2)). (2) 

Multiplying both sides of Eq. (2) by x z - I, ZEC and integrat­
ing over x one finds 

''Supported by MNSzWT Grant No. 04.3.14.02.0S.2A-1 K8E and partially 
supported by INT Grant No. 73-20002 AO!. 

blSupported by MNSzWT Grant No. 04.03.14.02.0S.2A-IK7E. 

It is now obvious that for an integral ofthe type 

J d2Wq 2-z 

(21T)2w (q ) 

the Capper-Leibbrandt regularization scheme consists ofin­
troducing a complex mass squaref(w) at an intermediate 
stage of the calculations. One may expect then that such a 
procedure will lead to trouble with gauge invariance of the 
theory and this is indeed the case (see Refs. 1 and 2). Now let 
us consider the simplest one closed-loop integral 

ISE = J d 2wq[q2(p_q)2)-I. 

Using the standard a representation 
l/q2 = s; dx exp( - aq2), one finds 

ISE =~ f" dx f" dye- YP
' J d 2W

q 

xexp [ - (x + y)q2 + 2y(pq)). 

Applying (1) and introducing new variables u = x + y, 
uw = y one gets 

(4) 

ISE = 1Tw i
oo 

du U
Z

- Ie - uf f dvexp [ - uv(l - V)p2], (5) 

wherez = 2 - w. 
Introducing a new variable t 2 = v( 1 - v) one obtains 

K (u)= f dvexp [ - uv(l - V)P2) 

= i1l2 dt(1-4t2)-1/2exp(-bt2) 

- I dt2t(1-4t2)-1/2exp(-bt2) 
)1/2 

1 il 

= - dx(l - X)-1/2 exp (bx/4) 
2 0 

= IFI(l;~; - p2u/4), (6) 

where b 2 = pu [see Ref. 5,4.2(1)]. 
Hence 

ISE = 1Tw i
oo 

du UZ 
- IIFI(q; - p2u/4) exp ( - fu) 

and 
ISE = ~ f W- 2r(2 - wbFI(1,2 - w;~; - p2/4f), 

14fl ">p2, Ref> 0 (7) 
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[see, e.g., Ref. 5, 3.6(13)]. 
Now we apply Kummer's theorem [see, e.g., Ref. 6, 

2.1.4(22)] to 2FI (1,2 - w;~; - p2/4f) and deduce that 

IsE = 1TWr(2 - w)(f + p2/4t-2~I(P - w;~; -/- ),(8) 
p+4f 

ReJ>O, 1 < Re w < 2. 

Since 

F (12 _ w.J'I) = 4w-2 r(w - I)r(w - 1) 
2 12' '2' r [2(w _ 1)] 

provided Re w> 1, one may rewrite (8) in a more convenient 
form 

IsE =1(0)(1 + 4f/p2t-22FI(P - w;~; -/-)/~I(I)' 
p+4f 

where 

1(0)=~( 2)W-2r(2 _ w) r(w - I)r(w - 1) 
P r [2(w - I)] , 

2FI(I)==2FI(P - w;P)· 

Performing an analytic continuation of the right-hand side 
of (9) in the variable w one gets IsE for WEC. It is trivial to see 
that Eq. (9) yields the usual pole singularity of IsE at the 
physical point w = 2 (i.e., n = 4). 

Now let us consider an integral associated with the pure 
graviton triangle diagram 

13 = f d 2wk [k 2(k - P2)2(k + P3f]-1 

and assume further that P2 = - P3' p~ = P; = p2 # O. Ap­
plying as usual the a representation one obtains after some 
calculations [with help ofEq. (1) and Kummer's theorem]: 

13 = ~ Loo dx X(3-w)-le -X!IFI(q; - p2x/4) 

= ~r(3 - W)(f+P2/4)W-\FI(p - w;~; p2: 4f). 
P2 = -P3 =p, 

376 J. Math. Phys., Vol. 24, No.2, February 1983 

so a singularity structure of 13 at the physical point w = 2 is 
determined by the singularity structure of 2FI at this point. 
Since it is known that if c - a - b = 0 then 2FI (a,b,c;z) has a 
logarithmic singularity (see, e.g., Ref. 7, p. 18) then 13 has a 
logarithmic singularity at w = 2 whenp2 = - P3 andp~ fO. 
This behavior of 13 at w = 2 sharply contrasts with the stan­
dard pole singularity one gets with the help of the standard 
definition ofa Gaussian integral [i.e., whenf(w)=O,weC]: 

13(0) = 1TW Loo dx X(3 - w)- IIFI( q; - p2z/4) 

= ~+ 1I2(p2/4t-3r(3 - w)r(w - 2)12r(w - ~), 

P2= -P3' p~ =p2. 

Unfortunately, this fact remained unnoticed in Refs. 1-4. 
Summarizing, we have shown that although the Cap­

per-Leibbrandt redefinition of the Gaussian integral (1) 
yields for one closed-loop integral IsE the standard pole sin­
gularity at the physical point w = 2 nevertheless it results in 
the logarithmic singularity for 13 at w = 2 (for a particular 
momenta configuration). This means that unless accidental 
cancellations occur, the pure graviton triangle diagram has a 
logarithmic singularity at w = 2 which would render the 
Capper-Leibbrandt regularization procedure unsuitable for 
the needs of a renormalization of theory. 

'd. M. Capper and G. Leibbrandt, J. Math. Phys. 15,82 (1974). 
2G. Leibbrandt, Rev. Mod. Phys. 47, 849 (1975). 
3D. M. Capper and G. Leibbrandt, J. Math. Phys. 15, 86 (1974). 
40. M. Capper and G. Leibbrandt, J. Math. Phys. 15, 795 (1974). 
5y' L. Luke, The Special Functions and Their Approximations (Academic, 
New York, 1969), Vol. I. 

6Higher Transcendental Functions, edited by A. Erdelyi (McGraw-Hill, 
New York, 1953), Vols. I-III. 

7F. Klein, Vorlesungen iiber die Hypergeometrische Funktion (Springer, 
Berlin, 1933). 
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High frequency asymptotic solutions of Yang-Mills and associated fields 
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We establish the differential equations which rule the propagation of the high-frequency waves, 
disturbances of a given background, for the coupled Yang-Mills, scalar and spinor field 
equations. We discuss their interaction. 

PACS numbers: 12.20. - m, 03.50. - z, 03.40.Kf, 02.30.Jr 

1. INTRODUCTION 

We shall construct asymptotic, high-frequency solu­
tions of the Yang-Mills equations, coupled with the wave 
equations for scalar and spinor multiplets via the gauge co­
variant derivative defined with the Yang-Mills potential 
(connection). We shall write the equations on an arbitrary 
given space time M with a hyperbolic metric g; this space 
time can be, for instance, Minkowski M4 • 

The method we use (extension of the WKB or "two­
timing" method) is the general method of Ref. 1, extended in 
Ref. 2, to nonlinear equations. The (classical) fields that we 
construct are also generalizations of what is called simple 
waves. They depend on the point x of space-time where they 
are evaluated, on the one hand, directly, and on the other 
hand through a product (J)qJ, where qJ is a scalar function on 
M (called phase) and (J» 1. 

We prove that for nontrivial solutions to exist it is nec­
essary and sufficient that the phase satisfy the eikonal equa­
tion of the hyperbolic metric. We establish the differential 
equations which rule the propagation of the high frequency 
waves along the rays, and show that it induces their mixing 
in generic backgrounds (cf. in particular the propagation 
laws 5-8 of the two polarization modes of the spinor waves). 
We also give the propagation laws ofthe energies ofthe bo­
son waves and discuss their conservation. 

Some aspects of the high frequency YM field, and of the 
scattering of a scalar field on a given YM potential had been 
studied in Ref. 3. The interaction of an electromagnetic and a 
charged field (in this context) had been given in Ref. 4, to­
gether with their interaction with a gravitational field. 

2. FIELD EQUATIONS 

The equations are, with F;'{t=V;.A{t - V{tA;. 

+c[A;..A{t]' 

V;.F;'{t + c[ A;.,F;'{t] 

= 2kin{¢ *S#(V{t¢ + SA {t¢) + i¢ y{tT#1/I J, 
(2.1) 

D¢ =V;'V;.¢ + 2SA ;'V;.¢ + (S(V;.A;') 

+ (SA;' )(SA;.)) = K (¢,¢), 

V¢=ya(va ¢ + TAa 1/1) = H(¢,I/I). 

(2.2) 

(2.3) 

The notations are as follows (the same as in Ref. 5 in and 
k are constants). x '\ A = 0,1,2,3 are coordinates on M. In-

dices are raised with g. V;. is the metric covariant derivative 
(i.e., the partial derivative with respect to x;. if Mis Min­
kowski). 

A;. is a I-form on M with values of ®, Lie algebra of a 
Lie group G admitting a bi-invariant nondegenerate metric 
(for instance a compact Lie group). [ , ] is the Lie bracket in 
®. 

<P, scalar multiplet, is a mapping M_CN
, where CN is 

the representation space of G by N X N unitary matrices. Sis 
the induced representation of their Lie algebras, i.e., some 
constant linear map ®-U(N); S # is the element ofU(N) ® ® 
deduced from Sby duality and the isomorphism of ® with its 
dual defined by the metric of G. The * is the Hermitian con­
jugate. 

1/1, spinor multiplet, is a mapping M_CM X C4
, Cm

, be­
ing the representation space of G by m X m unitary matrices, 
T:®-U(m) induced representation, T# deduced from Tas 
S # from S. The ya are the Dirac matrices. 

Hand K are given analytic functio~ of ¢ a9.,.d 1/1, compa­
tible with the gauge transformations ofD¢ and V¢, and such 
that the Eqs. (2.2) and (2.3) imply V{tJ{t + c[A{t' J{t] = 0 
(For physical examples of such Hand K cf. Ref. 6, some are 
quoted in Ref. 5), J {t given by the right-hand side ofEq. (2.1). 

3. ASYMPTOTIC HIGH FREQUENCY WAVES 

Following the method of Refs. 1 and 2, we consider the 
unknowns as functions on M X IR and write them as formal 
series: 

o 1 1 1 2 

¢(x,s)=¢ (x)+-¢ (x,s) +-2 ¢ (x,s)+"" (3.1) 
(U (J) 

o 1 1 1 2 

1/1 (x,s) = 1/1 (x) + - 1/1 (x,s) + -2 1/1 (x,s) + ... , (3.2) 
(U (U 

o 1 1 1 2 

A,ttx,s) = A;. (x) + - A;. (x,s) + - A;. (x,s) + .... (3.3) (J) (J)2 

We set S = (J)qJ(x), where qJ is a function M-IR called 
the phase. For a general function/Ix,s ) we set 

f'(x,(J)qJ (x)) = Z (x,s )1 5 = lU'I'ix» 

a 
a;./(x,(J)qJ(x)) = ax;' /(x,S)IS=""PiX)' 

Thus 

377 J. Math. Phys. 24 (2), February 1983 0022-2488/83/020377-03$02.50 @ 1983 American Institute of Physics 377 



                                                                                                                                    

'i1 A f(x.u)(p (X)) = u)(PA !,(X.U)(P (X)) 

+ aA f(X.allp (X)) with aA ===~. 
ax 

acp 
CPA axA · 

We say that (3.1)-(3.3) is an asymptotic wave of order p 
if when we substitute r/J. 1/1. A with these formal series in (2.2)­
(2.4) the terms in w •...• w - p + I vanish. Obviously an asympto­
tic wave of order p > 0 furnishes approximate solutions. by 
taking only a finite sum of terms and making sure that the 
remainder. w - P K. is such that K is bounded for all X and 5. 

The condition that a functionf(x.s) to be uniformly 
bounded with respect to 5 requires that the average of its 
derivative with respect to 5 vanish: 

1 iT lim - f'(x.s) ds = o. 
T= 00 T ° 

This condition will be taken into account in the following­

° ° ° notice that it forces the background A .r/J.tf; to be an exact 

solution. as we shall assume from the beginning. 

4. DETERMINATION OF THE PHASE 

The coefficients of the higher powers of w (respectively 
Wi. Wi. and Wo) obtained by substituting (3.1 )-(3.3) in (2.1)­
(2.3) equated to zero give respectively: 

I I 

A ""cpACPA -A "A CPACP" =0. (4.1) 

(4.2) 

(4.3) 

A necessary condition for all these equations to be satisfied 
I I I 

with nonzero A .r/J.I/I is that CPa be a solution of the eikonal 

equation 

cP acpa = o. 
I I 

The coefficients AA and 1/1 are then restricted by the condi-

tions (we choose the arbitrary functions of x which come by 
integration. with respect to s. to be zero) 

(4.4) 

(4.5) 

The condition (4.4) expresses that the Lorentz condition for 
001 

A and A + (1/ w) A are the same at first order. Indeed. 

Remark: Equation (4.1) alone does not imply 
I 

cP ACPA = O. But if cP ACPA #0. A" = fcp". and can be made to 
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I 

vanish by a gauge transformation U = identity + (1/w2)U 

° which preserves the background A . 

Equation (4.5). considered as an equation on (;4. has a 
two-dimensional vector space of solutions. the mapping 
yacpa :(;4_(;4 being of rank 2. when cpacpa = O. 

Ifh r • r = 1.2. is a basis of this space. the general solution 
of(4.5) is 

(4.7) 

where A. I and A.2 are (;m valued functions on M (the products 
are in fact tensor products). 

5. PROPAGATION EQUATIONS 

Equating to zero the terms ofthe next order (Wo .wo.w - I) 
in (2.1 )-(2.3) after the substitution. taking into account 

I 

A IA CPA = O. and thefact thatcpAaA CP" = cpAa"CPA = O. we ob-

tain 

2cp AaAA
I,
,, +AI'''a"cpA + 2c[AoAcpA.A

I,
,,] 

_ CCP"[}A. Al,A] _ cp"( aAA I'A + A ~'ACPA) 

= 2kcp"lJt (/*¢ '). (5.1) 

I I ° I 

2cp AaAr/J 1 + r/J 'aAcpA + 2SA ACPAr/J '= O. (5.2) 

(5.3) 

For Eq. (5.1) we first note. multiplying by CP". that it 
I 

implies the propagation of A I"cp" along the rays cpA: 

2cp AaA (AI,,,cp,, ) + AI'''cp"aAcpA + 2c[AoAcpA' AI,,,cp,, ] 

=0. 
I I 

Therefore if A I" satisfies (5.1). and A I"cp" = 0 on a submani-
I 

fold transversal to the rays. it will satisfy A I"cp" = 0 on the 

region regularly spanned by the rays. 
2 

We then note that Eq. (5.1) gives for any choice of A A. a 

propagation for the metric scalar product (with values in @) 
I 

of A " with any given vector field v" orthogonal to the rays. 

i.e .• such that cP "v" = o. We obtain a propagation equation 
I 2 

for all components of A" if we impose anA" (still unrestrict-

ed) the condition 
2 I 

A "ACPA + aA A IA = O. (5.4) 
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which expresses that the Lorentz condition is preserved at 
order 2. Equation (5.1) then shows clearly that the significant 

1 

part of A I" is influenced only by the background YM poten-

° tial, and only if AA. A. #0. It reads 

(5.5) 

We deduce from this equation by mUltiplication with 
1 

A ~ contracted in ® 

( II ) [0 I] 1 
a A. A 'I" A 'I"cp A. + 2e A A. CPA., A 'I" A ~ = 0, 

the second term, written explicitly is 

[ ° 1 ] 1 ° 1 1 A A. m A 'I" A' = ea A A..b m A 'l"cA ' TA., I" bc TA. I"a' (5.6) 

which vanishes if e:C + e~ = 0, thus, if G is compact. The 
specific energy of the YM disturbances is then conserved 
during the propagation. In the other case we may have cre­
ation or dissipation ofthis energy by the background (cf. a 
similar phenomenon in another context in Trautman6

). 
1 1 

Note: A 'I" A ~ is the (positive) energy of the high-fre-

quency disturbance, associated to any direction u, transver­
sal to the rays, and normalized by the condition cP A.u A. = 1. 
Indeed the energy of the field at first order is 

° ° ° ° EyM=!gAI"UA.UI" FaP FaP - FaA. uA. Fal"ul'" 

with 

° ° ° [0 0] 1 1 
F aIJ = aaAp - apAa + e Aa, Ap + A pCPa - A ~CPP' 

that is, up to a linear term which disappears by averag-
ing in S, 

Equation (5.2) gives the propagation of the perturbation 
1 

tP of the scalar field along the rays cpA. associated with the 

wave fronts cP = ete. This propagation is accompanied by a 
mixing of the components of the multiplet if the background 

° potential is such that A A.CPA. #0. 

Note: If we did not require A to be also an asymptotic 
solution of Yang-Mills equations, we would have, added to 

1 ° 
the left-hand side of(5.2), the term A ,A. CPA. tP , and therefore a 

generation of a perturbation in tP by the perturbation in A if 
1 

A A.cP). #0. 
Using Eq. (5.2), its Hermitian transpose, and the fact 

that S + S· = 0 since the representation is unitary, we ob­
tain the conservation law for the energy of the disturbance 
I 

tP: 
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We shall now deduce from (5.3) a propagation equation for 
1 

the two modes of polarization A" r = 1,2 or tjJ. For an arbi-

trary vector p, and the standard choice of r matrices, the 
matrix ~Pa reads 

(

Po 
o 

~Pa = 3 -P 
- (iPI +P2) 

0 P3 
Po iPI + P2 

iPI -P2 -Po 

P3 0 

-ipi +P2) 
-P3 
o ' 

-Po 
where P a = CPa satisfies cpacp a = 0, it is of rank 2. The vectors 
h" r = 1,2, depending onp, 

hi = (P3' ipi + p2,pO,0), h2 = (ipi - p2, p3,0, pO), (5.7) 

satisfy the linear system 

~Pahr = krpapa, kl = (0,0,1,0), k2 = (0,0,0,1). 

The covectors (Dirac adjoints) ii, = h~yO satisfy 

iir~Pa = krpapa, r= 1,2. 

Thus we obtain (forms which can be foreseen from the gen­
eral theory2.8) by derivation in P, and then in x with P a = CPa' 

iir~hs = 2cp 0cp a8~, iir~aahs = cP °aaCP a8~. (5.8) 

Note also that hrhs = 0, for all r, s ifPa = CPa (but 
hryOhs #0). Inserting (4.7) in (5.3) and using (5.8) we get 

cP 0(2cp aaaAr + A,aaCP a) + hrr( TAoa ) ctlAshs ) 

+ h,~(TAla) ~ 

= hr(H' ~(; ,~)<tIAshs + H ~(; ,~)J). (5.9) 

We thus see that the two amplitudes A,ECm propagate along 
the rays cpa but the background potential induces a mixing of 
these amplitudes and so do the background scalar and spinor 

fields if h ,H ~ (; , ~)h s # 0 when s # r. Moreover the wave 
1 1 

A", and the scalar wave tP act as source of this spinor wave, 

but in exceptional background configurations. 
We shall give applications of these general formulas to 

current physical models in a forthcoming paper. 
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A normalized and centered spectral profile P (ll.l) is conveniently expressed as 
P(ll.l) = (21T)-ISc::. 00 d1" exp[ - ill.l1" - S~dt (1" - t ) 1/1 (t )], which defines I/I(t). We consider cases 
satisfying certain conditions, in particular lS;dtl/l(t)1 < 00. A "broadening strength" A = !leis 
defined, where!l 2 and e are the amplitude and characteristic time scale of 1/1 (t j, respectively. If 
we let, formally, A vary freely, P (ll.l) tends to a Lorentzian when A -0 (weak broadening or 
strong narrowing limit), and to a Gaussian when A ~ 00 (strong broadening limit). To deal with 
situations where one of these limit shapes is only approached, for A not being small or large 
enough, we obtain for P (ll.l) and its shift, width, and asymmetry two kinds of expansions: one in 
powers of A 2, starting with the weak broadening limit; the other in powers of A-I, starting with 
the strong broadening limit. Such expansions should allow one to describe spectral profiles over 
much wider ranges of physical conditions than does the use of just the Lorentzian and Gaussian 
limit shapes. 

PACS numbers: 32.70.Jz, 02.30.Mv 

1. INTRODUCTION 

Spectral lines broadened by random perturbations of­
ten have, in certain limiting conditions, one of two very sim­
ple shapes: Lorentzian or Gaussian. 1-7 In general the Lorent­
zian shape corresponds, in some sense, to a weak broaden­
ing, or narrowing, condition, while the Gaussian shape is 
usually associated with strong broadening conditions. 

Situations may occur wherein a spectral line only ap­
proaches one of these two shapes, without the physical con­
ditions being extreme enough for that shape to be assumed 
exactly. Our purpose here is to deal with such situations, by 
constructing two kinds of expansions for the line shape and 
its characteristic shape parameters, shift, width, andasym­
metry; one kind of expansions is applicable in the neighbor­
hood of the Lorentzian limit, the other in that of the Gaus­
sian limit. 

Such expansions should allow one to describe line 
shapes over much wider ranges of physical conditions than 
does the use of just the Lorentzian and Gaussian, for the 
approach to these limit shapes is often slow in function of the 
relevant physical parameters.7 A welcome feature of these 
expansions is that some of their coefficients are mutually 
interrelated, thus permitting some measure of quantitative 
comparison with experiment, without need for explicit 
computations. 

Expansions of the above kind have recently been found 
very useful for analyzing pressure broadened spectral lines. 7 

In the present paper, we wish to render them more readily 
accessible for other applications, and present more general 
results than those given for the specific needs of pressure 
broadening theory. 

Such expansions were hinted at by Anderson,8 who cal­
culated the first corrections to the Lorentzian and Gaussian 
limit widths, for a special case, and interpolated between the 
two. Such interpolation, however, may not always be 
feasible.9 

In Sec. 2, we set down the basic expressions we shall be 
dealing with, while Sec. 3 briefly reviews the basic theory of 
randomly perturbed spectral lines relevant here. The weak 
and strong broadening expansions are established in Secs. 4 
and 5, respectively, and discussed in Sec. 6. 

The Gaussian limit naturally evokes the Central Limit 
Theorem (CLT) of probability theory.lO,ll In Sec. 7, we con­
sider the case that the spectrum depends in a symmetric 
manner on N random variables, as is the case in pressure 
broadening. 7 The Gaussian limit is then a case of the Central 
Limit Theorem, or a generalization thereof when the N var­
iables are not mutually independent; this latter case may be 
of interest per se, and will be discussed in more detail 
elsewhere. 

A. Notation and conventions 

Given any function oftimef(t), its Fourier transform 
(FT) will be identified with a hat: 

j(ll.l) = FT!f(t)} =(21T)-lf~",dte-j"1(t). (1.1) 

Derivatives with respect to time are indicated by dots: 

i(t) = df /dt, fk·(t) = (d /dt )"f(t), (1.2) 

and with respect to frequency by primes: 

l'(ll.l) = df /dll.l. 

Convolution is denoted 

If*g)(ll.l) = f~ '" dll.l'f(ll.l - ll.l')g(ll.l'). 

f" N(ll.l) is the Nth convolution power of f(ll.l). 

(1.3) 

(1.4) 

f( + 0) andf( - 0) signify the limits off(t ) as t-o from 
above and below, respectively. 

fit ) - t - m as t~ 00 means thatf(t ) behaves like 1 - m as 
1_00. 
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I(t) S t - m ast-oo means that/(t ) vanishes faster than 
t -m as t-oo. 

I(t)- t - 00 ast-oo means that/(t ) vanishes faster than 
any power of t -I as t-oo. 

I(t ) is said to be C k at to if all its derivatives of order <.k 
are continuous at to. 

The Cauchy principal part is understood whenever the 
generalized function w - I appears inside an integral; 
(w ± iO) - I = W -I + i1r8(w), where 8 is the Dirac function; 
(w ± iO)-2 = - (d Idw)(w ± iO)-I, in the sense of general­
ized functions. 12 

Complex conjugation is indicated with a star. 

2. BASIC EXPRESSIONS 

Although the results we shall obtain are of more general 
applicability, it will be useful, for intuition, to explicitly con­
sider a simple model, that of a randomly modulated 
oscillator2.3 

(2.1) 

Here, Vo is the naturalfrequency of the oscillator and U (t ) the 
random frequency modulation. As a typical example, X (t ) 
might be an atomic dipole randomly perturbed by interac­
tion with its surroundings. 

The basic quantity we are interested in is the power 
spectrum 

.9'(v) = E~(41TT)-I(II: T dte-iV'X(tW), (2.2) 

where ( ) denotes a stochastic average, with respect to which 
we assume time translation invariance (stationarity I3): 

(U(t l)U(t2) .. ·U(tk) = (U(tl + r)U(t2 + r) ... U(tk + r). 
(2.3) 

Physically, P(v) might be the power absorbed from incident 
light of frequency v by our model dipole. 

It is convenient to use the relative frequency 

w = v - Vo (2.4) 

and normalized spectrum 

P(w) = .9'(vo + wrI: 00 dv P(v), (2.5) 

J~ 00 dw P(w) = 1. (2.6) 

In view of (2.6) and P(w)~O [obvious from (2.2)], it will be 
convenient to regard P (w) as the probability density of some 
random variable /1-, which is thus defined by 

Prob{/1- = w l = P(w) = (81p, - w)y, (2.7) 

where ( Y denotes the associated stochastic average: 

(j1p,)Y= I: J(w)P(w)dw. (2.8) 

The moments of P(w) are thus 

<I-lkY= J~ 00 wkp(w)dw. (2.9) 

We assume that the first moment 
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<I-lY= (U) = O. (2.10) 

This entails no loss in generality, since a nonzero <11-1 can 
always be absorbed in Vo-Vo + <11- r. which is then defined as 
the mean frequency. 

Let us introduce the characteristic function of /1-,10.11 

C(r) = I: 00 dw eiWTp(w) = (eipTY. (2.11) 

Reciprocally 

P(w) = (21T)-J: 00 dre-iWTC(r). (2.12) 

By the Wiener-Khintchin theorem,13 C (r) is a normalized 
autocorrelation function: 

C(r) = (x(0)*x(r)/(lxI2) (2.13) 

= (exp[if dt U(t)]), (2.14) 

where we introduced an "interaction representation" 

(2.15) 

wherein the unperturbed (or mean) time evolution is factored 
out. In the special case that U (t )== U (0)= U is static, 

Cstatic(r) = (eiTU
), (2.16) 

Pstatic(W) = (8 (U - w) = Prob{ U = w l (2.17) 

are just the characteristic function and probability density of 
U, respectively [in this case, Ip" ( 1) may be identified with 
(U,( »)]. 

The fact that P (w) is real and positive in (2.11) implies 

C( - r) = C(r)*, (2.18) 

IC(r)I<.C(O) = 1. (2.19) 

Because of(2.18), we may rewrite (2.12) as 

P(w) = 1T- IReP +(w), 

where P +(w) is the "Fourier-Laplace" transform 

P+(w) = ioodre-iWTC(r). 

(2.20) 

(2.21) 

The imaginary part of P + (w) is often also of physical interest. 
It is related to the real part (2.20) by the dispersion relation 14 

1m P +(w) = - I: 00 dw'P(w')/(w - w'). (2.22) 

Usually, P(w)-w - 00 as w- ± 00 (see Sec. 3), while 
1m P + (tv) - w - I is slowly decaying [as is obvious from 
(2.22)]' 

Equations (2.12) and (2.13) are the basic expressions we 
shall be dealing with. As mentioned initially, we use the 
model (2.1) mostly for heuristic purposes; in fact, the auto­
correlation (2.13) can be imagined of a much more general 
form, classical or quantum, than the simple expression (2.14) 
obtaining for model (2.1). For instance,7 x(t ) might represent 
a quantum operator in Heisenberg representation, and «( ) 
signify Tr p( ), where p is some statistical operator (in this 
case, * indicates Hermitian conjugation). We shall always 
regard (2.13) as of such a general nature, and all expressions 
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(0) 

(b) 

FIG. 1. (a) Definition of the shape parameters: shift = w" width = r + v, 
asym = (r/v) - 1. (b) PI(W) is the inversion of P(w) about w = O. 

wherein U (t ) does not appear explicitly are to be so under­
stood [of course, expressions containing U (t ) pertain to (2.1)]. 

Rather than P (w) itself, its shift, width, and asymmetry 
are often more practical characterizations of the line shape, 
especially if it is desired to study the evolution of the spec­
trum under changing physical conditions. We use the fol­
lowing definitions [Fig. l(a)]. 
The shift Ws is the value of w maximizing P (w): 

(dP Idwl., = N, = O. (2.23a) 

Half-height frequencies w + and w _ are defined by 

P(w±) = ~P(ws)' (2.23b) 

with w _ < Ws < W + . 

asym = (!'..) - 1 = Ws - w_ 
V W+-Ws 

-1, (2.24a) 

where r = Ws - w_ and v = w+ - Ws are the "red" and 
"violet" "half-widths," respectively. One may also add to 
this list 

height = P(ws). (2.24b) 

The above definitions may be ambiguous when P (w) has a 
complicated shape (e.g., ifit has several local extrema); but 
for the situations we shall consider, i.e., the vicinities of Lor­
entzian and Gaussian profiles, there is no difficulty. 

It will prove useful to consider the inversion 
transformation 

I: P(w) ........ P(w)=P( -w). 

We have [see Fig. l(b)]: I (r) = v, I (v) = r, and 

(2.25) 

Iws = - w" Iw+ = - w_, Iw_ = - w+, (2.26a) 

382 J. Math. Phys., Vol. 24, No.2, February 1983 

I (shift) = - shift, I (width) = width, (2.26b) 

I (asym) = (r IvI) - 1 = (vir) - 1 = (asym + 1)-1 - 1. 
(2.26c) 

We will find in general that the inversion (2.25) can be real­
ized by means of simple modifications of parameters or con­
stants upon which P (w) and its shape parameters depend. 
Thus, e.g., once an expression or expansion is obtained for 
w +, the corresponding result for w _ can be deduced by ap­
plying I [in view of (2.26a)]. Also, if one prefers to define 
asymmetry as 

asym' = (vir) - 1, (2.27) 

the latter can be deduced from asym, Eq. (2.24), by applying 
I [in view of (2.26c)]. 15 As a first alternative realization of 
(2.25), we have, in view of(2.12) and (2.18), 

I: C(T)""""C(T)*. (2.28) 

3. GENERAL THEORY 

It proves advantageous to express the correlation func­
tion (2.13) as 

C (T) = eG(Ti, G (T) = In C (T). (3.1) 

In general, physical systems are free of discontinuities, 
so that C (T) and G (T) are C 00 on ( - 00,(0). This implies, by 
general properties of Fourier transforms, 12 that P (w) _ w - 00 

as W"""" ± 00. Then, all the moments of P (w) exist, and are 
generated by the Taylor expansion of C (T): 

C (T) = (ei/-'Ty = 1 + ! (iT)k (p,k Y . (3.2) 
k=1 k! 

One then has 10 

00 (iT)k I .. k 'f. 
G(T) = (ei/-'T - lYe = L V; e, 

k= I k. 
(3.3) 

where (p,kYe denote the cumulants (or semi-invariants) of 
P (w); these are essentially defined by (3.2) and (3.3), each 
(p,k Ye being a real polynomial in moments of order <k; the 
first few have the explicit expressions [taking account of 
(2.10)] 

(pYe = (p,Y = 0, (p,2Ye = (p,2'f, 

(p,4'fc = (p,4y - 3(p2'j2, 

Although, strictly speaking, G (T) is Coo for real physical 
systems, there are systems which closely mimick a discontin­
uous behavior, and true discontinuities may in fact appear 
mathematically when, e.g., a bulk limit, volume ........ 00, num­
ber of particles ........ 00 , is taken; also, certain models may con­
tain discontinuities (e.g., the square well model in pressure 
broadening7). In order to cover such cases, we will allow for 
possible discontinuities in the third and higher derivatives of 
G (T). Because of (2.18), implying 

G( - T) = G(T)*, (3.5) 

the points of discontinuity are disposed symmetrically about 
the origin T = 0, which may itself be such a point. We shall 
assume, however, that T = 0 is not an accumulation point of 
points of discontinuity, so that there are (symmetric) open 
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intervals ( - 8,0) and (0,8 ),8> 0, wherein G (T) maybe Taylor 
expanded: 

(iT)k I .. k y,± 
G (T~O) = - ~r(p21c + f ~ c, (3.3') 

k=3 k. 
where 

(Pklc± = G k.( ± O)/ik. (3.6) 

Discontinuities at T = 0 translate as complex valued "cumu­
lants" (3.6): indeed, (3.5) implies (Pk Ic- = (Pk Ic+ *, so that 
(3.6) is real if and only if G k'(T) is continuous at T = 0 [Le., 
G k.( + 0) = G k.( - O)¢:>(pk 1/ = (Pk Yc- = (Pk Yc+ *]. Of 
course, (Pk Yc± = (Pk Yc if G (T) is C kat T = O. 

BecauseP(w) is normalized and centered [Eqs. (2.6) and 
(2.10)], implying G (0) = G (0) = 0, G (T) is completely deter­
mined by its second derivative: 

G (T) = - f dT'(T - T')lf/ (T'), 

where we denote 

If/(T) = - G(T) = - (d /dT)21n CIT). 

(3.7) 

(3.8) 

The quantity If/ (T) completely determines the spectrumP (w), 
and plays a central role in the theory. It has, in certain cases, 
a direct physical meaning (see below). 

In order to motivate certain properties which will be 
assumed of If/ (T), let us refer to model (2.1) and (2.14), for 
which case 

G(T) = (exp [i f dt U(t)] -1)c 

= f ik, ITdtllTdt2···1Tdtk (U(t l )U(t2) ... U(tk)c' 
k=lk.o 0 0 

(3.9) 

where the "generalized cumulants" (UI U2···Uk) c are essen­
tially defined2,16 by (2.14) and (3.9); the first few have the 
explicit expressions [taking account of (2.10)] 

(UI)c = (UI ) = 0, (UIU2)C = (UIU2) , 

(UIU2U3 )c = (UIU2U3 ), 
(3.10) 

(UIU2U3 U4 )c = (UIU2U3 U4 ) - (UIU2) (U3 U4 ) 

- (UIU3 ) (U2U4 ) - (UIU4 ) (U2U3 )· 

Such "mixed" cumulants have the notorious cluster property 
of vanishing whenever their arguments separate into two or 
more statistically independent, Le., uncorrelated, 
subsets. 16.17 

Consider now lS 

If/(T) = (u(o)exp [i f dt U(t)] U(T))c 

= (U(O)U(T) + f iklf/(kl(T), 
k=1 

where 

(3.11) 

If/(kl(T) = f dtki'dtk- 1 ••• i'dtl(U(O)U(tt! ... U(tk)U(T)c. 

(3.12) 

Note that if the frequency modulation U (t ) is Gaussian, 19 
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If/ (T) = (U (O)U (T) is just the autocorrelation of U(t), and is 
thus of direct physical import. 

We make the important assumption that U (t ) has a fin­
ite correlation time e. 20 Then, if T > (k + l)e in (3.12), the set 
[ U(O),U(tl), ... ,U(tk ),U(Tl) separates into at leasttwo uncor­
related subsets, as there is at least one gap larger than e in the 
sequence 0 < t I < ... < t k < T; this implies, by the cluster prop­
erty of cumulants, that (3.12) vanishes. We thus conclude 
that 

If/(T)-o aST-+±OO. (3.13) 

We argued (3.13) on the basis of model (2.1); but (3.13) largely 
transcends that model, and is presumed to usually be the 
case whenever P (w) consists of a single line, or of several 
mutually "interacting" lines (Le., the physical system under­
goes transitions between the different line frequencies as 
time proceeds).21 How fast If/(T) tends to zero depends on 
each particular problem and is usually not easy to determine. 
We shall assume that 

If" dT If/(T) I < 00, (3.14) 

which happens, e.g., if If/ (T) S T- I as T-+ 00. Assumption 
(3.14) is instrumental for the weak broadening limit shape to 
be Lorentzian, and is justified a posteriori whenever this 
shape is effectively observed to be approached experimental­
ly. In cases where (3.14) does not hold, the weak broadening 
limit and expansions discussed in this paper do not apply.22 

A. The broadening strength A and scaled function t/I(t} 

It is useful to distinguish between the size and shape of 
If/ (T), as these two qualities reflect on P (w) in quite different 
manners. 

The size of If/ (T) may be characterized (vertically) by its 
amplitUde n 2 taken, e.g., as the initial value 

n 2=lf/(0) = (p2y= (U2), (3.15) 

and (horizontally) by its characteristic time scale e. The lat­
ter may really be defined from two different points of view: e 
may be the decay time of If/(T) taken, e.g., as23 

e d = 100 

dTI If/ (T) ( (decay time scale), (3.16d) 
o If/ (0) 

with m > 0 chosen such that the integral exists; or, e may be 
a typical time interval over which If/(T) varies significantly 
given, e.g., by24 

e v- I = Maxi W(T)/lf/(O)I (variation time scale). 

(3.16v) 
The times ed and ev will usually be comparable, and we 
shall not distinguish between the two for simplicity; in cases 
where they are very different [which may happen, e.g., if If/ (T) 
is strongly oscillatory, or if (3.14) does not hold, usually im­
plying e d = 00], it is better to take e = e d for dealing with 
weak broadening [if(3.14) holds] and e = ev for dealing 
with strong broadening. At any rate, since e is introduced 
mostly for formal purposes, i.e., to get dimensionless quanti­
ties and make relative orders of magnitude self-apparent, a 
rough estimate of it suffices in practice (see Sec. 6 A). 
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Within model (2.1), e may sometimes be comparable to 
the correlation time 0 of U (t ) [in particular if U (t ) is Gaussian 
or approximately so], but these two times may also be quite 
different: e.g., in the static case U (t )= U (0), 0 = 00 while e 
could be anything, finite or infinite. In general, we tend to 
expect e,,0.25 

Taken individually, nand e are not very determinant, 
as their numerical values depend on the choice of units (i.e., 
they only set the scale). What is significant is the dimension­
less product 

A=ne, (3.17) 

which may be regarded as an absolute size parameter charac­
terizing 1/'(1") [this interpretation seems especially appropri­
ate when m can be chosen! in (3. 16d), for then 
A = fO'd1"1 1/'(1")1 1/2 is just the "area" of 11/'(1")1 1/2]. 

As to the shape of I/' (1"), it may be represented by 

¢(t) = I/' (et)ll/' (0), (3.18) 

a dimensionless function of dimensionless time, of unit size 
[i.e., of unit amplitude and characteristic time scale].26 We 
shall also need the Fourier transform of "p(t), ¢(v), which is 
real [since "p( - t) = "p(t)* by (3.5)] and normalized: 

f: '" dv ¢(v) = "p(0) = 1. (3.19) 

In the case of model (2.1) with a Gaussian modulation U (t ), 
¢(t) and ¢(v) are the (normalized and scaled) autocorrelation 
and power spectrum of U(t), respectively-very important 
objects indeed. 

Defining [compare (3.7)] 

g(t) = - LdS(t - s)"p(s) = A -2G (te), (3.20) 

we rewrite (2.21) and (3.1) as 

p +(w) = e I'" dt exp[ - i(we)t + A 2g(t)] (3.21) 

or, equivalently, 

p +(w) = n -II'" dt exp[ - i(wln)t + A 2g(t IA )]. 

(3.22) 

The shape of P +(wj is seen to be entirely determined by A 
and "p; e or n -1 merely scale P + (w), and the explicit appear­
ance of either may be eliminated by simply taking it as unit of 
time. 

Weak and strong broadening correspond to small and 
large values of the "broadening strength" A, respectively, 
and our main purpose is to construct expansions in powers of 
A 2 and of A-I for P (w) and its shift, width, and asymmetry. 
In so doing, we shall formally treat A as a free parameter that 
can be varied at will, independently of"p; in particular, we 
shall contrive weak and strong broadening limits A -0 and 
A -+ 00 • However, one should be aware that in reality, A does 
not always enjoy such freedom: for one thing, A will often 
not be an experimentally controllable parameter; more so, 
even in theory A cannot always be varied arbitrarily, for this 
is likely to destroy the positivity of P (w). It is only in those 
special cases where .p (v) is itself positive that A may be varied 
freely without risk as to the positivity of P(w) (see Sec. 6 C); 
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and indeed, in the familiar examples where A is variable (the 
Gaussian approximation in magnetic resonance, 1-4 the An­
derson-Talman approximation in pressure broadening5

•
7

), 

¢(v) is the power spectrum of a physical observable, and evi­
dently positive. Still, for convenience of discussion, we will 
allow A to vary freely, as already said; but we keep in mind 
that in any concrete case, A has a specific value, and only in 
special cases is it actually variable, experimentally or 
theoretically. 

B. Small and large time behaviors of g(t) 

In weak (A < 1) and strong (A> 1) broadening condi­
tions, P (w) is mostly determined by the behaviors of g(t) at 
large and small times, respectively. 

Let us start with the large time behavior. Assumption 
(3.14) impliesg(t )-tas t-+ ± 00. To display this explicity, let 
us rewrite (3.20) as (the following results are for t;;;'0)27 

g(t) = ~(t) + {3t , (3.23) 

where 

(3 =id - b = - 1'" dt "p(t ) = g( 00 ), 

band d real, and 

~(t) = 1'" s ds[¢(s) - ¢(s + t)] 

(3.24) 

(3.25) 

increases slower than t, i.e., ~(t )It-o as t-+ 00. Inequality 
(2.19) implies b;;;.O; we shall assume more restrictively that 

b>O. (3.26) 
When this is not the case, the weak broadening results dis­
cussed in this paper do not apply. 

If the integral of each term in the integrand of (3.25) 
exists separately [which happens, e.g., if¢(t):S t -2 as t-+oo], 
we have 

g(t) = h (t ) + a + (3t, 

where 

a=ia - c = 1'" s ds "p(s) = - h ( + 0), 

a and c real, and 

h (t) = -1'" s ds "p(s + t). 

(3.27) 

(3.28) 

(3.29) 

Because ¢(s) is of unit size, a,{3i', and h are of order 1 in 
magnitude, and h (t )-0 with decay time or order 1. 

It is useful to have some of the above functions and 
constants expressed directly in terms of ¢(v), especially since 
the latter may in certain cases be directly accessible experi­
mentally (see Sec. 6 C). We have, firstly,28 

g(t) = f: '" dv (e
i

"' - 1 ~ ivt )¢(v) . (3.30) 

Note that this is already in the form (3.27), if only we inter­
pret v- 2 as the generalized function (v + iO)-2, thereby giv­
ing meaning to the separate integral of each of the three 
terms in the integrand [provided ¢'(v) is not singular at 
v = 0].29 We deduce from (3.30) with v- 2 interpreted as 
above, or directly from (3.24) and (3.28) (;P' d;Pldv) , 
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b=~O), d= -Joo dv ¢(v) , 
-00 V 

(3.31) 

a = 1T¢'(O), C = Joo dv ¢'(v) . 
- 00 v 

Let us note, for later use, the following realizations of 
the inversion (2.25): 

I: g~g*; d~ - d, (g# ~g#'), 

or (a~ - a, h~h *). (3.32) 

As to the small time behavior of g(t ), it is conveniently 
exposed as 

g(t)= -!t2+t3r(t) (3.33a) 

2 ~ (it)krk_ 2 
= -!t + ~ 

k=3 k! 
(3.33b) 

where 

r(t) = - !fdS(I-SN1(st) (3.34) 

is of non-negative order in t. In (3.33b), equivalent to (3.3'), 
we denoted 

r k = 1//'( + O)/ik. (3.35a) 

Ift/!{t) is C k at t = 0, 

r k = f~ 00 dv Vk¢(V) (3.35b) 

is the k th moment of ¢Iv), and real [in concordance with 
(3.3)]. Note that expansion (3.33b) with (3.35b) is immediate 
from (3.30). 

Condition (2.19) implies Reg(t )<Reg(O) = O. We shall 
assume more restrictively that 

Reg(t) <0 for t>O, (3.36) 
i.e., the value 0 is attained only at t = O. This is a rather weak 
assumption, as it is clear, on considering (2.14), that in only 
rather special cases will C (1') reassume the value 0 outside 
l' = 0.30 Whenever (3.36) is not the case, the strong broaden­
ing results discussed in this paper do not apply. 

Thebehaviorsg(t )-tast~oo andg(t )-t 2 ast~ [and 
(3.36)] lead to Lorentzian and Gaussian spectral profiles in 
the respective limits A ~ and A ~ 00 • 

c. A---+O: Weak broadening or strong narrowing limit 

Consider (3.21) with g(t) given by (3.23) or (3.27). As 
A~, A 2g(t ~A 2f3t and [in view of (2.20)] 

A 2b 
P (W)~PWB (w) = 1T-

l
e (we _ A 2d)2 + (A 2b )2 ' 

(3.37a) 

with corresponding shape parameters 

shift = AIld, width = 2Al1b, asym = O. (3.37b) 

When (3.27) holds, PWB(w) constitutes a good approxi­
mation to P(w) for 

A 2<1, Iwe 1<1; (3.38) 

the first condition ensures that only A 2f3t in A 2g(t) ever be­
comes appreciable [recall that all quantities in (3.27) are of 
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order 1], the second that the Fourier operator fdt e - iw9t 

does not "see" details on a time scale less than I, so that it is 
blind to thefactg(t )=tf3twhen t < 1. Note that the frequency 
range of validity ,I wi <e -I, covers the important part of the 
spectral profile, since width ~11 = A 2e -I <e -I when 
A 2 < 1; this often prompts omission of the second of condi­
tions (3.38). Validity conditions for the approximation 
P(W)~PWB(W) when (3.27) does not hold are given in Sec. 4. 

In (3.37), the width is much less (sinceA<I) than the 
mean deviation 11; this means that most of the "energy" is 
spread out in the wings of P (w), which are indeed far extend­
ing in (3.37a). Recall though, from the discussion following 
Eq. (3.1), that for real physical systems, P (w)-w - 00 as 
Iwl~oo, i.e., P (w) eventually decays much faster than (3.37a) 
in the far wings Iwe 1 > 1. 

D. A ---+ 00: Strong broadening limit 

When A~oo, er1'g{tIA) in (3.22) becomes vanishingly 
small, because of(3.36), except in the vicinity oft = 0, where 
A 2g(t / A )~ - !t 2 in view of (3.33); thus 

P(W)~PSB(W) = (21T11 )-1/2 e-(1I2)(w/IJ)' 

with shape parameters 

shift = 0, width = 2KI1, asym = 0, 

where31 

K = (2 In 2)1/2 = 1.17741 .... 

(3.39a) 

(3.39b) 

(3.40) 

Here, the width is roughly equal to the mean deviation 11. 
PSB (w) constitutes a good approximation toP (w) if(loosely)32 

A>Maxl~t)I~1. (3.41) 

The main purpose of the paper is to extend the limit 
results (3.37) and (3.39) by means of two kinds of expansions 
for P (w) and its shape parameters: one in powers of A 2 start­
ing with (3.37), the other in powers of A -I starting with 
(3.39). 

4. WEAK BROADENING EXPANSIONS 

In this section, we construct expansions in powers of 

y=A 2 (4.1) 

for P (w) and its shape parameters. As we here deal with the 
weak broadening regime A < I, it is appropriate to use the 
weak decay time (Al1b ) - I of C (1') as basic time scale. We 
accordingly re-express (3.21) and (3.27) as 

where 

w -Al1d 
v= 

Al1b 
(4.2) 

p +(v) = 100 

dt exp[ - (1 + iv)t + ya + yh (t /yb )].(4.3) 

For simplicity of notation, we use (3.27) whether a and h (t ) 
exist or not, it being understood that in the latter case, a = 0 
and h (t ) stands for t'(t ), Eq. (3.25). 

In the weak broadening limit y~, 

P+(v)~(l + iV)-1 (4.4) 

and the (scaled) spectrum 
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A ,.... A 1(1 2)-1 (45) P(V)=1T- IReP + (v)-+PWB (v) = 1T- + V . 

equivalent to (3.37). Our intention is toexpressP +(v) andP(v) 
as products of their weak broadening limits times bivariate 
expansions in powers of rand v. As a first step, we rewrite 
(4.3) as 

P+(v) = (1 + iV)-I! erU [ 1 + (1 + iv)T(v)] J, (4.6) 

where 

T(v) = rb i" dt e - rbl l + iu)t [erhlt ) - 1]. (4.7) 

There remains to expand! ... J in rand v. 

A. Case h(t)-t- '" as t-oo 

It is conceptually simpler to first assume that ¢(t ), 
thenceh (t), vanish faster than any power oft -I as t-+oo. We 
may then expand the exponentials in (4.7), obtaining 

" " (yv - irYr"Tkj 
T(v) = rk~Ij~O j1k! (4.8) 

where the 

Tk=T~j + iT~j = bj+ I roo dt( - itYh (t)k (4.9) 
J Jo 

are of order 1, since b is, as well as h (t ) in both amplitUde and 
decay time. 

1. Expansion of P(v) 

Introducing (4.8) into (4.6), expanding eira [rec~l: 
a = ia - c, Eq. (3.28)], and rearranging, we obtain P +(v) as 
e - rC

( 1 + iv) - I times a bivariate expansio~ in powers of r 
and yv. The corresponding expansion of P (v) is readily. de­
duced; to second order in r (see Appendix B for the thlrd 
order terms) 

P(v) = 1T- I(1 + v2)-le- rC 

X [1 + (yv)a + r(T~o - ~a2) + (yv)2T~0 + ... ]. (4.10) 

The validity conditions of the weak broadening approxima­
tion (1 + v2

) - I are again seen to be 

r<l, lyvl<l, (4.11) 

equivalent to (3.38). In (4.1O)~we kept e - rc unexpanded, as it 
does not affect the shape of P(v), and moreover, there are 
cases where e - rC

( 1 + v2
) - I is a much better approximation 

than (1 + V2)-I, valid outside conditions (4.11).33.34 
By retaining in (4.10) terms up to orders k andj in rand 

yv, respectively, we obtain higher order weak broadening 
approximations P~~, valid over wider ranges in r and v; 
e.g., 

A 1 + yva 
P~~(v) = 1T- l e- rc 

2 

l+v 
(4.12) 

and35.36 

plo.,,)(v) = e-rc b -I¢(rbv) (4.13) 
WB l+v2 

The numerator of(4.13) may also be viewed as the first term 
of an expansion in r alone. Approximation (4.13) is valid at 
all values of v, to lowest order in r, in contrast to (4.5) or 
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(4.12) valid only in the)ine c~nter. However, one should be 
aware that, although P(V)-+P~B)(V) rigorously as r-o, 
there may be, atjinite values of r ho,,:ever small, frequ~ncy 
ranges wherein P (v) is dominated by hlgher order terms 10 r; 
this is because ¢(v) may vanish very rapidly beyond some 
frequency, while higher order terms, which involve convolu­
tion powers of i),(v) (see Sec.6 D), may extend much farther in 
frequency and thus eventually dominate, however small r. 

2. Expansions of shape parameters 

We next construct expansions in powers of r for the 
shape parameters of P(v). We first postulate for Vs and v ± 

[see (2.23)] expansions 

v = vlO) + yvll) + . ..2v12) + "', s. ± s. ± s. ± r s. ± (4.14) 

where vl°) = ° and vlO) = ± 1, as determined from (4.5). To s ± 
determine the v~) ± ' we introduce (4.10) into (2.23), then 
(4.14), and expand throughout in r. Setting to zero the coeffi­
cients of successive powers of r, we obtain relations between 
the vII) which are solved recursively. The expansions of s, ± 
width, asymmetry, and height are then deduced by use of 
(2.24). We get37.38 

shiftu = !ra + (r/24)(a3 + 12T~I) + ''', 
widthu = 2 + ~r(a2 + 4T~0) 

+ r(T;o - 2aT;o + 2T;I) + "', 
asymu = - ra + !ra2 (4.15) 

- (r/12)(a3 + 12aT~0 + 36T~I) + "', 
heightu = 1T- l e- rc [1 + r( - !a2 + T~o) + ... ] 

= 1T-
1 [1 - rc + r(~c2 - !a 2 + T~o) + ... ]. 

The SUbscripts v indicate that these are the shape parameters 
of P(v), from which those of P(cu) are trivially deduced. 

The above results were obtained under the assumption 
h (t) - t - " ; more generally, they are valid provided the 
asymptotic behavior of h (t) is such that the Tkj , Eq. (4.9), 
exist for all k and j. 39 

B. General case 

But if, e.g., 

h(t)_t-<T ast-+oo (-I<a<oo) (4.16) 

(if - 1 < a < 0, h stands for i* and a = ° as we convened), 
the Tk · are ill defined wheneverj - ka> - 1. This means 
that o~ly the finite form of the Taylor expansion (4.8) can be 
used [up to order ka - 1 in r(v - i) for each value of k], and 
likewise for (4.10). The remainders may be expanded in rand 
v, but the result is no longer in integral powers of rand yv; 
rather, we get nonanalytic expansions in r and v; likewise, 
expansions (4.15) are valid only up to order a + 1 in r,40 the 
remainders again being expressible as nonanalytic expan­
sions in r. Let us see this explicitly. 

1. Expansion of PM 
Let us go back to (4.7) and, keeping e - rbt unexpanded, 

obtain in lieu of (4.8), 

T(v) = ! ! Jr"~t , (4.17) 
j=Ok=1 k!}. 
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where we define (the dependence on x is introduced for later 
use) 

Skj = (rb Y+ 1100 

dte-rbt(1 +iX)( - it)jh (t)k. (4.18) 

The factor e - rbt guarantees the existence of S kj for all k and 
j, but at the cost of a generally nonanalytic r dependence: 
indeed, it is shown in Appendix A that if h (t ) behaves asymp­
totically like (4.16), then (for k> 1) 

Skj = rj+ IPol(r) + (const)r ku 

{
I, ifj - kO'> - lor not integer (419) 

X In (r), ifj - kO' = integer< - 1 ,. 

where Pol(r) denotes some polynomial in r. Ifmore general­
ly, h (t) behaves asymptotically as a sum of terms t - r [and 
t - r In(t), etc.], then 

(4.20) 

where 0' is the lesser of the exponents r, and (S kj)' and (S kj)" 
are of non-negative orders in r, (S kj)" generally being nonan­
alytic in r. Expansion (4.17) thus becomes 

T(v) = ! ! (yvYyk+ I(S~j)' + Ih,jl +U)k(S~j)". (4.21) 
j=Ok=1 k!j! 

The first sum is similar to (4.8), to which it must become 
identical if 0' = 00 and the S~j are expanded in r [for the 
second sum is then of order roo = 0 (since r < 1 here)]. The 
second sum is of a very different nature, being in powers of 
rl + u and v rather than of rand yv. 

Equation (4.21) is to be substituted into (4.6), the Ski 

replaced by their (nonanalytic) xxpansion~ in r, and the re­
sult rearranged; this will yield P +(v) and P (v) as products of 
their weak broadening limits times nonanalytic expansions 
in rand v [of course identical to (4.10) up to terms containing 
ill-defined Tkj's]. 

The validity conditions of the weak broadening ap­
proximation (4.5) are again (4.11) if 0'>0; but if - 1 < 0' < 0, 
we have the more stringent requirements41 

r 1 +u <1, Ivlr l +a<l (4.22) 

as one would expect, since /3t then has a harder time domi­
nating g(t) [consider (3.27) with (4.16) and - 1 < 0' < 0]. 

2. Expansions of the shape parameters 

We now construct the expansions of the shape param­
eters for the above case that the Tkj do not all xxist. Because 
of the second sum in (4.21), the expansion of P(v) deduced 
from it [akin to (4.10)] is no longer convenient for deducing 
the expansions ofv ± .42 We rather use the following expan­
sion in r and v - x, where x is to be assigned values in the 
neighborhoods of which we need to evaluate F(V)43: 

F(v) = 1T- I ! ! (v - x:j~,kkt , (4.23) 
k=Oj=O k.J. 

where we define 

P = r, K kj = Re S'kJ, if 0'>0, 

(4.24) 
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theS'kJbeing given by (4.18), but withh replaced by gf* [or by 
ia + h if(3.27) holds]. TheKt are hereby defined of non­
negative order in r. 

We may now expand each term of(2.23) about the value 
taken by its arg~ment as r-o, i.e., we use (4.23) with x = 0 
fQr expanding P(vs)' and with x = ± 1 for expanding 
P(v ± ).44 We then introduce (4.14) with r replaced by p, ex­
pand throughout in p, and set to zero the coefficients of suc­
cessive powers of p. We thereby obtain37

,4S 

shiftv =~pK?1 +p2(K?IK?2 +K~tl+· .. , 

widthv = 2 + 2p(K i6 + K io - K?o) + ... , 
asymv =p(K?1 - 2K 16 + 2K io) + ... , 

(4.25) 

where K lj K k7 I. There remains to replace each K kj by its 
own expansion in r, and regroup terms of same order. Note 
that if - 1 < 0' < 0, the expansion parameter p = rl + U is a 
fractional power of r [compare (4.22)]. 

Incase (3.27) holds, and moreover h (t)::::; t -I ast~oo, it 
is more convenient to have the contributions from a and h (t ) 
separated out; also, the K kj or S kj are then of needlessly high 
order in r.46 Referring back to (4.18) and (4.19), we rather 
define 

r x rxr 'r xi -ISx (426) kj= kj+l kj=r kj • 

of non-negative orderin r (since 0'> 1 here) and obtain, in lieu 
of (4.25),47 

shiftv = Wa + !rr?~ + (r/24)(a3 + 6r~~ 
+ 6ar?; - 12ar?;) + ... , 

widthv = 2 + !r(a2 - 4r?~ + 4r i6 r + 4r io 1 + ... , (4.27) 

asymv = - ra + !r(a2 + 2r?~ - 4r Iii r + 4r iii 1 + .... 

Clearly, once the St are replaced by their (nonanalytic) ex­
pansions in r, and (4.27) is properly rearranged, the latter 
must become identical to (4.15) up to terms containing ill­
defined Tkj's [i.e., up to order 0' + 1 in r]40; of course, if 
h (t )-t - 00, (4.25) and (4.27) are equivalent to (4.15). 

Let us note finally the realizations of the inversion (2.25) 
relevant here [I below is inversion about v = 0; to get inver­
sion about {U = 0, add d~ - d in view of (4.2)48,49]: 

I: a~ -a, Tkj~( - YT~ OrSkj~( - YSkjx* 

(4.28) 

These may be used to the ends mentioned in Sec. 2. 

5. STRONG BROADENING EXPANSIONS 

We will now obtain expansions in powers of 

E=A -I (5.1) 

for P({U) and its shape parameters. As we here deal with the 
strong broadening regime A> 1, it is appropriate to use the 
strongdecaytimefi -I ofC (T) as basic time scale. We accord­
ingly re-express (3.22) and (3.33) as 

P +((U) = fi -IP+({U/fi), (5.2) 

where 
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P+(y) = flO dtexp[ - iyt - !t2 + €t 3r(€t)]. (5.3) 

The (scaled) spectrum 

PlY) = 1T- 1ReP+(y) = Prob{fi =yJ (5.4) 

is the probability density of the normalized variable [recall 
(2.7)] 

fi = !It - (p,1)/(p,2y!/2 (5.5) 

satisfying 

f: "" dy PlY) = 1, <fiY = 0, <fi2, = 1. (5.6) 

In the strong broadening limit €-D 

P + (y)_E (y), P(y)_(21T)-1/2e - (I/2)y' (5.7) 

equivalent to (3.39); we denoted50 

E (y) = 1"" dt e - iy' - (112),' 

= (1T/2)1/2e -(1I2)y' - i21/2D(y/21/2) (5.8) 

=E r(y) + iE i(y), 

where 

D(x) = -D(-x)=e-x'fdte" 

is Dawson's integral (tabulated51 ). Note that Er(y)_y- "" 
and Ei(y)_y-I asy- ± 00. 

A. Expansion of pry) 
Let us now keep € finite and, using (3.33b), expand 

3 [ "" ~rdit)k+2] 
F(it )=eE

' r(E') = exp L (5.9) 
k= I (k + 2)! 

= 1 + €bl(it) + ~b2(it) + ~b3(it) + ... , (5.10) 

where the bj(z) are polynomials in z (extensively studied in 
Refs. 10): 

bo = 1, bl(z) = (r/3!)i\ 

(5.11) 

We thereby obtain P + (y) as an expansion in powers of €: 

P+(y) = F( - d /dy)E(y) 

"" ( - d) = L €j bj - E (y) . 
j=O dy 

(5.12) 

The derivatives of E r(y) and E i(y) contained in (5.12) are 
expressible as52 

(- d /dy)kEr(y) = Hk(y)E(y), 

(- d /dy)kEi(y) = Hk(y)Ei(y) +Bk_ 1 (y), 

where 

Hk(y) = e(l/2lY'( - d /dy)ke - (1I2)y' 

(5.13a) 

(5.13b) 

(5.14) 

are Hermite polynomials, and Bj(y) are real polynomials of 
order j in y, e.g., 

(5.15) 

Note that (5.13b) is useful at moderate values ofy, as we 
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require below; but for large y, at which 
(d /dy)kEi(y)_y - k - I is small, (5.13b) is clearly not practi­
cal, as it then expresses a small number as a difference of 
large numbers. 

If "'(t ) is C "" at t = 0, as is the case for real physical 
systems [see discussion following Eq. (3.1)], the r k are real 
[Eq. (3.35b)], andF( - d /dy) is areal operator, sothatEi(y) 
does not contribute to the real part of(5.12). the € expression 
of the spectrum P (y) is then 

PlY) = (21T)-1/2e -(1I2)y'{ 1 + I€j bj [zn-Hn(y)]J 
j= I 

= (21T)-1/2e -(I/2)y'{ 1 + €(r/3!)(y3 - 3y) + ... J, 
(5.16) 

where bj [zn_Hn ] is obtained from bj(z) by replacing eachzn 
by the Hermite polynomial Hn (Y), i.e., writing (5.11) as 
bj(z) = ~nbjnzn, bj [zn_Hn] = ~bjnHn' 

If "'(t) has discontinuous derivatives at points ti :;':0, 
(5.16) still applies; but note that by general properties of 
Fourier transforms, 12 P (y) then has slowly decaying oscilla­
tory tails -y - mCOS[yti + (const)], not visible on (5.16) 
[which rather gives the impression that P( y)-y - "" ; this, 
however, is the case only if "'(t) is C"" on ( - 00,00 )]. 

If "'(t ) has discontinuous derivatives at t = 0, this leads 
to complex rk's [see discussion following Eq. (3.6)], so that 
in (5.12), the slowly decaying E i(y) contributes to P (y) 
= Re P +(y) as well as to 1m P +(y), i.e., PlY) has tails _ y - m, 

as of course expected. 12 

B. Expansions of shape parameters 

We now obtain expansions in powers of € for the shape 
parameters of P (y). The procedure is quite similar to that 
used for obtaining (4.25). We first require an expansion of 
PlY) in powers of € and (y - Y), where Ywill be assigned 
values in the neighborhoods of which we need to evaluate 
PlY). We have, from (5.12),53 

P(y)= I I~(Y- y)jp~, (5.17) 
k = OJ= 0 

where 

p ~ = (l/Jl)(d /dYY1T- I Re{ bk ( - d /dY)E(Y)J. (5.18) 

We next postulate for ys,y + ' andy _ [see (2.23)] expansions 

ys.± =y~~)± + €y~~)± + ~y~~)± + "', (5.19) 

withy~O) = 0 andy!~ = ± K, as determined from (5.7) [and 
of course leading to (3.39b)]. We insert (5.17) into (2.23), us­
ing Y = 0 and Y = ± K for expanding P (y s) and P (y ± ), re­
spectively [using (5.13)], then substitute (5.19), and expand 
throughout in €. There result relations between the y~) ± 

which are solved recursively. We finally obtain, by use of 
(2.24),54.37 

shifty = - !€r~ + ~(- 0.531922r~r; 

+ 0.265961r~) + ... , 
widthy = 2.35482 - €(0.825413r;) + ~(0.407344r~2 

= 0.452683r; - 0.485461r'r + "', (5.20) 

asymy = - €(0.392470r~) + ~(0.0770164r~2 
- 0.800242r~r; + 0.290650r~) + ... , 
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where r ~ and r ~ denote the real and imaginary parts of r k' 
The subscripts y indicate that these are the shape parameters 
of Ptv), from which those of P(m) are trivially deduced. 

Let us also display these expansions for the case of real 
rk's [so the r~-.G in (5.20)], this time not replacing irratio­
nal constants (K in the present case) by their numerical 
values: 

shifty = - ~Er. - c( - ~r~ + -&r.r2 - Ar3) + "', 
widthy = 2K + ~[rf( - ¥ + !K) + Fi&c3 - ~K)] + "', 

asymy = - EF.(K/3) + ~rf(~/18) + "', 
heighty = (21T)-·/2[ 1 + ~(-HFf + Ar2) + ... ]. 

(5.21) 

Expansions (5.12) and (5.20) formally apply to any func­
tion Ptv) satisfying (5.6) (which can always be achieved by 
suitable rescalings) and (3.36). In practice, E and Fk need not 
always be defined as in (5.1) and (3.35); they need only satisfy 
the open relation 

~rk = .pk.( + O)/ik = (j1k+ 2Ye+ , (5.22) 

where .p(T) = - (d /dT)2In(e ifi7 [compare (3.8) and (2.11)] 
and (j1jYe+ are the cumulants of P tv) (real or complex as the 
case may be); e.g., one might have E = 1, Fk = (j1k+ 2Ye' In 
principle, one would like E to be small and the r k of order 1 
over some appropriate range of physical conditions [ideally, 
the r k to remain bounded and E-.G as some physical limit is 
aproached]. 

Let us note finally the realizations of the inversion (2.25) 
relevant here:55 

I: Fk-+( - )kFr or (E-+-E,Fk-+Fn (5.23) 

In the case of real r k 's, I: E-+ - E, implying, in view of 
(2.26b), that the expansion (5.21) of shift (width) contains 
only odd (even) powers of E. 

6. DISCUSSION 

The expansions obtained in Secs. 4 and 5 are our main 
results of practical interest. Let us add a few remarks. 

A. Concerning e 
Let us stress again that the time e need not be taken as 

in (3.16) (given as appealing choices, but possibly hard to 
evaluate), but may be just a crude estimate of the time scale 
characteristic of ~(T). In fact, since all results are evidently 
independent of e (all factors e would cancel away if rein­
serted), one may in practice simply do away with e, i.e., take 
e = 1, in whichever units are being used (note that the latter 
are usually adapted to the time scales involved); then, 
A = (p,2y./2 = ~(0)·/2andtP(t) = ~(t)/~(O)(Aandtarehere 
dimensional). This is the procedure used in Ref. 7. 

B. A likely form of G(T) 

In many concrete cases, G (1') = In C (1') is only known 
approximately, e.g., as the first few terms of an expansion in 
powers of some parameter p (e.g., an interaction strength or a 
particle number density): 

G (1') = pG.(T) + p2G2(T) + p3G3(T) + ... (6.1a) 
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and correspondingly 

~(T) = - G (1') = P~.(T) + p2~2(T) + p3~3(T) + ''', 
(6.1b) 

where ~dT) = - GdT). This situation will be met in Sec. 7, 
and is that prevailing in pressure broadening (p there being 
the gas pressure).7 The weak and strong broadening regimes 
here correspond to small and large values of p, respectively. 

Clearly, the characteristic time scale e of ~ (1') depends 
on p. However, it is more convenient to take for e some 
(average, say) value independent ofp; for simplicity, we 
choose e = 1 in the present discussion. 

As concerns the weak broadening expansions, it may be 
useful, especially if p is an experimentally accessible param­
eter against which it is feasible to plot data, to transform the 
r expansions (4.10), (4.15), etc., into expansions in p; this, 
however, may not always be easy, for although GI(T) will 
usually have the same asymptotic properties as we presumed 
of G( 1') (simply because G-+pG I as p-.G), this may not be the 
case for G2,G3,00., and certain delicate resummations (renor­
malizations) may have to be performed. 56 

As to the strong broadening expansions, their relevant 
parameters are here (with e = 1) 

E = [~(O) J - 1/2 

= [P~I(O) + p2~2(0) + p3~3(0) + ... J -1/2 (6.2a) 

i- k~k·(O) ._ k p~~"(O) + p2~;"(O) + ... r k = = I (6.2b) 
~(O) P~I(O) + p2~2(0) + ... 

One can see that the strong broadening expansions are now 
usable only if ~ (1') is well approximated by the first few terms 
of (6.1 b) even when p is large enough that the strong broaden­
ing regime obtains. In particular, if the latter obtains while 
~"'P~I' thenP (m) is a Gaussian of width -E-

I proportion­
al top1/2; if the second term of(6.1b) strongly dominates over 
part of the strong broadening regime, then width - p there; 
likewise, there can be ap range wherein width _p3/2, etc. 
One may also have, e.g., width - [P~.(O) + p2~2(0)]1/2 over 
some range, with both terms inside the square root impor­
tant. Some of the above behaviors are actually observed on 
certain pressure broadened spectral lines. 7 The behavior of 
the width here provides clues as to the relative importance of 
the terms of (6.1). 

C. Infinitely divisible cases 

As was already mentioned in Sec. 3 A, A (or r or E) is 
not, in general, a free parameter than can be varied at will, 
independently of the function t/J(t). In concrete cases, it is 
often a parameter such as pin (6.1) which can be varied ex­
perimentally, and one can see that varying p alters both A 
and t/J. But even in principle, A cannot always be varied arbi­
trarily. For let us consider [taking e = 1 in (3.21)] 

P(m) = (21T)-J: '" dte-iwt+yg(t) 

=P(m;r,¢), (6.3) 

g(t) being given by (3.30) in terms of ¢; the fact that 

P(m;r,¢»O (6.4) 
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is a probability density constrains yg(t): in particular, the 
positivity (6.4) is preserved under arbitrary variation of y, 
i.e., 

P (Ul;y,~);;;'O for any y> 0, ~ fixed 

if and only if ~(v) is itself a probability density, i.e., iff 

~(v);;;'O. 

(6.5) 

(6.6) 

This is a well known result of probability theory, usually 
stated as ll 

Theorem: A normalized and centered probability densi­
ty (p.d.) is infinitely divisible (i.d.) if and only if the logarithm 
of its characteristic function is expressible as (3.30) with (6.6) 

and f': "" dv ~(v) < 00. 

A p.d. is said to be i.d. ifit is theNthconvolution power 
of another p.d., for any N. Clearly, infinite divisibility is equi­
valent to (6.5): for if (6.5) is satisfied, then for any value of y 
and any N, P(Ul;y,~) = P(Ul;y/N,~)"N, whereP(Ul;y/N,~);;;.O 
is also a p.d.; conversely, if P (Ul;y,~) is an i.d.p.d., it is ex­
pressible as (6.3) and (3.30) with (6.6) and no restriction on y, 
i.e., it satisfies (6.5). 

A simple way of seeing the necessit)' of(6.6) [in the case 
(3.14)] is to note that as y-o ("'fixed), P(v) tends rigorously 
to P~B'J(v), Eq. (4.13), and for this to be positive requires 
(6.6). The sufficiency is proved II by expressing the integral 
(3.30) as a Riemann sum, and then noting that this corre­
sponds to a multiple convolution of Poisson and normal 
p.d.'s, both of which are known to be i.d. (by direct verifica­
tion).57 This also shows that the Poisson and normal laws are 
the basic elements comprising every i.d.p.d. 

A simple i.d. example is provided by model (2.1) with a 
Gaussian U (t ), for which case ~(v) is the (scaled) power spec­
trum of U(t), and evidently positive [here A = (U 2

) 1/2(), 

where e is the correlation time of U (t )]. Another well known 
i.d. example is the Anderson-Talman-Baranger model of 
pressure broadenint: there, y is essentially the gas pressure 
and ~(v) the power spectrum ofdl(t), wheredl(t) is the dipole 
moment of the radiator in the presence of a single 
perturber. 7 .33 

Also, case (6.1) withp freely variable, experimentally or 
theoretically, is approximately i.d. (rigorously so as p-o) 
over the range in p wherein only plJll is sizable in (6.1b); this 
implies 

WI(v);;;.O (6.7) 
[alternatively, asp-o, P(v)_P~B'J(v), Eq. (4.13), with ~re-

A A 

placed by 1J11(V)/IJII(0), again implying (6.7) since P(v);;;.O]. 
In i.d. (or approximatelyi.d.) cases, ~(v) [or WI(v)] can be 

A 

determined directly by observing P (v) at small y (or p) and 
using (4.13); one may therefrom deduceP(v) at any valueofy 
[or of p over the approximately i.d. range]. 

D. Intermediate values of A 

Outside the regimes A < 1 and A > 1, P (Ul) can have a 
fairly complicated shape. The following expansion, obtained 
by expandin~ erh in (4.3), may be useful for analyzing the 
structure of P (v), and visualizing its shape in terms of that of 
~(v): 
P(v) = e- rC~s(./Yb)* [8 + yh + !yh *2 + ... ](ybv), (6.8) 
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where58 

Pas (V) = 1T- I Re 1"" dt e - jut + jra - t 

_I cos(ya) + v sin(ya) 
=1T 

1 + v2 
(6.9) 

and h (v) has the following expression in terms of ~(v): 
h (v) = V-2[~(V) - ~O) - v¢'(O)] (6.10) 

[f(./yb) is the function whose value at v isj(v/yb ); 8 is the 
Dirac function]. Note the Poisson factor e - rcy" /k! weight­
ing each convolution power h ok. In i.d. cases, (6.8) allows one 
to mentally visualize the evolution of P(v) as y varies. The 
above expansion has a nice physical meaning in pressure 
broadening, besides its mathematical and heuristic 
utility. 7.33 

E. Finite <.u)' 
We assumed the first moment (p,'f = fUlP(Ul)dUl = 0 

[Eq. (2.10)]. When this is not the case, P (Ul) is simply shifted 
by (p,y. This mean shift may sometimes be important; e.g., if 
in model (2. 1) Uissmall(weakbroadening), then (p,'f = (U), 
being of first order in U, may be much larger than the terms 
displayed in expansions (4.15), which are of second or higher 
order in U (since IJI is); in particular, the shift (p, 'f may be 
much more important than the width, as is sometimes ob­
served. 59 In case (6.1), i (p, 'f = pO I (0) + P202(0) + ... is itself 
an expansion in p. 

F. Remark 

A welcome feature of the shape parameter expansions is 
that some of their coefficients are interrelated, as is apparent 
on inspection of(4.15) and (5.21). This can be very useful for 
analyzing and understanding experimental data.7 

7. ILLUSTRATION: N-BODY 

To illustrate the results of the preceding sections, we 
consider the case that P (Ul) depends on N "things", e.g., par­
ticles, in a symmetric manner. We will first assume, within 
model (2.1), that 

U(t) = ul(t) + u2(t) + ... + uN(t), (7.1) 

where the uj(t) are identical mutually independent random 
processes. We will then progressively complicate by relax­
ing, first, independence, then the strict additivity of U in the 
U j' and finally consider the general case, transcending model 
(2.1), wherein U (t ) need not be defined. 

A. Independent additive case 

We suppose U(t) given by (7.1) with the uj(t) identical 
and mutually independent. WeletPI, C I , GI,A I , etc., denote 
the same objects as P, C, G, A, etc., but with U (t ) replaced by 
u(t ), the SUbscript 1 indicating that a single "particle" is in­
volved. For instance 

CI(r) = (exp[if~dtu(t)]) (7.2) 

(because the U j are all identical, the SUbscript on U may be 
omitted when a single U j appears inside ( »). The additivity 
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(7.1) and independence imply the following relations be­
tween the N-particle and single particle quantities: 

C(r) = [CI(r)]N, G(r) =NGI(r), 

(7.3) 

P (UI) = P rN(UI), 1/1 (r) = NI/II(r), 

where P rN is the Nth convolution power of PI' 60 There fol­
lows that e = e l , /l = N 1/

2
/l1 [see (3.15) and (3.16)], 

whence the relation 

A =N 1
/ 2A I (7.4) 

connecting the "broadening strengths" of U (I) and u(t ). 
Usually, A I is a given fixed quantity; (7.4) thus implies 

that the weak broadening expansions (4.10) and (4.15) are 
here in powers of N, and the strong broadening expansions 
(5.12) and (5.20) in powers of N -1/2. 

a.Dependence 

Let again U(t )begivenby(7.l)wheretheu;(1 )areidenti­
cal, but not independent, as expressed by the non vanishing 
of mixed cumulants. For simplicity, we assume symmetry 
(or uniformity) in the U;. in the sense that a moment or cumu­
lant involving U,· ,U; , ... ,U; is independent of the particular 

" . 
set of k indices ii' f2 , ... , ik ; e.g., 

(u;, (II)U;, (I; )U;,(12)U;,(13)c = (ul(ldul(t; )U 2(12 )u3(13)c' 
(7.5) 

We then have, from (3.9) and (7.1) [notation: 
tPj = gdl uj(t)], 

N . 
G (r) = ( II e'9'Jj 

- 1) c 

j= I 
N 

=(II(1+fj)-I)c 
j= I 

=N (fl)c + ¥y(N - 1)(fd2)c + (1/3!) 

XN(N - I)(N - 2)(fdd3)c + "', (7.6) 

where we denotedfj = e9'Jj 
- 1 (Mayer trick). In the indepen­

dent case, all the mixed cumulants vanish, so only the first 
term of (7.6) survives, yielding (7.3). In the dependent case, 
the important new feature is that G (r) is now an expansion in 
powers of N, which brings us to the situation envisaged in 
Sec. 6 B,with N playing the role of p. 

C. Nonadditivity 

Now let U (I) be only approximately additive in the U; (t ), 
i.e., 

N 

U(t) = LUi(t) + LUij(t) + L uijdt ) + "', (7.7) 
;= I i<j i<j<k 

where the u;,;, ... i.!t) are nonadditive corrections. We might 
here proceed similarly to (7.6); but let us rather directly pass 
on to a more general case, covering (7.7) as well as (7.1). 

D. General case 

We now no longer limit ourselves to model (2.1). We 
assume that P (UI) depends on N "particles" in a symmetric 
manner. We denote P;,i, ... ;., C;,;, ... ;., etc. quantities corre­
sponding to the presence of only particles i p i 2 , ... ,ik • The 
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symmetry assumed means that CI = C2 = ... = CN , 

C;,;, = C12, etc. We suppose that to a first approximation 
N 

C(r)~ II C;(r) = [CI(r)]N, 
;=1 

N 

G(r)~ L G;(r) = NGI(r). (7.8) 
i= 1 

This may be based on physical intuition, or perhaps motivat­
ed by a model of the type discussed in Sec. 7 A approximat­
ing the physical system considered. 

We now seek corrections to (7.8) in the form of an ex­
pansion in powers of N for G (r). This is constructed as fol­
lows. We first write 

(7.9a) 

where KI2 is the correction to the additive approximation 
(7.8). We next set 

(7.9b) 

which expresses the correction to (7.8) as a sum of pairwise 
corrections plus a final triplewise correction. Continuing in 
this manner, we ultimately obtain 

G (r) = GI2 ... N 

= LG; + LKij + L Kijk + ... +K12 ... N 
i ,. <j i<j<k 

= NGI + !N(N - 1)K12 + (1I3!) 

XN(N - l)(N - 2)KI23 + ... + K 12 ... N· (7.10) 

The K 's are obtained by inverting (7.9): 

KI2 = G12 - G I - G2, 

KI23 = G123 - G12 - GI3 - G23 + GI + G2 + G3 , (7.11) 

The K ij ... may be shown to be a sort of "additive cumulants", 
adapted to the case that we have additivity rather than fac­
torization as some "independence" condition. If a bulk limit, 
N----+oo, Volume---+oo, is taken, theK's become expressible as 
ordinary cumulants.7 

In (7.10), G (r) appears as an expansion in powers of N, 
so the situation is that discussed in Sec. 6B, with N playing 
the role of p. Pressure broadening provides an interesting 
example, in that the correlations between, and nonadditivity 
in, the effects of different perturbing atoms, are of a size such 
that the various possible behaviors for the width mentioned 
at the end of Sec. 6B [proportional to N 112, or N, or 
(aN + bN2)1/2, etc.] are actually observed. 7 

E. Discussion 

Gaussians, as appear in the strong broadening limit, 
naturally evoke the Central Limit Theorem (CLT) ofprob­
ability theorylO: The probability density of a sum of N inde­
pendent random variables tends to a Gaussian as N----+ 00, of 
width -N 1/2. Now, the decomposition (7.1) implies the like 
for the (static) random variable,u [see (2.7)]: 
,u =,u I +,u2 + '" + ,uN' It is then easy to see that in the inde­
pendent additive case discussed in Sec. 7 A, the strong broad­
ening Gaussian limit is just a case of the CLT; the corre­
sponding expansion (5.16) of ji (Y), in powers ofN- 1/2

, is well 
known in probability theory (Edgeworth-Cramer asymptot-
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ic expansion 10). As to the strong broadening Gaussian limits 
in the nonindependent cases discussed in Sec. 7B-7D, they 
may be considered generalizations of the Central Limit 
Theorem. Such generalizations may be of interest in them­
selves, especially since they effectively materialize in pres­
sure broadening; they will be discussed in more detail in a 
separate paper. 

APPENDIX A 

In this appendix, we demonstrate (4.19). We first re­
write (4.1S) as 

SZj = yj+ 1100 

dte~ YUh (t)ktj, (AI) 

where z = b (1 + ix). Since we are only interested in the y 
dependence of Skj' we do not keep track of overall multipli­
cative factors independent of y. 

We will assume various simple behaviors of h (t) for t 
larger than some time T, which may be taken as 1 for sim­
plicity. We presume that a realistic h (t) behaves asymptoti­
cally as a combination of the cases considered below. 

Case (i): h (t> T) = 0, or h (t )-t -00 ,or h (t )_eiWtt ~ cr. 
Here, we can expand S kj in powers of y, and get 

SZj = yj+ Ipol(y), (A2) 

where Polly) denotes any polynomial or series in non-nega­
tive powers of y [in the case h (t) _eiWtt ~ cr, we get integrals 

of the form fO'dte~Attm = m!/A m+ I, where A = yz + ikW, 
which may then be expanded in y, provided W #0]. When 
(A2) is substituted in (4.17) and (4.27), we recover (4.S) and 
(4.IS) [e.g., to order yO, S~I = 0, andS It = S 10' so the sec­
ond order term ofasym in (4.27) becomes !ra2

, as in (4. IS)]. 
To discuss other cases, wesetfO' = f~ + fl' in(AI); the 

term f~ yields (A2), so that we have 

SZj = yj+ IPol(y) + S~, 
where 

S~ =yj+lfoodte~YUtjh(t( 

(A3) 

(A4) 

Case (ii): h (t> 1) = t~ cr. We write (A4) as 

S~ =yj+llj~kcr(I,oo;yz), (AS) 

where 

1m (a,b;). ) = {dt e~Attm. (A6) 

The y dependence of 1m depends on the value of m: 
Ifm> - 1, 

1m (I,00 ;yz) = 1m (0, oo;yz) - 1m (O,I;yz) 
= y~m~ 11m (0,00;z) - Polly) 

= y~m~ 1+ Polly). (A7) 

If m <: - 1, an integration by parts gives 

1m (I,oo;yz) = [ - e~ yz + yz1m + I (I,oo;yz)]/(m + 1). 
(AS) 

Using this - (m - 1) times if m is an integer, - [m] times 
([ ] = integral part) if not, we get 

1m(I,00;Yz) = Polly) + y~m~a1 ~a(I,oo;yz), (A9) 

wherea = 1 ifm isaninteger,a = m - [m] ifnot. Form not 
an integer, we have I ~ a = Polly) + ~ ~ I, i.e., 

(AW) 

For m an integer, we must evaluate I ~ a for a = 1: an inte­
gration by parts gives 

I ~ I (1,00 ;yz) = yz foo dt e ~ yzt In t 

= yz[iOO 

- f ]dt e ~ yztln t 

= yz i oo 

y~ Idu e ~ ZU(ln u - In y) + Polly) 

= (const)ln y + PollY). 
(All) 

Collecting results, we have 

if m > - 1 or not an integer 

if m = integer <: - 1 
(AI2) 

whence (4.19), in view of (A3)-(AS) [note that we may add 
factors such as In (t ) to the t ~ cr dependence without altering 
(4.20)]. 

APPENDIXB 

This appendix contains additional details concerning 
the weak and strong broadening expansions. In particular, 
we here display the expansions ofv ± andy ± ,and also high­
er order terms excluded from the main text to avoid clutter­
ing. Some of the definitions are repeated for easy reference. 
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1. Weak broadening expansions 
[We here denoteg(t) g(t) - (idt - c).] 

P(v) = 1T~ Ie ~ YCRe{ioo 

dt e ~ ivt+ r81 tIYb l }, (BI) 

where c,b,y are real constants, and i(t)- - bt as t-oo, 
b>O. We set 

A e~YC 

P(v) = 1T~ 1_-2 B (v) 
I+v 

(B2) 

which defines B (v). 
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s. U(t) = - bt + is + h(t) 

B(v)=Re!eiya [l-iv+(1 +v2)T(v)]j, 

where 

(B3) 
(BS) 

T(v) = f fy'<+j+l(v-iYTk/(k~l), 
k=lj=O 

(B4) The following expansions are valid up to terms containing 
divergent Tkj's. 

Expansion (4.10) (to order r). 

B (v) = 1 + yva + r(T~o - !a2) + rv2T~0 + r( - aT;o + !T;o + T; I) 

+ rv( - tp3 + T~I) + rv2( - aT;o + !T;o + T;I) + rv3T~1 + .... (B6) 

Expansions (4.15) (v ± and higher order terms). 

shiftv = ... + 1"'( - !aT; I + !T;2 + !T;I) + (yS /24O)(a
5 + 180aT~2 + 6OaT~1 - 6OT~3 + 6OT~2 + 20T~I) + "', 

v ± = ± 1 + ya ± r(!a2 + T;o) + (r /12)(a3 + 12aT~o + 12aT;o ± 12T; I ± 6T;0 + 24T~ I) + ''', 
widthv = ... + (Y'/48)(a4 + 24a2T~0 + 432aT~1 - 96aT~0 + 48T~ + 48T~2 - 48T~1 + 16T~0) + "', 

(B7) 

asymv = ... - L (a4 
- 24a2T~0 - 24a2T;0 - 48aT;1 + 12aT;0 - 72aT~1 + 72T;2 + 36T;I) + .... 

24 

Inversion I: a_ - a, Tkj-( - YT~. (B8) Dkj = bj+ I(k ~l)-IRe { '0"" dt ( _ it Y[g(t)k - (ia _ bt)k 1} 
An alternative procedure. In lieu of (B3), we may use Jo 
B (v) = cos(ya) + v sin(ya) + (1 + v2)D (v), (B9) (B 11) 

where 
D(v) = Reli'''dte-ivl [erBlIlyb) _ eiya - ']} 
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= f f y'<+j+ lviDkj , 
k= Ij=O 

(B1O) 

(note that Dlj = T~j/Jl). the expansion of b (v), immediate 
from (B9HB1O), and those of the shape parameters in terms 
of the Dkj's, are somewhat simpler than (B6) - (B7): 

shiftv = !ya + (r/24)(a3 + 12Dll ) + !Y'D21 + (yS/24O)(a5 + 6Oa2Dll + 120aD12 + 120D31 ) + "', 
v ± = ± 1 + ya ± rUa2 + D IO) + (r /12)(a3 + 12aDIO + 24Dll ± 12D20) + "', (BI2) 

width v = 2 + !r(a2 + 4D IO) + 2rD20 + (Y'/48)(a4 + 72a2DIO + 336aDll + 192D12 + 48Dio + 96D30) + "', 
asymv = - ya + !ra2 - (r/12)(a3 + 12aDIO + 36Dll ) - (Y'/24)(a4 

- 24a2DIO - 72aDll + 24aD20 + 72D21 ) + "', 

Inversion I: a_ - a, D kj-( - )jDkj . 

In case the T kj do not all exist. 

(B13) 

T(v)= f fyk+lvir~/(k~l), (BI4) Expansions (4.27) (v ± and higher order terms). 
k= I}=O 

v ± = ya + r( ± !a
2 +r?~ ± 2r 1~1 + (r/12)(a3 - 12ar?~ + 6r~~ + 6ar?~ ± 12ar?~ 

+ 24ar I~' ± 12r 2~' ± 24ar 1'1'+ 24ar I~i) + "', 
widthv = ... - r [r ~~ + ar ~ - 2ar?~ - 2a(r It ' - rio 1 - (r it' + rio 1 

- 2a(F it ' + r il1 + 2a(r It i + r io i)] + ''', 
asymv = ... + (r /12)( - a3 + 12ar?~ - 12ar?~ + 6r~~ + 6ar?; - 12ar?; + 12ar It' - 12r 2t' - 24ar It' 

+ 24ar It i - 36ar io ' + 12r io ' + 24ar II ' - 24ar io i) + "', 
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(BI7) We define 

p = y, KZj = ReS~ ifa>O, 
b.g(t)= -bt+tI(t}, tI(t) -t-Uast-+oo, -1<a<00 
(here c=O) p=yl+U, KZj=y-k~eS~ if-l<a<0,(BI9) 

P(u) = 1T- IRe{i''''dt exp[ - iut - t + ygl'(t /Yb)]}. 

(BI8) 

where 

S~ = (yb Y+ If" dt e - ybtll + ix) ( - it ygl'(t )k. 

Expansions (4.25) [notation: K lj K lj I, K~;=(K~j)2, K k}2 =(K k} f, etc.]. 

shiftv = ... + ~3/8)(2Kn + ~~iK~3 + K~IK~~ + K~IK~2 + K~IK~2 + ~K~I) + "', 

(B20) 

u± =p( +K~o ± 2K iil) + lp2( ± 2K~~ + 8K~oK I~ - 8K~oK iT + 2K~o +K~i ± 8K 1~2 + 16K I~K 1=]= ± 4K 2~) + "', 
widthv = ... + !p2 [2K~~ - 4K~o(K it + K 10) - 4K~o(K 11 - K II) - 2K~o - K~i 

+ 4(K 1~2 +K i( 2) + 8(K I~K 11 -K 10K 11)+ 2(K 2~ +K 20)] + "', 

asymv = ... + !p2(2K~oK~1 + 4K~oK 11 + 4K~oK II + K~i + K~IK~2 - 6K~IK I~ + 2K~IK 10 
+K~I +4KI~2-8KI~KI1-8KI~KI0 -2K2~ +4Kl02-8KloKII +2K 20 )+ ... , 

Inversion I: KZr-+( - YK kjx. 

2. Strong broadening expansions 

P(y) = 1T-
IRe{f" dt e - iyt- 11/2)t' expL~Ii'rdit )k+ 2/(k + 2)!]}. 

If the r k are real: 
Expansion (5.16) (to order c). 

(B21) 

(B22) 

(B23) 

P(y) = (21T)-1/2el -I12)y'!1 + c{F/3!)(y3 - 3y)+ c[{F2/4!)(3 - 6y2 + y4) + (rl/3!)2( - 15 + 4Sy2 - ISy4 + y6)] + ... J. 

(B24) 
Expansions (5.21) (y ± and higher order terms) . 

y± = ±K+Crl(i~-!) ±!c[ri(-~+¥<)+r2(rr-!K)] 
+ (c/3)[ r~(~4 - aK2 + a) + r lr 2( - §K4 + K2 -~) + r3(-}dc4 -l~ + §)] + "', 

asymy = ... - c[ r~ (V - -?te) + r lr 2( - tF + aK) + r 3(itF - ~)] + "', 
where 

K = (2 In 2)1/2 = 1.177410···, 

Inversion I: c - - c. 

In case the rk==r~ + iF~ are complex: 
Expansions (5.20). 

y ± = ± K+ c[ r~ (Y -!) ± r; (ipSK2 - ps -iPK + ip)] + c(28 terms) + "', 

where 

p = (2/1T)1/2, S = 21/2D (1</2 1/2) = 21/2(0.536196), D (x) = e - x' f dt et' , 

shifty = ... - c( - ir~3 + n r~ r; + 0.892449r~F'? - kr; - 0.446224r; r~) + "', 
widthy = ... - c( - 1.23104r~2r; + 0.636072r~ri + 0.7S8722r;r; + 0.S30S79r;3 - 0.2097S6r~) + "', 
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asymy = ... - c( - 0.S20S74r~3 - 0.314070r~2r; + 0.724368r~ r; + 1.81l4Sr~F'? 
+ O.II4072r~ri - 0.169031r; - 0.767361r;ri) + "', 

InversionI:c_ -c,rk -rr. 

J. Math. Phys .• Vol. 24. No.2. February 1983 Antoine Royer 

(B2S) 

(B26) 

(B27) 

(B28) 

(B29) 
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= - i r ~ dwj(w - w')l(w' - iO), 

where 
(w - iO)-1 = w- I + im5(w). 

Iff( - t) = f(t)" so thatj(w) is real, we get 

Rej+(w) = 17"j(w), Imj+(w) = - r ~ dwj(w')/(w - w'). 

Note that (1'==d] /dw) 

j'+ (w) = - ii~ tdt e-iW'l"(t) 

= J: ~ dwj(w')I(w - w' - iW = - J: ~ dWJ'(w - w')/(w' - iO), 

where (w - iO)-2 = - (d /dw)(w - iO)-1 is essentially defined by the last 
equality. 
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"Cumulants are defined, in general, by posing In(exp(l:,A,Ui ) 

= (exp(l:,A, U,) - 1) c (A, arbitrary constants), expanding both sides and 
equating corresponding terms. Ifwe let the variables Ui be independent of 

the variables JIj,sothat(exp(l:U + l: V) = (exp(l:U) (exp(l: V), weget 

In(exp(l:U + l: V) = In(exp(l:U) + In(exp(l:V), whence 
(exp(l:U + l:V) - 1)c = (exp(l:U) -1)c + (exp(l:V) - l)c' showing 
that all cumulants mixing U 's and V's vanish (cluster property). 

18This is obtained by using time-translation invariance inside ( )c' which 
follows from Eq. (2.3). We have [denoting t/! (a,b) = f:dtU(t )]: 
G (r) = i(ei~lo.'IU(r) c = i(e'·1 - '.OIU(O) c' whence 
G(r) = - (U( - r)e'·I-,.OIU(O)c = - (U(O)ei.IO·<lU(r)c. 

19 A stochastic process U(t) is called Gaussian if all the cumulants 
(U(tdU(t2)···U(tk)c vanish for k>3; see, e.g., Ref. 13. 

20 As a counterexample, suppose that U (t ) can assume values in the vicinities 
of two well-separated frequencies VI and V 2, without transiting between 
the two, i.e., if U (t) is near V, initially, it stays so forever; P (w) then consists 
of two "noninteracting" lines. Let us denote V, +..:1 U,(t) histories in the 
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vicinity of Vi' call ( ), the average over such histories, and assume 

(..:1U,), =0. We then have (U) =!l:~~1 (U), 
= !l:(v, + ..:1U,), = !(vi + V2) = 0 if we assume V2 = - VI. The auto­

correlation (U(O)U(t) = !l:(U(O)U(t), 
= !l:([v, +..:1 U,(O)](v, +..:1 U,(t) J), 
= !l:[0 + (..:1U,(Oj..:1U,(t), ]->!(0. + v,)#0 as t->ro, i.e., the correla­

tion time is infinite. 
21This means that x(t) in (2.13) must be suitably chosen, e.g., as a dipole 

operator sandwiched between projection operators eliminating undesired 
frequency components (see, e.g., Ref. 7). 

22Ifwe had, e.g., I/'(r)- constant as r->ro , then G(r)-r as r->ro, and the 
weak broadening limit shape would be Gaussian. Or, if I/'(r)-r-', 
o < E < I, then G (r) - r - , and the weak limit profile would be f: ~ dt exp[ - iwt + (const)t 2 - ']. We do not consider such possibilities. 

230ther possible definitions are (provided the integrals exist): (i) 
8 1 = fO'rdrl I/'(r) I m/fO'drl I/'(r) 1m; (ii) 8 2 = IfO'rdr l/'(r)l/lfO'dr l/'(r)I, 
in which case lal/lp I = I [a..B defined in (3.24) and (3.28)]; (iii) 
8 3 = RefO'dr I/'(r)/I/'(O), in which case b = I [see Eq. (3.24); if83 = 0, 

b = 0 and the weak broadenil)$ limit as discussed in this paper does not 
exist]; (iv) 8 -I = f': ~ dwlcu I/'(cu) 1/1/'(0), etc. The optimal choice should 

make most constants (a..B, TkJ ,r k , ... ) of order I; e.g., 8 3 is sometimes used 
(e.g., Ref. 3); however, if I/'(r) is strongly oscillatory, 8 3 will be much 
smaller than the decay time of I/'(r), and some of the Tkj' Eq. (4.9), may 
then be inordinately large. [To see this, denote 
H(r) = fO'tdt I/'(t + r)ll/'(O); then, in view of (3.18), (3.29), and (4.9), 
h (t) = 8 -2H(t8),Tkj = bJ+ 18 -2k-J-1 fO'rJdr H(rtSupposel/'(r) 

oscillates with a period 8 v and vanishes beyond r = 8 d , with 8 d >8v. 
Then H(r) is of order 8~ in amplitude and 8 d in decay time. If I/'(r), 
thence H (r), are real, H (r)k does not oscillate for k even, so that 
fO'rJdr H(r)k_8~k8~+ I; thus, if8 = 8 3 c:::=.8v (=>b = I), 

TkJ -(8d /8vY+ I> I]. 
2"That is, Maxldl/' /drl = I/'(O)l8v' so that I/'(r) varies by roughly 1/'(0) 

during an interval of order 8 0 • It might be more proper to use Maxi I/'(r) I 
instead of I/' (0) in (3.15H3.18); however, this should make little difference 
for we generally expect II/' (r) I :S I ( U (0) U (r) I .;; I/' (0), because of the expo­
nential in (3.11). 

23This is because we expect the exponential in (3.11) to cause I/' (r) to vary 
and decay more rapidly than (U (O)U (r). 

2"Thatis,¢10)= I; decay time = 10rMaxl¢(t)1 = I,accordingtowhether 
(3.16d) or (3.16v) is used. 

27Equation (3.23) is obtained by setting fb = fO' - f;" in (3.20). Each term 

in (3.23)-(3.29) may be continued to negative times in two different man­
ners: (i) analytically, which will be indicated by a subscript "a"; thusg!(t), 

ha (t ),a a ,l/3t)a are given by (3.24H3.29) for both positive and negative val­
uesoft;(ii)byrequiringthatthesymmetryf( - t) =f(t)"beobeyed;thisis 
what will always be understood except when the subscript a appears); 
thus,e.g.,h (t )atnegativetisdefinedbyh ( - t) = h (t )",t> 0; likewise fora, 
Pt, etc. Note that dg# /dt and h (t ) are discontinuous at t = 0, so that their 
FT's have slowly decaying tails [see (6.10) for Ii (v)]; by contrast, ha (t) is 

continuous at t = 0, but does not satisfy ha ( - t) = ha (t )*. The decompo­
sitions (3.23) and (3.27) with analytic continuation to negative t are of no 
interest, since, e.g., ha (t ) does not vanish as t-> ro [contrary to h (t)], as is 
desirable, but rather becomes linear in t [to see this, assume for simplicity 
that ¢1t) vanishes outside ( - 1,1); then, for 1">1, 
hat - T)c:::=.f~:'::s ds ¢1s - T)c:::=.T fl_ Ids ¢1s).] 

28More generally, for any functionf(t) = f': 00 dv e,vj(v): 

f(t) = ~~~t1j(O)lj! + r ~ dvj(v) [e'v, - J~(ivtY/j!], 

whereinj(v) may be replaced by jk·(v)l(iv)k for any k<n [since 
fk·(t) = f': ~ dv e'V'(iv)kj(v)=>jk·(v)==(217")-lf': ~ dt e - '0'l"k(t )=(iv)kj(v)] . 
In (3.30),g(0) = 8(0) = 0 and ¢1t) = - itt )=>¢.lv) = v2i(v). 

29Defining ~+(v) = fO'dt e - 'V'¢1t), and using the formulas in Ref. 14, we 
have, from (3.24H3.29), 

(A) P = - ~ +(0) = - if ~ dv ¢.lv)/(v + iO) = - J: 00 dv ¢.lv)/v - ~O), 

(B) h (t) = - i~'+ '(0) = f: 00 dv e,v'¢.lv)l(v + iO)2 
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= roo dv e'v, [~'(v) + it¢,(v) l/(v + iO), 

(c) a = - h ( + 0) = i~'+ (0) = i1T~'(O) - roo dv ~'(v)lv. 

We denoted 1/1 (s) = ¢1s + t ) the translate of ¢1s) by t, so that 
tf(V)==(21T)-'f"'. 00 ds e- '"'I/I(s) = e'V'¢(v). Equations (3.31) follow from (A)­

(c). Equations (AHc), together with (3.30), yield (3.27). Note that (B) and 
(C) exist only if~'(v) isnonsingular at v = 0, i.e., if Ifotdt ¢1t)1 < 00, as was 
assumed for obtaining (3.27); if this is not the case, but ¢(v) is nonsingular at 
v = 0, as implied by (3.14), we rather have (3.23) with 
gI'(t) = f"'. 00 dv(e'V'- I) ¢(v)l(v + iO) not separable into h (t) + a. As said 
in Ref. 27, the above expressions are ofinterest only if continued to negative 
tbyrequiringf( - t) =/(t )*,i.e., by replacing (v + iO)by(v - iO). Note from 
(B) that h.(v)==FT [ h.(t) I = ¢(v)/(v + iO)2, the singularity at v = 0 reflect­

ing the linear divergence of h.(t) as t-+ - 00 (see Ref. 27); by contrast, 
h (v)==FT[h (t)1 = 1T-

1 Refo dt e~'v'h (t) is regular [see (6.10)], since 

h (t) = h ( - t)* vanishes as t-+ ± 00. 

30 An example where this occurs is the square-well model of pressure broad­
ening (Ref. 7) in the static approximation - a rather artificial case indeed 
[there, ¢1t) = Vo W 2e'w, where W is the well depth, Vo the interaction 
volume]. 

31In Ref. 7, we defined K = 2(2 In 2)1/2, i.e., twice (3.40). 
32The approximation (3.39) is good if,loosely,lA 2(t IA )3F(t IA )1<1 for 

It I:;; I, i.e., within the interval wherein e - (112),' is sizable. Now, 
IF(t )1 <Max I ¢1t) 1/31< I [since Max l¢1t)1 = I if9isdefinedby(3.16v);see 
Ref. 26]. We thus get (3.41). Much more sophisticated and rigorous valid­
ity conditions for the related "normal approximation" in probability the­
ory may be found in Refs. 10. 

33A. Royer, Acta Phys. Pol. A 54,805 (1978). 
34 According to (4.10), the validity conditions of the approximation 

e ~ rC(1 + V2)-1 are 17'111<1 and r<1 [rather than y<1 in (4. 11), required to 
makee-rc~l]. 

3SJ. Szudy and W. E. Baylis, J. Quant. Spectrosc. Radiat. Trans. 15, 641 
(1975); see also Ref. 33. 

3'1'0 first order in v, ¢(v) = ¢(O) + v~'(O) = 1T- I (b + va), in view of(3.31), 
leading back to (4.12). 

37The tedious algebra was performed by computer in the ALTRAN lan­
guage [W. S. Brown, ALTRAN User's Manual, 3rd ed. (Bell Laboratories, 
Murray Hill, NJ, 1975). Higher order terms are displayed in Appendix B, 
to avoid cluttering the main text. 

38Numerical evaluation of the coefficients up to 8th order in y, using the 
square-well model of pressure broadening (Ref. 7), indicates a radius of 
convergence of order I (as one would expect since a and the T kj are of 

order I). 
3"We may have, e.g., h (t)-t -ue,w'withO'>Oand W #0 (see Appendix A). 
4°Let 0'>1 in (4.16); Tkl , Eq. (4.9), exists ifj<kO' - I, i.e., ifj<O' - 1 since 

k> I. In (4.15), Tkj appears only in terms of order >j + 2, since Tkj always 
appears in the combination I +j+ I Tkj , k> I, in (4.8). Thus, ill-defined 

T kj 's appear only above order a + I in (4.15). (This remains true if 

-1<0'<1). 
4ITo determine the validity conditions of (4.5), let us write the real part of 

(4.3) as 

P(v) = (I + v2)-'[1 + (I + v2)Re T'(v)], 

where T'(v) is given by (4.7), but with h (t) replaced by gI'(t) = a + h (t). We 
havegl'(t )-t -, as t-+oo, where E = 0 if 0'>0 in (4.16), and E = a if 
- I < a < O. Defining S:: by (4.18), but with h (t) replaced by gI'(t), we have 

again (4.21) with the replacements T-+Tf, S-+8', O'-+E. There follows, to 
lowest orders in yand v, and neglecting constants of order I, 

T'(v) = (yS~' + rvS';II' + ... ) 
+ (yl +ES~" + vyl +ES';II" + ... )~yl +'(1 + Ivll, 

whence P(v)~(1 + v2)-'[1 + yl +'(1 + Ivll]. Thus P(v)~(1 + v2)-' if 
yl + '<I and yl + 'Ivl<l; these become (4.11) if O'>O:::>E = 0, and (4.22) if 
- 1 < a < O:::>E = O'. 

42Ifwe were to substitute (4.14) and (4.6) with (4.21) into (2.23) then, because 
(4.21) contains an expansion in powers of v [rather than of 7'11 as in (4.8)], 
and vl~ # 0, each power of y would appear in infinitely many terms of 
(2.23b). Although such series could presumably be evaluated, the above 
method is clearly not pleasant. 

43Equation (4.23) is obtained by setting v = x + (v - x) in (4.3), and expand­
ing in v - x and gI'. Note that such expansions do not provide practical 
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approximations to P(v) itself, as they are u~ble over frequency ranges 
Iv - xl<1 much smaller than the width of P(v) [unlike (4.10) which pre­
serves (I + v2)-' unexpanded]. 

"We thereby obtain: !.kjui,pkK2/(k!il) = 0 and 

!.kJ [v ± - ( ± 1) YpkK k7/(k ~1) = ~!.kjv!pkK~/(k !iI). 
4SNote that S: = Refodt r 'II + 'x) ( - it y = Re[ !l1[(i - xY+ 'k!] -II are 

just numbers. In all results, the S: are given their numerical values. 
4"This makes them appear needlessly early in the expansions; we rather 

want such quantities to appear in terms of the order in yat and beyond 
which they actually contribute, once they are themselves expanded in y. 

47Equations (4.27) are deduced from (4.25) by substituting 
K';q = y[ cos(ya)FkJ - sin(ya)FZ j, which follows from expanding (4.3) as 
P(v) = 1T-

lr YC!.kJ~O(V - xylRe[e'rayFkl I, and comparing with 
(4.23). 

"These follow by applying (3.32) in (4.9), (4.18), etc. The realization 
K kj -+( - ¥K kjx also follows directly from expansions (4.23), since we 
have, setting x = - y, P(v) = !.(v + yYpkK kj Y, and 

IP(v) = P( - v) =!.( - v + yYpkK k/ = !.(v - yypk( - YK kjY, whence 

I: Kkj-+( - YK kjX on comparing with (4.23). There are still other realiza­
tions, e.g., I: y-+ - y, Tkj-4 - )k+l + ITt. 

49 As mentioned in Ref. 15, these realizations, together with (2.26), provide 
welcome tests for the exactness of our expansions. They imply, e.g., that in 
(4.25), shift consists of terms pN n,K k,}, with !.j, odd, and that in width, the 

K k7 appear in combinations, e.g. K; ± K kj , of definite parity under I. 
There are some other useful tests: e.g., since only the combinationpkKkj 
appears in (4.23), all terms in (4.25) must be of the formpNn,Kk,J, with 

!.k, = N; likewise, all terms in (4. 15) must be of the form yNamn,Tk,}, with 

m + !.(k, + j, + I) = N. 
sOWe used [see Ref. 51, p. 302, Eqs. (7.4.6) and 7.4.7)] 

fodt e - i112)"COS(yt) = (1T/2) 1/2e -1112IY', 

fodt e ~ (1/2)"sin(yt) = e- II121Y' gds ell/21s' = 21/2D(y/21/2). 

s'M. Abramowitz and I. A. Stegun, Handbook a/Mathematical Functions 
(Dover, New York, 1964). 

s2Equation (5.13b) follows from repeated use of 
(!{ldy)E'(y) = - yE'(y)+ I, as compared to (d Idy)E'(y) = - yE'(y). 

S3p + (y) = fodt exp[ - iYt - ~t 2 - i(y - Y)t IF(it) 
= F( - d IdY)elY~ Y)d1dYE(Y) = !.k~o~bd - d IdY)!.t~o 

(y - YY(d IdYYE(Y)/]1, whence (5.17H5.18). 
"Numerical examples of these expansions, using the square-well model of 

pressure broadening (for which the Fk are complex) are found in Ref. 7. 
ss As mentioned in Ref. 15, these provide welcome tests for the exactness of 

our expansions. There are other useful tests: e.g., since only the combina­
tion ~Fk appears in (5.9), all expansions must consist of terms ~n,Fk, 

with !.k, = N. 
s·See, e.g., Sec. VI of Ref. 7. 
S7See Ref. 11, Chap. 9. Poisson laws haveg(t ) = cl(elc

" - I) + ic3t, and nor­
mal laws have g(t) = c4t 2, c, constants. A normal term arises in the Rie­
mann sum (3.30) if ¢(v) has a 8 singularity at v = 0, since 
LimE-+<! f'_ ,dv(e'"' - I - ivt )¢(v)lv2 = - t 2Limf'~ ,dv ¢(v). Note that 
the weak broadening limit profile is a Poisson law, while the strong broad­
c;{ling limit profile is a normal law. 

S8P., (v) is sometimes proposed (Ref. 5) as an im~rovement to the pure Lor­
entzian (1 + V2)-I. The shape parameters of P .,(v) can be found in closed 

form: 

shift., = A, (v ± )., = 2A (1 ± ~), width.., = 2AB, 
asym., = [(B + l)/(B - 1)1 - I, 

where A = [I - cos(ya)]!sin(ya), B = [[3 - cos(ya)]/[1 - cos(yalll'/2
• 

These may be expanded in powers ofya, of course yi~ding (4.15) wherein 
h (t ),i.e., all the TkJ,aresettozero. The approximation P ., (v) is usefulifh (t lis 
small, making the TkJ (and also a and d) small. But in general, it is more 
consistent to use (4.12), since Tkj's appear at order r in (4.10) (see Ref. 33). 

Conversely, one might choose not to expand e'ra in obtaining (4.10) and 
(4.15), which will then contain cos(ya) and sin(ya) instead of powers of a. 

s9E.g., pressure shifted hyperfine lines; see, e.g., R. R. Freeman, D. E. Prit­
chard, and D. Kleppner, Phys. Rev. A 13, 907 (1976). 

6ONote that P(w) = PtN(w) is infinitely divisible (i.d.) if and only if PI(w) is. 
But if a bulk limit, N-+ 00, Volume-. 00 , N IV olume = n finite, is taken, 
as, e.g., in the Anderson-Talman-Baranger treatment of pressure broad­
ening (Ref. 5), there of course results an i.d. spectrum. 
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Recursive formulas for Morse-oscillator matrix elements of arbitrary powers 
of 1 - exp[ - a(f - fe)] 
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The variable y = 1 - exp [ - aIr - r.)] is a natural one to use in connection with a Morse 
oscillator. A simple formula is derived via the factorization method relating the Morse matrix 
element (Diy "10) to (DiY" - liD) and (Diy" - 210). Another simple formula is derived, with which 
all matrix elements (v'ly"lv) can be calculated recursively, starting from values of (DiY "10). 

PACS numbers: 34.20.Be 

I. INTRODUCTION 

Eigenfunctions of the Morse oscillator are solutions of 
the SchrOdinger equation 

d21/1v1dr + (2p,Ifi2)(Ev - Vey2)l/1v = 0, 

where 

y = 1 - exp( - aq), q = r - r e , 

(la) 

(lb) 

and J.L, Ve , a, and re are parameters describing the oscillator. 
The standard way to solve this eigenvalue problem is to treat 
it as a class II, B-type factorization problem. I When we de­
fine the dimensionless Morse parameter2 

u = (2J.L Ve )1I2/(ali), (2) 

the energy eigenvalues are 

(3) 

the physically normalized ground-state eigenfunctions are 
given by3 

1/1
0

U(r) = [air (2s)] 112(2u)'e - Sa
qexp( - ue - a

q
), (4) 

where s = u - 2, and the normalized excited-state eigen­
functions may be calculated recursively from lower-state ei­
genfunctions for other Morse oscillators by the raising and 
lowering operators &iJ v ± (u), as follows: 

I/1v u = &iJ v -(U)I/1V_I u-t, (5a) 

I/1v_I u- I = &iJ v + (u)l/1v u, (5b) 

where the operators may be written in the form 

&iJ v ± (u) = [v(2u - v-I)] - 1/2[!~ - S ± d Idx], (5c) 

where 

~ = 2ue- aq
• 

Using Eqs. (5a)-(5d) one can also obtain the recursion 
relation 

(5d) 

~l/1v 17 = C Ul/1v 17 + Dv ul/1v_1 17-1 + Dv+ 117 + Il/1v+ 117 + I, (6a) 

where 

CU=2u, Dvu=v(2u-v-l). (6b) 

Because Eq. (5c) contains an external positive sign, the rela­
tive phases of the eigenfunctions are fixed: they are all posi­
tive at the inner "classical turning point." 

An alternative way to solve Eq. (1) is via class I, F-type 
factorization4

: Eqs. (3) and (4) are again obtained, but now 
normalized excited-state eigenfunctions are calculated from 

lower-state eigenfunctions of the same Morse oscillator by 
the raising and lowering operators ~ v ± (u), where 

I/1v + 117 = ~ V + (u)l/1v 17, (7a) 

I/1v 17 = ~ V - (u)l/1v + 117, (7b) 

and where the operators are given by 

( 
(u - v - 111)(U - V - 1)2 )112 

~ ±(u)= I~ 
v (u - v-I ± !)(2u - v - l)(v + 1) 

X _1_((U-V-l ±!) _ ~ +~) 
2u l-y (u-v-l) dy' 

(7c) 

wherey was given in Eq. (lb). In addition, one obtains the 
recursion relation 

(eaq 
- 1)l/1v 17 = Au ul/1v 17 + Bv ul/1v _ 117 + Bv + I ul/1u + 117, 

where 

Av 17 = 2u(v + 2) - v(v + 1) , 
(u - v)(u - v-I) 

17 _ u ( v(m - v) )112 
Bv - 2(u _ v) (u - v - 2)(u - v + !) . 

(8a) 

(8b) 

(8c) 

The use ofEq. (7c) produces eigenfunctions all of which are 
positive at the outer "classical turning point." 

The variable y ofEq. (1 b) is a very appropriate one to use 
in connection with a Morse oscillator. For example, expan­
sions in powers of y can provide very accurate models of 
actual vibrational potentials for diatomic molecules.2,3,5-9 It 
has also been suggested 10 that dipole moment functions be 
expanded in powers ofy. Morse matrix elements of powers of 
y can thus be useful for several different purposes: First, 
where a realistic vibrational potential is expressed as a Morse 
potential plus terms in higher powers of y, energy eigenval­
ues can be obtained, along with eigenfunctions expressed as 
linear combinations of Morse eigenfunctions, by matrix dia­
gonalization.9 Second, using such eigenvectors, one can cal­
culate matrix elements of any function that is a power series 
in y via matrix multiplication. 

In Ref. 9, Morse matrix elements of y were obtained by 
calculating the matrix for eaq using Eq. (8), then subtracting 
the inverse matrix from the unit matrix. Matrices for higher 
powers ofy were then obtained by matrix multiplication. All 
matrix operations were performed in a truncated Morse ba­
sis, which introduced some error. Reference 10 gives formu­
las for all Morse matrix elements (v'iY"lv) for n<:4. 
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In this paper we derive recursion formulas that permit 
the step-by-step recursive calculation of (v'lynl v) for arbi­
trary power n. The derivation divides into two parts: that for 
(OlynIO), and that for (v'lynl v) itself. 

II. RECURSIVE FORMULA FOR (OlynIO) 

Our derivation of the formula for (OlynIO) makes use of 
the technique of class II, B-type factorization. I Defining a 
variable 

w = 20' - eX = 2oy, 

we obtain from Eq. (6a) the recursion formula 

WtPo(T= -D1(T+ltP1,,+I. 

(9) 

(10) 

Multiplying by wn - I where (n> 1), then by tPo u, and inte­
grating, we obtain 

(OlwnIO) = _D1U+ IftPouwn-ltPl(T+ I dr. (11) 

We next replace tP I (T + I with (!J I - (0' + 1 )tPo (T, using Eq. (5a), 
to produce 

(01 wnlO) = - f tPo (TW n 
-I [!~ - (s + 1) - d IdxltPoudr. 

(12) 

Integrating the right-hand side ofEq. (12) by parts and re­
arranging the terms, we obtain 

(01 wnlO) = - f tPo UW" - I(V - S + d Idx)tPo U dr 

(13) 

(v'lynl v) = (v'ly"-llv) + [A
V

_ 1 (v'ly" -llv - 1) 

The first integral on the right-hand side vanishes, as the inte­
grand contains the application of a lowering operator to tPo u. 

Using the identity 

dW n - I/dx = (n - I)(W" - 1_ 2uW" - 2), (14) 

we obtain from Eq. (13) the recursive formula, 

(01 W"IO) = 2u(n - 1)(01 wn - 210) - (n - 2)(01 W" - 110). 

(15) 

Dividing by (20')", we obtain the desired result, 

(Oly"IO) = [In - l)(Oly" - 210) - (n - 2)(0Iy" - 110) ]120'. 

(16) 

JlI. RECURSIVE FORMULA FOR (v'ly"lv) 

We now apply techniques of class I, F-type factoriza­
tion4 to obtain the formula for (v' Iynl v). Multiplying Eq. (Sa) 
by e - aq and rearranging terms, we obtain 

ylv) =Avlv) +Bvlv-1) +Bv+llv+ 1) -AvYlv) 
- BvYlv -1) - Bv+ Iylv + 1). (17) 

(Since all quantities in this equation refer to the same Morse 
oscillator, we suppress the label ± Du.) MUltiplying by y" - I 

and again rearranging terms, we can write 

B" + ly"lv + 1) 
= Bu+ IY" - Ilv + 1) + AvY" - Ilv) + BvY" - Ilv - 1) 

(IS) 

Replacing v + 1 by v, multiplying by (v'l, and solving for 
(v'ly"lv), we obtain the desired recursive formula, which 
holds for v > 0: 

+ Bv_ I (v'lyn - Ilv - 2) - (1 + Av_ I )(v'lynl v - 1) - Bv_ I (v'lynl v - 2) ]IBv' (19) 

If we think of the matrix element (v'lynl v) as lying on 
the (v' + l)th row and (v + l)thcolumnofthe(n + l)thsheet 
of a three-dimensional matrix, the recursive procedure for 
calculating the elements ofthe matrix can be outlined as 
follows. First, the bottom sheet (for n = 0) is simply the orth­
onormality condition, 

(20) 

Starting with (OlyOIO) = 1, one can then use Eq. (16) repeat­
edly to produce values of (OlynIO) for successively higher 
sheets. If the nth sheet is already known (for whatever num­
bers of rows and columns are desired, subject to the restric­
tion Vmax <0' - !), then the first row of the (n + 1 )th sheet can 
be calculated from Eq. (19), starting with the known value of 
(OlynIO). Since each sheet is a real, symmetric matrix, one 
can produce the first column of this sheet by reflecting the 
first row. Elements of each additional row may now be ob­
tained by use of Eq. (19) (or by reflection, if v' > v). 

Since the derivation ofEq. (19) is based on class I, F­
type factorization, the phases of the matrix elements pro-
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I 
duced by the above procedure are fixed by the convention 
that all eigenfunctions are positive at the outer turning 
points. \0 Matrix elements corresponding to the other con­
vention differ by a relative phase ( - I)V + v'. Of course, Eq. 
(16) is independent of convention. 

As a verification ofEqs. (16) and (19), we used them to 
calculate a number of matrix elements for n<4, which were 
found to agree with the formulas of Ref. to. 

'L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951). 
2J. N. Huffaker, J. Chern. Phys. 64, 3175 (1976). 
3p. H. Dwivedi and J. N. Huffaker, J. Chern. Phys. 66,1726 (1977). 
4J. N. Huffaker and P. H. Dwivedi, J. Math. Phys. 16, 862 (1975). 
'J. N. Huffaker, J. Chern. Phys. 64,4564 (1976). 
6J. N. Huffaker and P. H. Dwivedi, J. Chern. Phys. 68, 1303 (1978). 
7J. N. Huffaker, J. Mol. Spectrosc. 65, 1 (1977); 71, 160 (1978). 
8J. N. Huffaker, J. Chern. Phys. 70, 2720 (1979); 72,2601 (1980). 
9J. N. Huffaker, J. Chern. Phys. 74,1217 (1981). 

IOJ. N. Huffaker and L. B. Tran, J. Chern. Phys. 76, 3838 (1982). 
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Multiple scattering of a wave in a system of scatterers with random, uncorrelated positions is 
studied with path integrals. The Edwards-Gulyaev expression for the position averaged Green's 
function is used to find the density expansion of the complex optical potential. The expansion is 
in terms of exact medium propagators and scattering matrices in the medium. The first term is 
the coherent potential approximation. A source dependent generalization of the path integral is 
used to derive a functional equation for the optical potential. This leads to a hierarchy for 
correlation functions that involves exact medium propagators and scattering matrices. The 
simplest truncations yield new integral equations that are generalizations of the coherent 
potential approximation and are compatible with the density expansion. 

PACS numbers: 42.20. - y, 03.40.Kf, 03.6S.Nk 

I. INTRODUCTION 

Our interest is in the characteristics of waves interact­
ing with discrete scatterers with random site positions. For 
concreteness we deal with a SchrOdinger wave, i.e., a quan­
tum mechanical particle in a random medium. There is a 
vast literature dealing with this problem, particularly from a 
multiple scattering viewpoint. I This approach uses the site 
or "atomic" scattering matrices and makes possible a suc­
cinct treatment of strong scattering (including hard core in­
teractions) and resonant scattering (including bound state 
effects). In addition, in the coherent potential approxima­
tion, one uses the scattering matrix in a medium character­
ized by the exact site averaged propagator. The result is par­
ticularly simple in the case that the sites are completely 
uncorrelated.2 If v is the potential operator and G (k IE) the 
momentum diagonal site averaged propagator in energy 
space, we have for the atomic scattering operator. 

t = v + vGt. (1.1) 

The complex optical potential ~ (k IE) enters into the aver­
aged Green's function as 

G- I =GO-I_~. (1.2) 

It is given in the coherent potential approximation by 

~(kIE) = n <k It Ik). (1.3) 

This is just the density n of scatterers times for forward scat­
tering amplitude. 

It is a nontrivial matter to improve the coherent poten­
tial approximation in a controlled manner, even for the com­
pletely uncorrelated case. One definite question is to ask for 
the density expansion of ~ (k IE) in a form involving atomic 
scattering matrices and the exact averaged propagator. The 
result for the first term beyond the coherent potential ap­
proximation is contained in the two body additive approxi­
mation in our recent work on mUltiple scattering.3 Of course 
the main focus in that work and in other condensed matter 
studies4 is on the case of arbitrarily correlated scatterers in 
dense systems. Still the density expansion provides a test for 
such theories and the results should have practical implica­
tions for dilute impurity systems in solid state physics, for 

electromagnetic wave propagation in gases, and other such 
problems. 

Here we study the density expansion from the very dif­
ferent path integral viewpoint. The path integral representa­
tion emphasizes the space-time aspects of the propagator, in 
contrast to the momentum-energy emphasis of the multiple 
scattering approach. However, the natural approximation 
schemes treat strong potentials in only indirect, cumber­
some ways. The role of complex optical potentials and exact 
medium propagators is unclear. On the other hand the path 
integral representation has definite virtues. If the character­
istic function for a random process is explicitly known, one 
can do the impurity averaging first, and one obtains a single, 
multitime path integral for the averaged propagator.5 This is 
the case for the Gaussian random process. It is also the case 
for the Poisson process describing uncorrelated sites. The 
result is a path integral studied by Edwards and co-workers,6 

and by Jones and Lukes7 for the real time case and by Fried­
berg and Luttinger8 in the temperature density matrix form. 
It has been used to study the Lipschitz deep traps that arise 
from large density fluctuations,9 and lead to an infinite tail in 
the density of states. In the Friedberg-Luttinger paper, a 
systematic cumulant expansion based on a trial potential 
was developed. (See, however, our article iO for a discussion 
of the implications of breaking translation in variance. ) The 
deep traps are not treated in the multiple scattering ap­
proach. Even in cluster extensions of the coherent potential 
there are only finite low energy tails in the density of states. 

The present work is devoted to developing a formalism 
that combines the strong points of the two approaches. We 
find that progress can be made in the uncorrelated site prob­
lem. There is a strong incentive to pursue this. In the path 
integral representation it is easy to write explicit multipath 
integrals for the averages of products of Green's functions. 
These quantities are needed in the study of transport phe­
nomena. This has been exploited in the theory of random 
continuum fluctuations, II as in sound transmission in fluc­
tuating media, or laser scattering from turbulent eddies. It 
has been possible to study the so-called strong fluctuation 
regime, i.e., transmission over long paths. 

Essentially arbitrary time and space correlations of the 
wave field can be computed. It is true that these results rely 
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on special features of the problem. In particular the wave­
length is short compared to the size of the fluctuation. There 
is negligible back scatter and strong forward scatter so that 
the parabolic approximation is valid. It is also true that the 
same results can be obtained somewhat more cumbersomely 
by other methods. Still the results for the continuous fluctu­
ations are impressive, and one would like to have a corre­
sponding theory for discrete scatterers. 

Here we deal with the simplest situation, viz., the deter­
mination of the average propagator for the case of uncorre­
lated discrete scatterers. The detailed outline is as follows. 

In Sec. 2 we construct the Edwards-Gulyaev path inte­
gral. Noting that the density appears as an explicit param­
eter, we find the density expansion of the average propagator 
in terms of bare Green's functions and bare atomic scatter­
ing matrices. By explicit inversion, term by term, one finds 
the optical potential ~ in terms of the same quantities. Con­
tinuing in the most straightforward way, the bare scattering 
matrices are expressed in terms of scattering matrices in a 
medium characterized by the exact site averaged propaga­
tor. This yields the explicit representation of the optical po­
tential in terms of medium scattering matrices, exact propa­
gators, and in powers of the density. The usual coherent 
potential approximation is the first term in the series. 

In Sec. 3 we generalize the path integral to include a 
space dependent source J (x). In the limit of zero density the 
source generates the bare atomic scattering matrices. An in­
tegration by parts technique is used. It converts the path 
integral into a hierarchy of equations for correlation func­
tions. With the source generating function one finds an 
equivalent functional equation for the source dependent, site 
averaged, Green's function. The source function is different 
from the one introduced in the standard Schwinger ap­
proach to quantum field theory. It uses the explicit charac­
teristic function of the Poisson process. There follow two 
illustrations of the use of the functional equation. First we 
check that successive functional derivatives yield the expan­
sion of the optical potential in terms of the bare scattering 
matrices obtained in Sec. 2. Second, the space-time cumu­
lant expansion is obtained. 

In Sec. 4 the standard machinery of quantum field the­
ory is put to work to yield a functional equation for the 
source dependent optical potential. It involves the exact 
propagator. A hierarchy is obtained by taking successive 
functional derivatives and evaluating them in the limit that 
the source vanishes. The hierarchy has the feature that a 
truncation involving neglect of a given order functional de­
rivative yields results accurate to a corresponding power of 
the density. One obtains a number of integral equations in 
terms of exact propagators and scattering matrices, depend­
ing on the precise truncation. These may have some validity 
at higher densities in the same sense that the coherent poten­
tial approach may be more accurate than is justified by its 
agreement with the perturbation expansion to only low 
order. 

II. DENSITY EXPANSION OF THE PATH INTEGRAL 

Let the particle impurity interaction be v(x - Rd, with 
the impurities at site positions RI, ... ,RN . The Green's func-
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tion for a given configuration is given by the path integral 

(xl§(t IRI,,·RN)lx l) 

= - iO(t)f D,x8(x(t) - x)8(x(O) - Xl) 

Xexp ( - igtli'V(X(U) - Rg)dU)' (2.1) 

Here 

D,x = Dx exp ( ~ i'X2dU). (2.2) 

The end point conditions are included by using the delta 
functions. 0 (t) is a step function and units have been chosen 
so that Ii = m = 1. Time dependent Green's functions have a 
caret. 

We have the abbreviated notation 

(2.3) 

for the right hand side. 
The average oversite position is performed with the 

weight function 1/'"; ~ I (d Rg In), corresponding to uncorre­
lated scatters. The site averaged Green's function is 

(xIG(t)lx l) = P {(f exp [ - ii'V(X(U) - R)dU] d:r} 

(2.4) 

by virtue of the interchangeability of the site averaging and 
path integral operations. Let 

f eXP(-ii'V(X(U)-R)du)d: = 1 + ~F(t) (2.5) 

with 

F(t) = f (exp [ - ii'V(X(U) - R)dU] - ~dR' 
n = N In. (2.6) 

In the limit oflarge N, with n finite, one finds the Edwards­
Gulyaev functional 

(2.7) 

The density of impurities appears as an explicit parameter so 
that the density series for the Green's function can be found 
by direct expansion of the exponential. 

The path integral 

p{exp (- ii'V(X(U) - Rdd0}=.(Xlh(tIRI)lxl) (2.8) 

is the Green's function for a particle with a single impurity at 
R I. Introduce the energy representation as the Fourier 
transform 

A (t ) = _1_ f + 00 e - iE'A (E) dE. 
21T - 00 

(2.9) 

In the energy representation, the single site Green's function 
obeys 

(xlh (E IR I)lx 1 ) 

= (xIGo(E)lx 1
) + f(xIGo(ElIxl)V(Xl - Rd 

X (xllh (E IR 1)lxl )dx 1• 
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We use a matrix notation with 

VI~V(X - RI)8 (x - Xl), 

hl~(xlh (E IRdlx l ). 

Then 

(2.11) 

hi = Go + Govlhl • (2.12) 

The bare scattering matrix t ~ (E ) is defined by 

hi = Go + Got~Go, 
t~=VI+VIGot~. (2.13) 

The superscript 0 indicates that it is the scattering matrix 
associated with the free particle propagator Go. (We hope 
that no confusion results from using the symbol t for both a 
scattering matrix and the time variable.) 

The first order in the density, the path integral yields 

(xIG(t)lx l
) = (xIGo(t) + nJ(h(t IRd - Go(t))dRllx l ). 

(2.14) 

In energy space 

G(E) = Go + nGoJt(RddRIGo. 

We next examine the n2 terms. The path integral 
involves 

J JdRldR2(Xlhdt)lxl) 

= P {J J dRl dR2 exp [ - iLV(X(U) - RtJdu 

- iLV(X(U) - R2)dU]}. 

(2.15) 

(2.16) 

h d t ) is the Green's function when there are two im puri­
ties, one at RI and one at R2• In energy space the two site 
Green's function obeys 

hdE) = Go + GO(v l + v2)h 12 (2.17) 

and the associated bare scattering matrix satisfies 

t~2 = (VI + v2) + (VI + V2)GOt~2 . (2.18) 
Multicenter bare scattering matrices were used by Luttinger 
and Kohn l2 in a study of the density expansion of the 
conductivity. 

To order n2 

J 0 n2 

G(E)=Go+nGo tldRIGo+ TGo 

X J J(t~2 - t~ - t~)dRldR2GO' (2.19) 

It is straightforward to extend this expansion in powers 
of density with bare propagators and scattering matrices to 
general order. However, the preceding expression involves 
cancellations from large regions of space where there is no 
interaction. To avoid this and still have expressions in terms 
of scattering matrices, one uses the identity 

[I - (VI + V2)GO]-1 

= [1-vIGo]-I[I-t~Got~go]-I[I-v2Go]-1 

= [I + t~Go][1 - t~Got~Go]-I[1 + t~Go]. (2.20) 

Using also (I - X)-I = I + x(1 - X)-I, it is seen that there 
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are terms cancelling the term t ~ + t ~ in the n2 coefficient 

Go = Go + nGoJtldRIGo + n2
GoJ JdR2 

{ 

0 0 0 t ~ Got ~ Go o} 
X t 1 Got 2 Go + t I Go [ (I + t I Go) . 

I - t~Got~Go] 
(2.21) 

The individual terms are now independent of the vol­
ume of integration. 

The next step is to expand the spatial potential 
~ = GO" I - G -I as a density series in terms of bare propa­
gators and bare scattering matrices. Write the above series as 

G = Go + nGoJt~dRIGo + n2 J J GoA ~2GodRldR2' 
(2.22) 

Then by direct expansion of G - I, 

~ = n Jt 7dR I + n2J J(A 72 - t~Got~)dRldR2 + .... 
(2.23) 

Finally we express ~ in terms of the scattering matrices 
in the medium and in terms of G. To order n2 it is only 
necessary to expand t ~ in the first term to first order in the 
density. Since 

t~= 1 VI - I (G-Go)t~, 
1- vlG 1- vlG 

G - Go = nG Jt2d R2GO + "', (2.24) 

we have 

t~ = tl - ntlG Jt2dR2Gtl. (2.25) 

This leads to 

~ = nJtldRI + n2
JJ[t iG I 

[I - t2Gt1G] 

Xt2Gtl(1 + Gt2) - t lGt2GtJdRldR2. (2.26) 

In fact the third order term in t is seen to cancel, so that the n2 

term starts with the fourth power in t. 
We now exhibit the explicit expression for the case of a 

one dimensional delta function and make contact with our 
earlier results from the multiple scattering approach. 

For the one center case when v(x - R I) = v8(x - R t ) 

the scattering matrix is 

(xltllx') = t8(x - x')8(x - R I), 

where t is the energy dependent quantity 

t = u[1 - v(OIG 10)]. 

In view of the overall translation invariance 
(OIG 10) = (xiG Ix) for any x. 

The two center scattering matrix is given by 

D(R2 - Rd(xltnlx') = [v(1 - v(OIG 10») 

(2.27) 

(2.28) 

+ v2(R II G IR 2W]8 (x - R I) 8(x' - R z) + 1±+2J.(2.29) 

Here 

D (R2 - R I) = [1 - v(OIG 10W[1 - t 21 (RIIG IR 2) 12]. (2.30) 
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With R = R2 - R I, we find 

!f fdRldR2(xlt12 - tl - t2Ix') 

= t 3£5(x _ x )fdR 1 (OIG IR ) 12 
I 1-t 21(0IGIR)12 

+ t
2 (01G Ix - x') 

1 - t21(01G Ix - x'W' (2.31) 

Subtracting the other terms needed to construct I, 

I = nt£5(x - x') + n2 { £5(x _ X')t5fdR G
4

(R) 
1 - t 2 IG 2(R)1 

+t 4G (xIGlx')IGlx'W } (2.32) 
1 - tZI(OIG Ix -x'W . 

The Fourier transform I (k IE) is 

I(kIE)=nt+nZ{ t5 f dRG
4

(R) 
1 - tZIG(R W 

+ t 4 fe ikX G(x)IG(xW dX} 
1 - tZIG(xW ' 

(2.33) 

where the second term is k dependent. This result can be 
obtained from Eq. (73) of the third paper of Ref. 3. 

III. INTEGRAL EQUATION FOR THE GENERATING 
FUNCTIONAL 

Consider the functional, 

G(xlt) = - iO(t)fD,xelltl, 

where 

Iff) = fin +J(R)jQ(t IR)dR, 

(3.1) 

Q (t IR) = - 1 + exp(i f v(xu) - R) dU)' (3.2) 

At zero density the J dependent term generates combina­
tions of the bare atomic scattering matrices. 

Note that 

_D_elill = ellllQ(t Is). 
M(s) 

There is an identity 
A A 

f 
£5G(xlt) ds = dG(xlt) 
£5J(s) dn 

and further identifies of the form 

f 
£5zG(xlt) d - d £5G(xlt) 

DJ({doJ ({) s - Tn M({l) 

which hold even for J #0. 

(3.3) 

(3.4) 

(3.5) 

The functional equation for G is obtained by using the 
integration by parts 13 

el(tl = ell"'l = ('ds ~I ells)) 
Jo Os 

= ('ds M leIISI ). (3.6) Jo Os 

In our case 
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M(s) = _ ifdRln +J(R))v(x(s) - R) 
Os 

X[I+Q(SIR)]. (3.7) 

The integral is broken up into paths running from 0, 0 to 
y, s and others running from y, s to x, t. The part from y, s to 
x, t is governed by the free particle action. The part from 0, 0 
to->" s is a correlation function expressible in terms of 
£5GIM({). 

We find the functional equation 

G(x 0ltO) - Go(x 0ltO) 

= f f dy d RII n + J(RI)) fGo(X ylt - s)v(y - R I) 

X {I + _£5 - }G(Y OlsO)ds. (3.8) 
M(R I ) 

In matrix form, with * denoting time convolution, 

(3.9) 

We use a summation convention. An index such as 2 (stand­
ing for R2), that does not occur on the left hand side, is to be 
integrated. The Fourier transforms of time varying quanti­
ties (energy representation) are denoted by ordinary letters 
without carets. 

f
+ 00 A 

G (E ) = _ 00 eiE1G (t )dt. (3.10) 

In the energy representation, the functional equation is 

G(xOIE) - G(xOIE) 

= ffdY dRt/n +J(RtJ) {I + _£5_} 
M(R I ) 

XGo(xyIE)v(y - RI)G(y OlE), (3.11) 

or more succinctly, 

(3.12) 

As a first application of the functional equation we de­
rive the density expansion of G in terms of the bare scattering 
matrices. Introduce 

H (E) = G (E ) exp ( f J (s)d s ). 
The functional equation becomes 

H - Go exp( f J (s)d s) = (n + JI)GOV I ~~. 
There is a hierarchy of equations. The typical one is 

(I - Go(v + ... vrn )) omH - Go exp( IJ (s)d s) 
MI .. ·Mrn 

(3.13) 

(3.14) 

(3.15) 

On the right hand side, only the index m + 1 is summed. 
This yields the density expansion. For example, at J = 0, 
neglecting the third derivative 

£52H -+[I-Go(v
l
+v2)]-IGo' (3.16) 

M I DJ2 

Eugene P. Gross 402 



                                                                                                                                    

(3.17) 

or 

G-Go + nGot~Go + n2t~GOv2[ 1 - GO(v2 + vtl] -IGO + .... 
(3.18) 

Using the identity (2.20) 

G-Go + nGot ~ Go 
+ n2Got~Got~(1 - Got~Got~)-I(l + Got~)Go. (3.19) 

Moving the denominator to the far right 

G = Go + nGot~Go 
+ n2(1 + Got~)Got~Got~(l - Got~Got~)-IGO' 

(3.20) 

This is the same result obtained in Sec. 2 direct expansion of 
the path integral. 

As another illustration of the use of the functional equa­
tion we obtain the cumulant expansion of the space-time site 
averaged Green's function G (xlt). Of course it can also be 
obtained directly from the path integral in the absence of a 
generating source. In the present problem the cumulant 
form 

G(xlt) = Go(xlt)eF1X)t) (3.21) 

has F(xlt) as a series in the density 

F(xlt) = ! ngFg(xlt). (3.22) 
g~1 

"-
The Fg (x It) are in terms of the free particle Go and bare 
scattering matrices. So the series can be constructed by brute 
force from the direct expansion of Sec. 2. However, it is 
worthwhile to exhibit how the series arises from the generat­
ing functional equation so that we may regard the latter as 
the common starting point for a variety of approximations. 

The differential form of the functional equation is 

(i~ + ! V2)G(xOlt) -8(t)8(x) at 
=f{n +J(s)}{l + _8_}V(X - s)G(xOlt). (3.23) 

8J({) 
Write 

G(x Olt) = Go(x Olt) exp L (3.24) 

"-
with the condition L (t-o) = O. The delta function contribu-
tion is accounted for by Go(x,Olt). For t #0 

(i ~ + !V2 + V In GoVi + !(VL)2 at 
= IK(S)V(X - s){l + -8-}i(X 1t)d s. (3.25) 

oK({) 
Here 

K(S) =J(S) + n. (3.26) 

We look for a solution of the form 
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L = J K(S)QI(xt IS)dt 

+ ~ J J K (SI)Q2(Xt ISIS2)K (s2)d SId S2 + (3.27) 

SinceK (S)-n asJ (S)-o, this becomes the cumulant density 
expansion. Matching powers of K yields a first equation 

(i! + !V2 1n Go V) QI(X tis) = v(x - s){l + QI(X tis)}· 

(3.28) 

With 

<P1(x tis) = fio(x Olt)QI(x tis), (3.29) 

{i %t + !V2_V(X-S)}<PI(Xtls)=v(x-s)Go(xt). 

(3.30) 

The solution in terms of the single site bare Green's function 
is 

QI(X tis) 

= ... 1 ff'h(XYlslt-s)v(y-s)Go(YOIS)dSdY. 
Go(x Olt) Jo 

(3.31) 

The first cumulant approximation is n times the integral of 
this expression over S. The direct path integral evaluation 
without a source gives the expression 

n 1 J{h(XOlslt)-Go(XOlslt)}dS. (3.32) 
Go(x °It) 

The two expressjons are equal in view of the integral equa­
tion obeyed by h. 

The next equation comes from matching quadratic 
terms in K. It is 

{ i ~ + ~ (V2 + V In fio·V) - [(v - SI) + v(x - S2)]} at 2 

XQ2(X t ISIS2) = - VQI(X Olt IstlVQI(x Olt IS2)' (3.33) 

Again this simplifies with 

<P2 = Go(x Olt )Q2(X t ISIS2) (3.34) 

to 

{i ~ + ~ \7 2 
- (v(x - ttl + v(x - t2))}<P2 at 2 

1 
= - A I VQI(X t ISI)VQI(x t IS2)' 

lTo(x 0 t) 
(3.35) 

The solution is in terms of the two site Green's function. 
After multiplying by n2/2 and integrating over SI and S2 one 
has the second cumulant contribution. This shows explicitly 
that all of the specific path integral techniques needed have 
been incorporated into the functional equation. The series is 
similar to the improved perturbation theory of Fradkin 14 for 
quantum field theory that he derived with operator tech­
niques. However, we have a density rather than a potential 
expansion. 

For comparison with the theory of the next section in 
terms of the self-energy (in energy space), we note the type of 
truncation implied by the cumulant method. We have 

A A A 

L=ln !G(xOlt)lGo(xOlt)] (3.36) 
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and 

(3.37) 

Thus the first cumulant approximation is equivalent to the 
truncation 

G(XO/f) 02G(XO/t) = oG(xO/t) OG(xO/t).(3.38) 
OJ (sdOJ(S2) oJ(sd oJ (S2) 

The natural truncations in the cumulant method are simple 
in the space-time description. This method gives a good de­
scription (including some but not all features of traps) in the 
limiting case of almost constant potentials. The self-energy 
approach of the next section leads to truncations off unction­
al derivatives in energy momentum space and does not treat 
traps. The relation between the two approaches has never 
been adequately clarified. Perhaps the functional equation 
may provide a good language to explore the question. 

IV. EXPANSION OF THE SELF-ENERGY 

We start with the functional equation for G, i.e., Eq. 
(3.12), and multiply on the left by G 0- I and on the right by 
G -I. Using the definition.I = G 0- 1_ G -I, 

.I = ((n + JdvI + (n + Jdvd oG G -I. (4.1) 
oJI 

We next use the relation GG - I = I to obtain 

(4.2) 

(4.3) 

This gives the basic functional equation for.I in terms of the 
exact propagator G, 

.I = vdn +Jd [1 + G 0.I J. (4.4) 
OJI 

The first functional derivative of this equation yields 

(I - v2G) 0.I _ V2 = JIV I ~ (G O.I) + nv) ~ (G O.I). 
OJ2 oJ2 OJ) oJ2 oJ) 

(4.5) 

The zero density limit of 0.I IOJ2 at J = 0 is 

0.I I = t2· 
8J2 J=O 

(4.6) 

Then, at J = 0, 

.I = nV2( I + Gt2) = nt2. (4.7) 

The second derivative yields 

02.I 0 ( O.I) oG 0.I (l-v2G-V3G)--- -v)-G - -v2--
OJ30J2 oJ2 oJ3 oJ3 oJ2 

8
2 

( O.I) 0
2 

( O.I) =Jlv)-- G- + nv)-- G-. (4.8) 
OJ)oJ2 oJI OJ30J2 OJI 

To find the self-energy to order n 2 one needs 0.I 10J) to order 
n. In tum one needs (010J2)(G 0.I lOll) in the limit of vanish­
ing density. There are a number of possible truncations that 
yield integral equations that have a self-energy accurate to 
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order n2
• 

One truncation (at J = 0) is 

02.I oG 0.I oG 0.I 
(l-v2G- v3G )--:::::V3-- +v2--, 

OJ30J2 OJ2 oJ3 OJ3 oJ2 
(4.9) 

which is accurate to n°. Here we have neglected the entire n 
dependent term on the right hand side ofEq. (4.8). In terms 
of the quantity 

0.I 
(/>2 = G-, (4.10) 

8J2 

the truncation is 

02(/» :::::0. 
OJ30J2 

(4.11) 

We then have, at J = 0, 

1 
= nV I(/>2(/» + nvtG (V I(/>2(/>1 + V2(/>1(/>2)' 

1 - V2G - vlG 
(4.12) 

Inserting (/>1 = Gt l , (/>2 = Gt2 gives (/>2 to order n when in­
serted in .I = nv I (I + 4> d. This leads to an expression alge­
braically equivalent to the result of Sec. 2. The n2 correction 
to the self-energy starts as the fourth power of the atomic 
scattering matrix. 

Another truncation is obtained by forming an equation 
for 4>2' 

(1 - GV2)4>2 - GV2 = JIGv 04>1 + nGv I 04>1. (4.13) 
OJ2 oJI 

(4.14) 

Write the equation with 3 and 2 interchanged, and eliminate 
04>310J2' The result at J = 0 is 

(1 - GV3 - Gt3GV2) 04>2 - 4>3GV2( 1 + 4>2) + GV3( I + (/>3) 
oJ3 

o ( 0(/>1) 0 (G 04>1 ) n- Gv l -- +nGt3 - v l --· 
OJ3 8J2 Ol2 8J3 

(4.15) 

Neglect of the term proportional to n on the right hand side 

(4.16) 

showing that the truncation is different from the first one. 
Inserting 04>2/Ol3 into Eq. (4.13) gives a new integral equa­
tion for (/>2' 

One can also make more accurate truncations, based on 
retaining part of the n proportional terms. Thus 

o ( O(/>I ) 04>1 G 02(/>( - Gv l-- = 4>3GVt-- + VI --;;-;-J . (4.17) 
oJ3 oJ2 oJ2 uJ3u 2 

One can retain the first term, since it still leads to a closed 
equation for 04>2/0J3' In the second term a zero density 
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accurate expression can be used, viz., 

02tP 
(1 - GV3 - Gt3GV2) __ 2_ 

0/40/3 

{) ::::; - ! tP3GV2( 1 + tP2 ) + Gt3tP2GV3( 1 + tP3 ) J. (4.18) 
8J4 

Then the error in 8tP2/oJ3 is _n2
, that oftP2 is -n\ and.Iis 

of order n4. The price paid is a higher degree of nonlinearity 
in the tP. 

We have not studied any of the integral equations in 
detail. In particular, as emphasized by Dallacusa 15 (for the 
Gaussian random case), it is desirable to maintain agreement 
with identities such as (3.4) and (3.5). The relation to the 
multiple scattering theory of Ref. 3 is unclear. 

V.SUMMARY 

We have shown that the functional equation for the 
source dependent Green's function can be used as a bridge 
between the path integral and multiple scattering ap­
proaches to the uncorrelated impurity problem. The key 
point is that a path integral has been used as a starting point 
in which the characteristics of the random process are fully 
incorporated. This is a unique feature of path integrals that is 
not possessed by the standard multiple scattering formula­
tion. The source is introduced so that it generates scattering 
matrices of various orders. Thus there is no difficulty in 
treating strong potentials and scattering resonances. With 
the standard field theory machinery we are then able to ob­
tain equations for the complex optical potential. This has 
been tested by using the first nontrivial truncation beyond 
the coherent potential approximation to find the next term in 
the expansion of the optical potential in powers of the 
density. 

In subsequent papers we exploit these results to find 
transport equations for the averages of higher order pro­
ducts of Green's functions. This is relatively straightfor­
ward. Another line of development is to use Feynman's 
method of trials actions for path integrals as explored by 
Edwards, Jones, and Lukes and by Friedberg and Luttinger 
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so as to obtain theories that include both the Lipschitz deep 
traps as well as the detailed multiple scattering effects. 
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Standard approximate methods involving the Abel integral equation do not allow the ionospheric 
electron density to be determined in the "valley" between two electron density peaks. Here we 
present analytic solutions to the Gel'fand-Levitan equation, which occurs in the exact full-wave 
inverse scattering theory. These exact analytic solutions exhibit multiple peaks in the electron 
density as a function of height and provide a solution to the valley problem. 

PACS numbers: 94.20. - y, 41.10.Hv, 03.40.Kf 

I. INTRODUCTION 

If a projectile is slid up a hill with different velocities, 
and a chart is made of the initial velocity versus time to 
return, it is possible to determine the shape of the hill from 
the delay time, by solving the Abel integral equation.' Un­
fortunately, no information can be obtained beyond the peak 
of the hill because, once the projectile passes the peak, it does 
not return. 

Similarly, the shape of the ionosphere (electron density 
as a function of height above the earth's surface) below the 
electron density peak can be determined by reflecting elec­
tromagnetic waves from the ionosphere. When the Abel in­
tegral equation involving the reflection coefficient is solved, 
the approximate electron density profile is obtained. 2 To ob­
tain information beyond the first ionospheric electron densi­
ty peak, topside scattering has been used. With this method, 
signals from a satellite are reflected from the top of the ionos­
phere back to the satellite. Unfortunately, if the ionosphere 
has more than one electron density peak, no information can 
be obtained in the valley(s) between the peaks. 

To obtain exact information for all heights, even be­
yond the first electron density peak, a full-wave method has 
been developed3

-
6 which involves the Gel'fand-Levitan 

equation for a potential corresponding to the electron densi­
ty. Because of difficulties in solving this equation, the full­
wave method has not been extensively utilized. Recently, 
our generalization 7-'1 of Kay's method3

-
6 has allowed an ex­

act analytic solution to the problem. 7
-

9 In this paper we em­
ploy our method to treat the valley problem by exactly solv­
ing the Gel'fand-Levitan equation even for potentials with 
multiple peaks. 

II. EXACT INVERSE SCATTERING SOLUTIONS 

In previous communications 7-'1 we presented proce­
dures for finding exact solutions to the Gel'fand-Levitan6 

equation in inverse scattering theory, for the case in which 
the reflection coefficient r(k ) is a rational function of the 
wave number k. 

The reflection coefficient is assumed to satisfy the fol­
lowing requirements3.5.,o: 

8) Present address: General Electric Co., Space Systems Division, Valley 
Forge, PA. 

(a) 

(b) 

(c) 

rIO) = - 1, 

[r(k)] * = r( - k) for all real k, 

[r(k )[.;;; 1 for all real k, 

and (d) r(k) is analytic for all k in the upper half-plane. 

In Refs. 7 and 8 we assumed that 

r(k ) = N (k )1 D (k ), (1 ) 

where N (k ) and D (k ) are polynomials in k, with 
n 

D (k ) = IT (k - k,), (2) 
i= I 

where the k, are distinct complex numbers in the lower half­
plane; the k, are the n poles of the reflection coefficient. In 
Refs. 7 and 8 we used our procedure to calculate the poten­
tial V (x) for a variety of reflection coefficients. Here we give a 
brief summary of the procedure. 

One first solves the following equation for the aa 
(a = ± 1, ± 2, ... , ± n; a _ (l = - an) 

r(ia,,)r( - ia,,) = 1. (3) 

Next, for j = 1, 2, ... , n, and a = 1,2, ... , n, one defines 

Fja =(aa -ikj )-' (4) 

Gj(l = r( - ia" )/(aa + ikj ), (S) 

and solves for thefa(x) (a = 1,2, ... , n) in thefollowing set of 
n simultaneous equations (one equation for each value ofj): 

1 + f. (F;a ea.,x + Gja e - a,,x) fa (x) = O. (6) 
a=l 

Then, K(x, x) is given by 

K(X,X)=Lt, [ea,,x-r(-iaa)e-a,,x]fa(X)}O(X), (7) 

in which 0 (x) is the step function defined by 0 (x) = 1 for 
x> 0,0 (x) = 0 for x < O. Finally, 

d 
V(x) = 2 - K (x, x). (8) 

dx 

The potential V (x) is zero for negative x, as can be seen from 
Eqs. (7) and (8). 

When r(k) is written in the form ofEq. (1), the zeros of 
the numerator N (k ) are the zeros of r(k ), and, because of 
requirement (a), r(k ) is completely determined by its poles 
and zeros. If the zeros are denoted by I" i = 1,2, ... , m, then 

e(k -/d· .. (k -1m) 
r(k) = -----­

(k - k,) .. ·(k - k n ) 

(9) 
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(10) 

If r(k ) is a rational function reflection coefficient satisfy­
ing (a), then if we multiply the poles and zeros of r(k ) by a 
common factor S, assumed to be a positive real number, the 
potential changes in a simple way. In determining this effect 
on the potential, we will insert new arguments of k i and Ii 
into r(k ), aa' and other quantities, to indicate their depen­
dence on the poles and zeros of r(k ). Thus we write r(k; k i, Ii)' 
aa(ki , Ii)' ... 

From Eqs. (9) and (10), we see that 

rIsk; ski> s/;) = r(k; ki> I;). (11) 

It follows from Eqs. (3) and (11) that 

au (ski> sf;) = saa (ki> I;). 

Because of Eqs. (4), (5), and (12), 

Fja(Sk;, sl;) = S -'Fja(k;, I;) 

and 

Gja (Ski' s/;l = s -IGja (k;. Ii)' 

From Eqs. (6) and (12)-(14), 

fa (xis; Ski' s/;) = Sfa(x; k;,lJ 

Then, from Eqs. (7), (12), and (15), 

K(xIS, xis; Ski> sl;) = sK(x, x; k;,/J 

Finally, from Eqs. (8) and (16), 

V(x1s; ski> sl;) = S2V(X; k;,l;). 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Thus, if the poles and zeros move farther away from the 
origin by a common factor of S, then any particular feature of 
the potential V, such as a maximum or minimum, moves to a 
value of x which is smaller by a factor S, and also becomes 
higher by a factor of S 2. 

It is important to notice that if the original reflection 
coefficient satisfies the requirements (a)-(d), then the new 
reflection coefficient also has these properties. 

To use our procedure to find V(x) we choose a set of 
poles and zeros for r(k ). Because of requirement (d), the poles 
must be in the lower half-plane. Requirement (a) will auto­
matically be satisfied provided that r(k ) has the form given by 
Eqs. (9) and (10). We can easily ensure that requirement (b) is 
satisfied by requiring that each pole is either purely imagi­
nary or is one ofa pair of poles: ki> kj' with k;* = - kj' and 
similarly for each zero. Thus, the set of poles of r(k ) is sym­
metrical with respect to a reflection in the imaginary axis, 
and the set of zeros is similarly symmetrical. 

It is more difficult to determine whether requirement (c) 
holds for a given set of poles and zeros. However, there are 
several methods for finding particular reflection coefficients 
satisfying (c). For instance, we have already pointed out that 
if a specific reflection coefficient is known to satisfy require­
ments (a)-(d), then the reflection coefficient obtained by mul­
tiplying all poles and zeros by S, a positive real number, will 
also satisfy (a)-(d). 

It is easy to see that if r(k ) has no zeros, all poles are 
purely imaginary, and (a), (b), and (d) are satisfied, then (c) is 
always satisfied. 
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In addition, if we are given two reflection coefficients, 
r1(k )andr2(k), each satisfying (aHd), then thereflectioncoef­
ficient r(k ) = - r,(k )r2(k) will also satisfy (aHd). Further­
more, if A is a positive real number with O..;A..; 1, then 

(18) 

will also satisfy (a)-(d). 
If r(k ) has exactly two poles and no zeros and satisfies 

(a), (b), and (d), and if k2 = - k 1*' then requirement (c) is 
satisfied if and only if 

IImk,I>IRek,l. (19) 

Equation (19) defines an "allowed region" for k ,. 
If r(k ) has exactly three poles and no zeros and satisfies 

(a), (b), and (d), with k, = - k,* and k3 = - k2*' then for 
each (purely imaginary) value of k I' there will be an allowed 
region for k2. Requirement (c) is satisfied only for k2 in the 
allowed region. With no loss of generality, as we have seen, 
we may let k 1 = - i; then the allowed region for k2 consists 
of the region 

(20) 

(y=:=Im k2 ), together with the region between the lemniscate 
of Bernoulli: 

r = 2 cos 2(J 

and the straight line 

Y= -!, 
which is tangent to the lemniscate. 

(21) 

(22) 

Using the above theorems, we find that the 3-pole re­
flection coefficient, r3(k), with the following poles (and no 
zeros) satisfies the necessary requirements: 

k 1 = - 0.4300i 

k2.3 = ± 0.7871i - 0.2203i. 

Furthermore, the lO-pole reflection coefficient, rlO(k), with 
the following poles (and no zeros) also has the required 
properties: 

k, - 1.1083i 

k2 - 1.0100i 

k3 - 1.1900i 

k4 - 1.2513i 
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-1 
<r 
~ 0.10 Z 
W 
I-
0 

0.05 Cl.. 

0 
0 2 3 4 5 

DISTANCE,x 

FIG. I. Potential V(x) vs distance x for A = 0.05. 
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FIG. 2. Potential V(x) vs distance x for A = 0.1. 
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FIG. 3. Potential V(x) vs distance x for A = 0.15. 
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FIG. 4. Potential V(x) vs distance x for A = 0.175. 

k S•6 = ± 0.0950 - 1.0502i 

k 7,8 ± 0.1504 - 1.0960i 

k 9,IO = ± 0.1030 - 1.151Oi. 

We now take a linear combination of 73(k) and 7\O(k): 

r(k) =A73(k) + (1 - A )rlO(k). (23) 

The reflection coefficient defined by Eq. (23) has the required 
properties, provided that O.;;;A.;;; 1. By applying our proce­
dure 7.8 to this reflection coefficient (with several values of A ), 
we obtain graphs of potential versus distance (Figs. 1-7) 
which are similar to graphs of electron density (in the ionos-
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FIG. 5. Potential V(x) vs distance x for A = 0.2. 
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FIG. 6. Potential V(x) vs distance x for A = 0.25. 
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FIG. 7. Potential V(x) vs distance x for A = 0.26. 

phere) versus height above the earth's surface. At night the 
ionosphere often contains an F 1 and F2layer, while in the 
daytime it often has an E and Flayer2; similarly, each of our 
graphs has two peaks. In Fig. 1, where A = 0.05, the first 
peak is much smaller than the second. As A increases 
(A = 0.1 in Fig. 2 and A = 0.15 in Fig. 3 I, the first peak be­
comes higher and the second becomes lower until, for 
A = 0.175 (Fig. 4), the two peaks have nearly equal heights. 
As A increases further (in Figs. 5-7, A = 0.2, 0.25, and 0.26 
respectively) the first peak continues to grow and the second 
continues to shrink; for A = 0.26, the first peak is 80 percent 
higher than the second. In addition, as A increases from 0.1 
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to 0.26, the potential at the relative minimum between the 
two peaks decreases; for A = 0.26 the potential almost goes 
to zero between the peaks. 

III. CONCLUSIONS 

In this paper we have used the exact full-wave theory of 
inverse scattering to treat reflection coefficients which yield 
multiple peaks. As can be seen from the graphs, our method 
allows the potential to be determined even in the valley 
between the peaks. Our method should prove useful in deter­
mining the ionospheric electron density even in the valley 
between the nighttime F 1 and F2layers, or in the valley 
between the daytime E and F layers. 
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